1
|
Ma KY, Perera-Gonzalez M, Langlois NI, Alzubi OM, Guimond JD, Flask CA, Clark HA. pH-responsive i-motif-conjugated nanoparticles for MRI analysis. SENSORS & DIAGNOSTICS 2024; 3:623-630. [PMID: 38646186 PMCID: PMC11025034 DOI: 10.1039/d3sd00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2024]
Abstract
Gadolinium (Gd)-based contrast agents (CAs) are widely used to enhance anatomical details in magnetic resonance imaging (MRI). Significant research has expanded the field of CAs into bioresponsive CAs by modulating the signal to image and monitor biochemical processes, such as pH. In this work, we introduce the modular, dynamic actuation mechanism of DNA-based nanostructures as a new way to modulate the MRI signal based on the rotational correlation time, τR. We combined a pH-responsive oligonucleotide (i-motif) and a clinical standard CA (Gd-DOTA) to develop a pH-responsive MRI CA. The i-motif folds into a quadruplex under acidic conditions and was incorporated onto gold nanoparticles (iM-GNP) to achieve increased relaxivity, r1, compared to the unbound i-motif. In vitro, iM-GNP resulted in a significant increase in r1 over a decreasing pH range (7.5-4.5) with a calculated pKa = 5.88 ± 0.01 and a 16.7% change per 0.1 pH unit. In comparison, a control CA with a non-responsive DNA strand (T33-GNP) did not show a significant change in r1 over the same pH range. The iM-GNP was further evaluated in 20% human serum and demonstrated a 28.14 ± 11.2% increase in signal from neutral pH to acidic pH. This approach paves a path for novel programmable, dynamic DNA-based complexes for τR-modulated bioresponsive MRI CAs.
Collapse
Affiliation(s)
- Kristine Y Ma
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ USA
- Dept. of Bioengineering, Northeastern University Boston MA USA
| | | | - Nicole I Langlois
- Dept. of Chemistry and Chemical Biology, Northeastern University Boston MA USA
| | - Owen M Alzubi
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ USA
| | - Joseph D Guimond
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ USA
| | - Chris A Flask
- Depts. of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University Cleveland OH USA
| | - Heather A Clark
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ USA
| |
Collapse
|
2
|
Nielsen LG, Sørensen TJ. Effect of buffers and pH in antenna sensitized Eu(III) luminescence. Methods Appl Fluoresc 2023; 11. [PMID: 36696692 DOI: 10.1088/2050-6120/acb63a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
The photophysics of a europium(III) complex of 1,4,7,10-tetraazacycododecane-1,4,7-triacetic acid-10-(2-methylene)-1-azathioxanthone was investigated in three buffer systems and at three pH values. The buffers-phosphate buffered saline (PBS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and universal buffer (UB)-had no effect on the europium luminescence, but a lower overall emission intensity was determined in HEPES. It was found that this was due to quenching of the 1-azathioxanthone first excited singlet state by HEPES. The effect of pH on the photophysics of the complex was found to be minimal, and protonation of the pyridine nitrogen was found to be irrelevant. Even so, pH was shown to change the intensity ratio between 1-azathioxanthone fluorescence and europium luminescence. It was concluded that the full photophysics of a potential molecular probe should be investigated to achieve the best possible results in any application.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| |
Collapse
|
3
|
Synthesis, characterization and relaxivity validations of Gd(III) complex of DOTA tetrahydrazide as MRI contrast agent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Seo H, Ma KY, Tuttle EE, Calderon IAC, Buskermolen AD, Flask CA, Clark HA. A DNA-Based MRI Contrast Agent for Quantitative pH Measurement. ACS Sens 2021; 6:727-732. [PMID: 33625209 PMCID: PMC9489053 DOI: 10.1021/acssensors.1c00296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular pH is important in clinical measurements due to its correlation to cell metabolism and disease progression. In MRI, T1/T2 ratiometric analysis and other methods have been previously applied to quantify pH using conventional pulse sequences. However, for nanoparticle-based approaches, heterogeneity in size and surface functionalization tends toward qualitative rather than quantitative results. To address this limitation, we developed a novel DNA-based MRI contrast agent, pH-DMRCA, which utilizes a highly programmable and reproducible nanostructure. The pH-DMRCA is a dendritic DNA scaffold that is functionalized with a pH-responsive MRI-sensitive construct, Gd(NP-DO3A), at the end of each DNA arm. We first evaluated the r1 and r2 response of our pH-DMRCA over a range of pH values (pH = 5-9) to establish a relaxometric model of pH. These MRI-based assessments of pH were validated in a separate set of samples using a pH electrode (n = 18) and resulted in a good linear correlation (R2 = 0.99, slope = 0.98, intercept = 0). A Bland-Altman analysis of the results also showed reasonable agreement between the calculated pH and measured pH. Moreover, these pH comparisons were consistent across three different pH-DMRCA concentrations, demonstrating concentration-independence of the method. This MRI-based pH quantification methodology was further verified in human blood plasma. Given the versatility of the DNA-based nanostructures, the contrast agent has a potential to be applied to a wide variety of imaging applications where extracellular pH is important including cancer, stroke, cardiovascular disease, and other important diseases.
Collapse
Affiliation(s)
- Hyewon Seo
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kristine Y Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Erin E Tuttle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Isen Andrew C Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alissa D Buskermolen
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chris A Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Kim S, Kim HK, Baek AR, Sung B, Yang BW, Kim YH, Lee JJ, Yang JU, Shin CH, Jung H, Kim M, Cho AE, Lee T, Chang Y. Rose bengal conjugated gadolinium complex as a new multimodal imaging agent targeting presynaptic vesicular glutamate transporters. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Shrestha R, Teesdale-Spittle PH, Lewis AR, Rendle PM. Gadolinium Complexes Attached to Poly Ethoxy Ethyl Glycinamide (PEE-G) Dendrons: Magnetic Resonance Imaging Contrast Agents with Increased Relaxivity. Chempluschem 2020; 85:1881-1892. [PMID: 32845091 DOI: 10.1002/cplu.202000409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/01/2020] [Indexed: 12/16/2022]
Abstract
A range of poly ethoxy ethyl glycinamide (PEE-G) dendron scaffolds with gadolinium (III) complexes attached were synthesized with a focus on product purity and high Gd(III) loading. The nuclear magnetic resonance relaxivity of these products was measured and compared with commercially available low-molecular-weight magnetic resonance imaging contrast agents. Over twice the relaxivity based on Gd(III) concentration, and up to 20-fold increase in relaxivity were observed based on molecular concentration. Relaxivity properties were observed to increase with both increasing molecular weight and number of Gd(III) complexes attached, however a plateau was reached for molecular weight increase. T1 and T2 relaxivity properties were also investigated at two different magnetic fields. Transverse relaxivity is unaffected by magnetic field strength whereas increase in longitudinal relaxivity was not as pronounced at the higher field.
Collapse
Affiliation(s)
- Rinu Shrestha
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand
| | | | - Andrew R Lewis
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand.,Callaghan Innovation, PO Box 31 310, Lower Hutt, 5010, New Zealand
| | - Phillip M Rendle
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand
| |
Collapse
|
7
|
Porcar-Tost O, Olivares JA, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM. Gadolinium Complexes of Highly Rigid, Open-Chain Ligands Containing a Cyclobutane Ring in the Backbone: Decreasing Ligand Denticity Might Enhance Kinetic Inertness. Inorg Chem 2019; 58:13170-13183. [PMID: 31524387 DOI: 10.1021/acs.inorgchem.9b02044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to explore novel ligand scaffolds for stable and inert lanthanide complexation in magnetic resonance imaging contrast agent research, three chiral ligands containing a highly rigid (1S,2S)-1,2-cyclobutanediamine spacer and different number of acetate and picolinate groups were efficiently synthesized. Potentiometric studies show comparable thermodynamic stability for the Gd3+ complexes formed with either the octadentate (L3)4- bearing two acetate or two picolinate groups or the heptadentate (L2)4- analogue bearing one picolinate and three acetate groups (log KGdL = 17.41 and 18.00 for [Gd(L2)]- and [Gd(L3)]-, respectively). In contrast, their dissociation kinetics is revealed to be very different: the monohydrated [Gd(L3)]- is considerably more labile, as a result of the significant kinetic activity of the protonated picolinate function, as compared to the bishydrated [Gd(L2)]-. This constitutes an uncommon example in which lowering ligand denticity results in a remarkable increase in kinetic inertness. Another interesting observation is that the rigid ligand backbone induces an unusually strong contribution of the spontaneous dissociation to the overall decomplexation process. Thanks to the presence of two inner-sphere water molecules, [Gd(L2)]- is endowed with high relaxivity (r1 = 7.9 mM-1 s-1 at 20 MHz, 25 °C), which is retained in the presence of large excess of endogenous anions, excluding ternary complex formation. The water exchange rate is similar for [Gd(L3)]- and [Gd(L2)]-, while it is 1 order of magnitude higher for the trishydrated tetraacetate analogue [Gd(L1)]- (kex298 = 8.1, 10, and 127 × 106 s-1, respectively). A structural analysis via density functional theory calculations suggests that the large bite angle imposed by the rigid (1S,2S)-1,2-cyclobutanediamine spacer could allow the design of ligands based on this scaffold with suitable properties for the coordination of larger metal ions with biomedical applications.
Collapse
Affiliation(s)
- Oriol Porcar-Tost
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - José A Olivares
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - Agnès Pallier
- Centre de Biophysique Moléculaire , UPR 4301, CNRS, Université d'Orléans , rue Charles Sadron , 45071 Orléans Cedex 2 , France
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química , Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - Ona Illa
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química , Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire , UPR 4301, CNRS, Université d'Orléans , rue Charles Sadron , 45071 Orléans Cedex 2 , France
| | - Rosa M Ortuño
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| |
Collapse
|
8
|
Bárta J, Hermann P, Kotek J. Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms. Molecules 2019; 24:E3324. [PMID: 31547345 PMCID: PMC6767212 DOI: 10.3390/molecules24183324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/17/2022] Open
Abstract
Three 1,4,7,10-tetraazacyclododecane-based ligands disubstituted in 1,4-positions with phosphonic acid, phosphonate monoethyl-ester, and H-phosphinic acid pendant arms, 1,4-H4do2p, 1,4-H2do2pOEt, and 1,4-H2Bn2do2pH, were synthesized and their coordination to selected metal ions, Mg(II), Ca(II), Mn(II), Zn(II), Cu(II), Eu(III), Gd(III), and Tb(III), was investigated. The solid-state structure of the phosphonate ligand, 1,4-H4do2p, was determined by single-crystal X-ray diffraction. Protonation constants of the ligands and stability constants of their complexes were obtained by potentiometry, and their values are comparable to those of previously studied analogous 1,7-disubstitued cyclen derivatives. The Gd(III) complex of 1,4-H4do2p is ~1 order of magnitude more stable than the Gd(III) complex of the 1,7-analogue, probably due to the disubstituted ethylenediamine-like structural motif in 1,4-H4do2p enabling more efficient wrapping of the metal ion. Stability of Gd(III)-1,4-H2do2pOEt and Gd(III)-H2Bn2do2pH complexes is low and the constants cannot be determined due to precipitation of the metal hydroxide. Protonations of the Cu(II), Zn(II), and Gd(III) complexes probably takes place on the coordinated phosphonate groups. Complexes of Mn(II) and alkali-earth metal ions are significantly less stable and are not formed in acidic solutions. Potential presence of water molecule(s) in the coordination spheres of the Mn(II) and Ln(III) complexes was studied by variable-temperature NMR experiments. The Mn(II) complexes of the ligands are not hydrated. The Gd(III)-1,4-H4do2p complex undergoes hydration equilibrium between mono- and bis-hydrated species. Presence of two-species equilibrium was confirmed by UV-Vis spectroscopy of the Eu(III)-1,4-H4do2p complex and hydration states were also determined by luminescence measurements of the Eu(III)/Tb(III)-1,4-H4do2p complexes.
Collapse
Affiliation(s)
- Jiří Bárta
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
9
|
Urbanovský P, Kotek J, Carniato F, Botta M, Hermann P. Lanthanide Complexes of DO3A-(Dibenzylamino)methylphosphinate: Effect of Protonation of the Dibenzylamino Group on the Water-Exchange Rate and the Binding of Human Serum Albumin. Inorg Chem 2019; 58:5196-5210. [PMID: 30942072 DOI: 10.1021/acs.inorgchem.9b00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protonation of a distant, noncoordinated group of metal-based magnetic resonance imaging contrast agents potentially changes their relaxivity. The effect of a positive charge of the drug on the human serum albumin (HSA)-drug interaction remains poorly understood as well. Accordingly, a (dibenzylamino)methylphosphinate derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was efficiently synthesized using pyridine as the solvent for a Mannich-type reaction of tBu3DO3A, formaldehyde, and Bn2NCH2PO2H2 ethyl ester. The ligand protonation and metal ion (Gd3+, Cu2+, and Zn2+) stability constants were similar to those of the parent DOTA, whereas the basicity of the side-chain amino group of the complexes (log KA = 5.8) was 1 order of magnitude lower than that of the free ligand (log KA = 6.8). The presence of one bound water molecule in both deprotonated and protonated forms of the gadolinium(III) complex was deduced from the solid-state X-ray diffraction data [gadolinium(III) and dysprosium(III)], from the square antiprism/twisted square antiprism (SA/TSA) isomer ratio along the lanthanide series, from the fluorescence data of the europium(III) complex, and from the 17O NMR measurements of the dysprosium(III) and gadolinium(III) complexes. In the gadolinium(III) complex with the deprotonated amino group, water exchange is extremely fast (τM = 6 ns at 25 °C), most likely thanks to the high abundance of the TSA isomer and to the presence of a proximate protonable group, which assists the water-exchange process. The interaction between lanthanide(III) complexes and HSA is pH-dependent, and the deprotonated form is bound much more efficaciously (∼13% and ∼70% bound complex at pH = 4 and 7, respectively). The relaxivities of the complex and its HSA adduct are also pH-dependent, and the latter is approximately 2-3 times increased at pH = 4-7. The relaxivity for the supramolecular HSA-complex adduct ( r1b) is as high as 52 mM-1 s-1 at neutral pH (at 20 MHz and 25 °C). The findings of this study stand as a proof-of-concept, showing the ability to manipulate an albumin-drug interaction, and thus the blood pool residence time of the drug, by introducing a positive charge in a side-chain amino group.
Collapse
Affiliation(s)
- Peter Urbanovský
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Petr Hermann
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| |
Collapse
|
10
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Travagin F, Lattuada L, Giovenzana GB. First synthesis of orthogonally 1,7-diprotected cyclens. Org Chem Front 2019. [DOI: 10.1039/c9qo00184k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Six novel orthogonally 1,7-heterodiprotected cyclen derivatives have been prepared through an efficient and chromatography-free procedure.
Collapse
Affiliation(s)
- Fabio Travagin
- Bracco Imaging S.p.A
- Bracco Research Centre
- I-10100 Colleretto Giacosa (TO)
- Italy
- Dipartimento di Scienze del Farmaco
| | - Luciano Lattuada
- Bracco Imaging S.p.A
- Bracco Research Centre
- I-10100 Colleretto Giacosa (TO)
- Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| |
Collapse
|
12
|
Caravan P, Esteban-Gómez D, Rodríguez-Rodríguez A, Platas-Iglesias C. Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years. Dalton Trans 2019; 48:11161-11180. [DOI: 10.1039/c9dt01948k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coordination chemistry offers convenient strategies to modulate the exchange of coordinated water molecules in lanthanide-based contrast agents.
Collapse
Affiliation(s)
- Peter Caravan
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging
- Massachusetts General Hospital
- Harvard Medical School
- Charlestown
- USA
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- 15008 A Coruña
- Spain
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- 15008 A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- 15008 A Coruña
- Spain
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging
| |
Collapse
|
13
|
Sørensen TJ, Faulkner S. Multimetallic Lanthanide Complexes: Using Kinetic Control To Define Complex Multimetallic Arrays. Acc Chem Res 2018; 51:2493-2501. [PMID: 30222311 DOI: 10.1021/acs.accounts.8b00205] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kinetically inert lanthanide complexes are proving to be highly effective building blocks for the preparation of complex heterometallic architectures, allowing complete control of metal ion domains, which cannot be achieved under thermodynamic control. Kinetic stability may render perceivable labile coordination bonds more durable than several types of covalent interactions. For complexes in clinical use, the significance of kinetic stability cannot be overstated, and this Account treats the topic accordingly. Kinetically inert complexes can be used as building blocks for elaborate synthesis. For instance, it is now possible to prepare heterometallic lanthanide complexes containing two or more different lanthanide ions by linking kinetically robust complexes together. This approach can yield bimetallic (f-f' or d-f) and trimetallic (f-f'-f″) lanthanide complexes. In this Account, we describe our studies exploiting the slow dissociation of lanthanide complexes derived from 1,4,7,10-tetraazadodecane-1,4,7,10-tetraacetic acid (DOTA) related ligands to link complexes together through synthetic manipulation of pendent groups on the ligand skeleton or through coordination of bridging donor groups to a d-block metal center. In the course of this work, we have developed a variety of such methods, ranging from peptide coupling and diazotization to Ugi and click chemistry and have also explored the use of alternative strategies that combine orthogonal protecting group chemistry with sequential complexation of different lanthanide ions or that use self-assembly to deliver well-defined multimetallic systems. These well-defined bimetallic systems also have considerable scope for exploitation. Since the earliest studies, it has been clear that there is potential for application in the burgeoning field of molecular imaging. Heterometallic lanthanide complexes can be used as single-molecule bimodal imaging agents through incorporation of MRI active and luminescent components. Alternatively, conventional luminescence methods can be exploited in conjunction with lanthanide luminescence. In the simplest cases, a single lanthanide can be used to achieve a switchable response in combination with a transition metal complex. Bimetallic f-f' complexes allow the full potential of the approach to be realized in systems in which one lanthanide responds to changes in the concentration of an analyte, while a second lanthanide center can be used to define the concentration of the probe itself. This offers a new solution to the old dichotomy of ratiometric imaging that can potentially be applied widely.
Collapse
Affiliation(s)
- Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
14
|
Katkova MA, Zabrodina GS, Baranov EV, Muravyeva MS, Kluev EA, Shavyrin AS, Zhigulin GY, Ketkov SY. New insights into water-soluble and water-coordinated copper 15-metallacrown-5 gadolinium complexes designed for high-field magnetic resonance imaging applications. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marina A. Katkova
- G. A. Razuvaev Institute of Organometallic Chemistry RAS; Tropinin Street 49, G SP-445 Nizhny Novgorod Russian Federation
| | - Galina S. Zabrodina
- G. A. Razuvaev Institute of Organometallic Chemistry RAS; Tropinin Street 49, G SP-445 Nizhny Novgorod Russian Federation
| | - Evgeny V. Baranov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS; Tropinin Street 49, G SP-445 Nizhny Novgorod Russian Federation
| | - Maria S. Muravyeva
- Faculty of Radiophysics; Lobachevsky State University; Gagarin Avenue 23 Nizhny Novgorod Russian Federation
| | - Evgeny A. Kluev
- Nizhny Novgorod State Medical Academy; Minin Square 10/1 Nizhny Novgorod Russian Federation
| | - Andrey S. Shavyrin
- G. A. Razuvaev Institute of Organometallic Chemistry RAS; Tropinin Street 49, G SP-445 Nizhny Novgorod Russian Federation
| | - Grigory Yu Zhigulin
- G. A. Razuvaev Institute of Organometallic Chemistry RAS; Tropinin Street 49, G SP-445 Nizhny Novgorod Russian Federation
| | - Sergey Yu Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS; Tropinin Street 49, G SP-445 Nizhny Novgorod Russian Federation
| |
Collapse
|
15
|
Gündüz S, Vibhute S, Botár R, Kálmán FK, Tóth I, Tircsó G, Regueiro-Figueroa M, Esteban-Gómez D, Platas-Iglesias C, Angelovski G. Coordination Properties of GdDO3A-Based Model Compounds of Bioresponsive MRI Contrast Agents. Inorg Chem 2018; 57:5973-5986. [PMID: 29718660 DOI: 10.1021/acs.inorgchem.8b00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report a detailed characterization of the thermodynamic stability and dissociation kinetics of Gd3+ complexes with DO3A derivatives containing a (methylethylcarbamoylmethylamino)acetic acid (L1), (methylpropylcarbamoylmethylamino)acetic acid (L2), 2-dimethylamino- N-ethylacetamide (L3), or 2-dimethylamino- N-propylacetamide (L4) group attached to the fourth nitrogen atom of the macrocyclic unit. These ligands are model systems of Ca2+- and Zn2+-responsive contrast agents (CA) for application in magnetic resonance imaging (MRI). The results of the potentiometric studies ( I = 0.15 M NaCl) provide stability constants with log KGdL values in the range 13.9-14.8. The complex speciation in solution was found to be quite complicated due to the formation of protonated species at low pH, hydroxido complexes at high pH, and stable dinuclear complexes in the case of L1,2. At neutral pH significant fractions of the complexes are protonated at the amine group of the amide side chain (log KGdL×H = 7.2-8.1). These ligands form rather weak complexes with Mg2+ and Ca2+ but very stable complexes with Cu2+ (log KCuL = 20.4-22.3) and Zn2+ (log KZnL = 15.5-17.6). Structural studies using a combination of 1H NMR and luminescence spectroscopy show that the amide group of the ligand is coordinated to the metal ion at pH ∼8.5, while protonation of the amine group provokes the decoordination of the amide O atom and a concomitant increase in the hydration number and proton relaxivity. The dissociation of the complexes occurs mainly through a rather efficient proton-assisted pathway, which results in kinetic inertness comparable to that of nonmacrocyclic ligands such as DTPA rather than DOTA-like complexes.
Collapse
Affiliation(s)
- Serhat Gündüz
- MR Neuroimaging Agents , Max Planck Institute for Biological Cybernetics , D-72076 Tuebingen , Germany
| | - Sandip Vibhute
- MR Neuroimaging Agents , Max Planck Institute for Biological Cybernetics , D-72076 Tuebingen , Germany
| | - Richard Botár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Ferenc K Kálmán
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Martín Regueiro-Figueroa
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química , Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - David Esteban-Gómez
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química , Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química , Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - Goran Angelovski
- MR Neuroimaging Agents , Max Planck Institute for Biological Cybernetics , D-72076 Tuebingen , Germany
| |
Collapse
|
16
|
Belleza OJV, Naraga AMB, Villaraza AJL. Relative Ligand Exchange Rates in Gd-based MRI Contrast Agent Formation as Probed by Gd-XO Complex. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oliver John V. Belleza
- Institute of Chemistry, College of Science; University of the Philippines - Diliman; Quezon City 1101 Metro Manila, Philippines
| | - Ansyl Marie B. Naraga
- Institute of Chemistry, College of Science; University of the Philippines - Diliman; Quezon City 1101 Metro Manila, Philippines
| | - Aaron Joseph L. Villaraza
- Institute of Chemistry, College of Science; University of the Philippines - Diliman; Quezon City 1101 Metro Manila, Philippines
| |
Collapse
|
17
|
Enel M, Leygue N, Balayssac S, Laurent S, Galaup C, Vander Elst L, Picard C. New polyaminocarboxylate macrocycles containing phenolate binding units: synthesis, luminescent and relaxometric properties of their lanthanide complexes. Dalton Trans 2018; 46:4654-4668. [PMID: 28327741 DOI: 10.1039/c7dt00291b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of two new polyaminocarboxylate macrocycles incorporating one or two intracyclic phenol units (H4L1 and H8L2, respectively) is described. The 12-membered H4L1 macrocycle leads to soluble and stable mononuclear LnIII complexes of [(L1)Ln(H2O)2]- composition (Ln = Eu, Tb and Gd) in aqueous solutions. In Tris buffer (pH 7.4), the [(L1)Tb(H2O)2]- complex displays a suitable efficiency for sensitized emission (ηsens = 48%) and a high luminescence quantum yield (Φ = 22%), which is worthy of note for a bis-hydrated terbium complex. Besides, luminescence experiments show that bidentate endogenous anions (citrate, carbonate, and phosphate) do not displace the two inner-sphere water molecules of this complex. In contrast, the possible presence of LMCT states causes the europium complex to be weakly luminescent. The [(L1)Gd(H2O)2]- complex is characterized by high relaxivity (r = 7.2 s-1 mM-1 at 20 MHz) and a very short water residence time of the coordinated water molecules (τ = 9 ns), promising values for the realisation of macromolecular systems with high relaxivities. Thus, the Tb and Gd complexes of the H4L1 macrocycle exhibit several improvements in terms of luminescent (lower excitation energy, higher brightness) and relaxometric (shorter τM) properties compared to the corresponding LnPCTA complexes, where a phenol moiety substitutes a pyridine ring. On the other hand, the 24-membered H8L2 macrocycle including two phenol units in its structure leads to dinuclear complexes of [(L2)Ln2]2- composition. Its terbium complex shows a long luminescence lifetime (2 ms) and a high quantum yield (43%) in aqueous solutions, making this compound a new promising candidate for time-resolved applications.
Collapse
Affiliation(s)
- Morgane Enel
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. and Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Nadine Leygue
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. and Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Stéphane Balayssac
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. and Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium. and Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | - Chantal Galaup
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. and Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Luce Vander Elst
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium. and Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | - Claude Picard
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. and Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| |
Collapse
|
18
|
A Coordination Chemistry Approach to Fine-Tune the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications. Chemistry 2018; 24:3127-3131. [DOI: 10.1002/chem.201705528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/23/2022]
|
19
|
Nielsen LG, Junker AKR, Sørensen TJ. Composed in the f-block: solution structure and function of kinetically inert lanthanide(iii) complexes. Dalton Trans 2018; 47:10360-10376. [DOI: 10.1039/c8dt01501e] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An induction to the wonders of lanthanides, and a call for standardised methods for characterisation of lanthanide complexes in solution.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Anne Kathrine R. Junker
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| |
Collapse
|
20
|
Baek AR, Kim HK, Park S, Lee GH, Kang HJ, Jung JC, Park JS, Ryeom HK, Kim TJ, Chang Y. Gadolinium Complex of 1,4,7,10-Tetraazacyclododecane-1,4,7-trisacetic Acid (DO3A)–Ethoxybenzyl (EOB) Conjugate as a New Macrocyclic Hepatobiliary MRI Contrast Agent. J Med Chem 2017; 60:4861-4868. [DOI: 10.1021/acs.jmedchem.7b00060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Joon-Suk Park
- Laboratory Animal
Center, Daegu-Gyeongbuk Medical Innovation Foundation Chumbok-ro
80, Dong-gu, Daegu 41061, Korea
| | | | | | | |
Collapse
|
21
|
Elizalde-González MP, García-Díaz E, González-Perea M, Mattusch J. Removal of gadolinium-based contrast agents: adsorption on activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8164-8175. [PMID: 28144867 DOI: 10.1007/s11356-017-8491-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 05/28/2023]
Abstract
Three carbon samples were employed in this work, including commercial (1690 m2 g-1), activated carbon prepared from guava seeds (637 m2 g-1), and activated carbon prepared from avocado kernel (1068 m2 g-1), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H3PO4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.
Collapse
Affiliation(s)
- María P Elizalde-González
- Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Ciudad Universitaria, Av. San Claudio s/n. Edif. 103H, 72570, Puebla, Pue, Mexico
| | - Esmeralda García-Díaz
- Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Ciudad Universitaria, Av. San Claudio s/n. Edif. 103H, 72570, Puebla, Pue, Mexico.
| | - Mario González-Perea
- Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 105I, 72570, Puebla, Pue, Mexico
| | - Jürgen Mattusch
- Department Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
22
|
Sørensen TJ, Tropiano M, Kenwright AM, Faulkner S. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 København Ø Denmark
- Chemistry Research Laboratory; Oxford University; 12 Mansfield Road OX1 3TA Oxford UK
| | - Manuel Tropiano
- Chemistry Research Laboratory; Oxford University; 12 Mansfield Road OX1 3TA Oxford UK
| | - Alan M. Kenwright
- Chemistry Department; Durham University; South Road DH1 3LE Durham UK
| | - Stephen Faulkner
- Chemistry Research Laboratory; Oxford University; 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
23
|
Junker AKR, Tropiano M, Faulkner S, Sørensen TJ. Kinetically Inert Lanthanide Complexes as Reporter Groups for Binding of Potassium by 18-crown-6. Inorg Chem 2016; 55:12299-12308. [DOI: 10.1021/acs.inorgchem.6b02063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anne Kathrine R Junker
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Copenhagen, Denmark
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U. K
| | - Manuel Tropiano
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U. K
| | - Stephen Faulkner
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U. K
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Copenhagen, Denmark
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U. K
| |
Collapse
|
24
|
Muravyeva MS, Zabrodina GS, Samsonov MA, Kluev EA, Khrapichev AA, Katkova MA, Mukhina IV. Water-soluble tetraaqua Ln(III) glycinehydroximate 15-metallacrown-5 complexes towards potential MRI contrast agents for ultra-high magnetic field. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Tircsó G, Regueiro-Figueroa M, Nagy V, Garda Z, Garai T, Kálmán FK, Esteban-Gómez D, Tóth É, Platas-Iglesias C. Approaching the Kinetic Inertness of Macrocyclic Gadolinium(III)-Based MRI Contrast Agents with Highly Rigid Open-Chain Derivatives. Chemistry 2016; 22:896-901. [DOI: 10.1002/chem.201503836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Gyula Tircsó
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
- Centre de Biophysique Moléculaire; CNRS; rue Charles Sadron 45071 Orléans, Cedex 2 France)
- Le Studium; Loire Valley Institute for Advanced Studies; 1 Rue Dupanloup 45000 Orléans France
| | - Martín Regueiro-Figueroa
- Departamento de Química Fundamental; Universidade da Coruña; Campus da Zapateira, Rúa da Fraga 10 15008A Coruña Spain
| | - Viktória Nagy
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - Zoltán Garda
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - Tamás Garai
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - Ferenc Krisztián Kálmán
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - David Esteban-Gómez
- Departamento de Química Fundamental; Universidade da Coruña; Campus da Zapateira, Rúa da Fraga 10 15008A Coruña Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire; CNRS; rue Charles Sadron 45071 Orléans, Cedex 2 France)
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental; Universidade da Coruña; Campus da Zapateira, Rúa da Fraga 10 15008A Coruña Spain
| |
Collapse
|
26
|
Castro G, Regueiro-Figueroa M, Esteban-Gómez D, Bastida R, Macías A, Pérez-Lourido P, Platas-Iglesias C, Valencia L. Exceptionally Inert Lanthanide(III) PARACEST MRI Contrast Agents Based on an 18-Membered Macrocyclic Platform. Chemistry 2015; 21:18662-70. [DOI: 10.1002/chem.201502937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/10/2022]
|
27
|
Yu J, Martins AF, Preihs C, Clavijo Jordan V, Chirayil S, Zhao P, Wu Y, Nasr K, Kiefer GE, Sherry AD. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates. J Am Chem Soc 2015; 137:14173-9. [PMID: 26462412 DOI: 10.1021/jacs.5b09158] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the known water exchange rate limitations of a previously reported Zn(II)-sensitive MRI contrast agent, GdDOTA-diBPEN, new structural targets were rationally designed to increase the rate of water exchange to improve MRI detection sensitivity. These new sensors exhibit fine-tuned water exchange properties and, depending on the individual structure, demonstrate significantly improved longitudinal relaxivities (r1). Two sensors in particular demonstrate optimized parameters and, therefore, show exceptionally high longitudinal relaxivities of about 50 mM(-1) s(-1) upon binding to Zn(II) and human serum albumin (HSA). This value demonstrates a 3-fold increase in r1 compared to that displayed by the original sensor, GdDOTA-diBPEN. In addition, this study provides important insights into the interplay between structural modifications, water exchange rate, and kinetic stability properties of the sensors. The new high relaxivity agents were used to successfully image Zn(II) release from the mouse pancreas in vivo during glucose stimulated insulin secretion.
Collapse
Affiliation(s)
- Jing Yu
- Department of Chemistry, University of Texas at Dallas , P.O. Box 830668, Richardson, Texas 75083, United States
| | - André F Martins
- Department of Chemistry, University of Texas at Dallas , P.O. Box 830668, Richardson, Texas 75083, United States
| | - Christian Preihs
- Advanced Imaging Research Center, The University of Texas , Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Veronica Clavijo Jordan
- Advanced Imaging Research Center, The University of Texas , Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Sara Chirayil
- Advanced Imaging Research Center, The University of Texas , Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Piyu Zhao
- Department of Chemistry, University of Texas at Dallas , P.O. Box 830668, Richardson, Texas 75083, United States
| | - Yunkou Wu
- Advanced Imaging Research Center, The University of Texas , Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Khaled Nasr
- Advanced Imaging Research Center, The University of Texas , Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Garry E Kiefer
- Department of Chemistry, University of Texas at Dallas , P.O. Box 830668, Richardson, Texas 75083, United States.,Macrocyclics, Inc. , 1309 Record Crossing, Dallas, Texas 75235, United States
| | - A Dean Sherry
- Department of Chemistry, University of Texas at Dallas , P.O. Box 830668, Richardson, Texas 75083, United States.,Advanced Imaging Research Center, The University of Texas , Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
28
|
Kuda-Wedagedara ANW, Allen MJ. Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 2015; 139:4401-10. [PMID: 25054827 DOI: 10.1039/c4an00990h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contrast agents are diagnostic tools that often complement magnetic resonance imaging. At ultra-high field strengths (≥7 T), magnetic resonance imaging is capable of generating desirable high signal-to-noise ratios, but clinically available contrast agents are less effective at ultra-high field strengths relative to lower fields. This gap in effectiveness demands the development of contrast agents for ultra-high field strengths. In this minireview, we summarize contrast agents reported during the last three years that focused on ultra-high field strengths.
Collapse
|
29
|
Abstract
This perspective outlines strategies towards the development of MR imaging probes that our lab has explored over the last 15 years. Namely, we discuss methods to enhance the signal generating capacity of MR probes and how to achieve tissue specificity through protein targeting or probe activation within the tissue microenvironment.
Collapse
Affiliation(s)
- Eszter Boros
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
30
|
Boros E, Caravan. P. Probing the structure-relaxivity relationship of bis-hydrated Gd(DOTAla) derivatives. Inorg Chem 2015; 54:2403-10. [PMID: 25693053 PMCID: PMC4758459 DOI: 10.1021/ic503035f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two structural isomers of the heptadentate chelator DO3Ala were synthesized, with carboxymethyl groups at either the 1,4- or 1,7-positions of the cyclen macrocycle. To interrogate the relaxivity under different rotatational dynamics regimes, the pendant primary amine was coupled to ibuprofen to enable binding to serum albumin. These chelators 6a and 6b form bis(aqua) ternary complexes with Gd(III) or Tb(III) as estimated from relaxivity measurements or luminescence lifetime measurements in water. The relaxivity of [Gd(6a)(H2O)2] and [Gd(6b)(H2O)2] was measured in the presence and absence of coordinating anions prevalent in vivo such as phosphate, lactate, and bicarbonate and compared with data attained for the q = 2 complex [Gd(DO3A)(H2O)2]. We found that relaxivity was reduced through formation of ternary complexes with lactate and bicarbonate, albeit to a lesser degree then the relaxivity of Gd(DO3A). In the presence of 100-fold excess phosphate, relaxivity was slightly increased and typical for q = 2 complexes of this size (8.3 mM(-1) s(-1) and 9.5 mM(-1) s(-1), respectively, at 37 °C, 60 MHz). Relaxivity for the complexes in the presence of HSA corresponded well to relaxivity obtained for complexes with reduced access for inner-sphere water (13.5 and 12.7 mM(-1) s(-1) at 37 °C, 60 MHz). Mean water residency time at 37 °C was determined using temperature-dependent (17)O-T2 measurements at 11.7 T and calculated to be (310)τM = 23 ± 1 ns for both structural isomers. Kinetic inertness under forcing conditions (pH 3, competing DTPA ligand) was found to be comparable to [Gd(DO3A)(H2O)]. Overall, we found that the replacement of one of the acetate arms of DO3A with an amino-propionate arm does not significantly alter the relaxometric and kinetic inertness properties of the corresponding Gd complexes; however, it does provide access to easily functionalizable q = 2 derivatives.
Collapse
Affiliation(s)
- Eszter Boros
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Peter Caravan.
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
31
|
Singh G, Hsu KM, Chen YJ, Wu SC, Chen CY, Wang YM. A switch-on MRI contrast agent for noninvasive visualization of methylmercury. Chem Commun (Camb) 2015; 51:12032-5. [DOI: 10.1039/c5cc01723h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first Gd(iii)-based T1 MRI contrast agent, o-MeHgGad, is demonstrated for noninvasive visualization of CH3Hg+.
Collapse
Affiliation(s)
- Gyan Singh
- Department of Biological Science and Technology
- Institute of Molecular Medicine and Bioengineering
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Kuang-Mei Hsu
- Department of Biological Science and Technology
- Institute of Molecular Medicine and Bioengineering
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Yu-Jen Chen
- Department of Biological Science and Technology
- Institute of Molecular Medicine and Bioengineering
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Shou-Cheng Wu
- Department of Biological Science and Technology
- Institute of Molecular Medicine and Bioengineering
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Chiao-Yun Chen
- Department of Radiology
- Faculty of Medicine
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung
| | - Yun-Ming Wang
- Department of Biological Science and Technology
- Institute of Molecular Medicine and Bioengineering
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|
32
|
Hopper LE, Allen MJ. Rapid synthesis of 1,7-bis( t-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO2A- t-Bu ester). Tetrahedron Lett 2014; 55:5560-5561. [PMID: 25506095 DOI: 10.1016/j.tetlet.2014.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A three-step route was used to synthesize 1,7-bis(t-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO2A-t-Bu ester) from 1,4,7,10-tetraazacyclododecane (cyclen). The overall time of reaction was reduced from a combined ~56 h to 2.3 h with an overall yield comparable to previously reported methods.
Collapse
Affiliation(s)
- Lauren E Hopper
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| |
Collapse
|
33
|
Boros E, Karimi S, Kenton N, Helm L, Caravan P. Gd(DOTAlaP): exploring the boundaries of fast water exchange in gadolinium-based magnetic resonance imaging contrast agents. Inorg Chem 2014; 53:6985-94. [PMID: 24922178 PMCID: PMC4095929 DOI: 10.1021/ic5008928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Here,
we describe the synthesis of the single amino acid chelator DOTAlaP
and four of its derivatives. The corresponding gadolinium(III) complexes
were investigated for their kinetic inertness, relaxometric properties
at a range of fields and temperatures, water exchange rate, and interaction
with human serum albumin (HSA). Derivatives with one inner-sphere
water (q = 1) were determined to have a mean water
residency time between 8 and 6 ns in phoshate-buffered saline at 37
°C. The corresponding europium complexes were also formed and
used to obtain information on the hydration number of the corresponding
coordination complexes. Two complexes capable of binding HSA were
also synthesized, of which one, Gd(5b), contains no inner-sphere
water, while the other derivative, Gd(4b), is a mixture
of ca. 15% q =1 and 85% q = 0. In
the presence of HSA, the latter displayed a very short mean water
residency time (τM310 = 2.4 ns) and enhanced
relaxivity at intermediate and high fields. The kinetic inertness
of Gd(4b) with respect to complex dissociation was decreased
compared to its DOTAla analogue but still 100-fold more inert than
[Gd(BOPTA)(H2O)]2–. Magnetic resonance
imaging in mice showed that Gd(4b) was able to provide
38% better vessel to muscle contrast compared to the clinically used
HSA binding agent MS-325. Converting one
of the acetate groups in the single amino acid chelator DOTAla to
methylenephosphonate (DOTAlaP) results in gadolinium(III) complexes
with extremely fast water exchange kinetics and/or in equilibrium
between monoaquated (q = 1) and unaquated (q = 0) states. The presence of phosphonate and the very
fast water exchange kinetics result in stable complexes with high
relaxivity at high magnetic fields, especially when bound to serum
albumin.
Collapse
Affiliation(s)
- Eszter Boros
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | | | | | | | | |
Collapse
|
34
|
Rivas C, Stasiuk G, Gallo J, Minuzzi F, Rutter GA, Long NJ. Lanthanide(III) complexes of rhodamine-DO3A conjugates as agents for dual-modal imaging. Inorg Chem 2013; 52:14284-93. [PMID: 24304423 PMCID: PMC4024063 DOI: 10.1021/ic402233g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 01/09/2023]
Abstract
Two novel dual-modal MRI/optical probes based on a rhodamine-DO3A conjugate have been prepared. The bis(aqua)gadolinium(III) complex Gd.L1 and mono(aqua)gadolinium(III) complex Gd.L2 behave as dual-modal imaging probes (r1 = 8.5 and 3.8 mM(-1) s(-1) for Gd.L1 and Gd.L2, respectively; λex = 560 nm and λem = 580 nm for both complexes). The rhodamine fragment is pH-sensitive, and upon lowering of the pH, an increase in fluorescence intensity is observed as the spirolactam ring opens to give the highly fluorescent form of the molecule. The ligands are bimodal when coordinated to Tb(III) ions, inducing fluorescence from both the lanthanide center and the rhodamine fluorophore, on two independent time frames. Confocal imaging experiments were carried out to establish the localization of Gd.L2 in HEK293 cells and primary mouse islet cells (∼70% insulin-containing β cells). Colocalization with MitoTracker Green demonstrated Gd.L2's ability to distinguish between tumor and healthy cells, with compartmentalization believed to be in the mitochondria. Gd.L2 was also evaluated as an MRI probe for imaging of tumors in BALB/c nude mice bearing M21 xenografts. A 36.5% decrease in T1 within the tumor was observed 30 min post injection, showing that Gd.L2 is preferentially up taken in the tumor. Gd.L2 is the first small-molecule MR/fluorescent dual-modal imaging agent to display an off-on pH switch upon its preferential uptake within the more acidic microenvironment of tumor cells.
Collapse
Affiliation(s)
- Charlotte Rivas
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Graeme
J. Stasiuk
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Juan Gallo
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Florencia Minuzzi
- Section
of Cell Biology, Division of Diabetes, Endocrinology and Metabolism,
Department of Medicine, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
| | - Guy A. Rutter
- Section
of Cell Biology, Division of Diabetes, Endocrinology and Metabolism,
Department of Medicine, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| |
Collapse
|
35
|
Studies of Size-Based Selectivity in Aqueous Ternary Complexes of Americium(III) or Lanthanide(III) Cations. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0098-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Tropiano M, Blackburn OA, Tilney JA, Hill LR, Placidi MP, Aarons RJ, Sykes D, Jones MW, Kenwright AM, Snaith JS, Sørensen TJ, Faulkner S. Using remote substituents to control solution structure and anion binding in lanthanide complexes. Chemistry 2013; 19:16566-71. [PMID: 24203895 DOI: 10.1002/chem.201303183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 01/01/2023]
Abstract
A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery of the molecule, at a substantial distance from the binding pocket. Herein, we explore these remote substituent effects and explain the observed behaviour through discussion of the way in which remote substituents can influence and control the global structure of a molecule through their demands upon conformational space. Peripheral modifications to a binuclear lanthanide motif derived from α,α'-bis(DO3 Ayl)-m-xylene are shown to result in dramatic changes to the binding constant for isophthalate. In this system, the parent compound displays considerable conformational flexibility, yet can be assumed to bind to isophthalate through a well-defined conformer. Addition of steric bulk remote from the binding site restricts conformational mobility, giving rise to an increase in binding constant on entropic grounds as long as the ideal binding conformation is not excluded from the available range of conformers.
Collapse
Affiliation(s)
- Manuel Tropiano
- Chemical Research Laboratory, Oxford University, 12 Mansfield Road, Oxford OX1 3TA (UK)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gale EM, Kenton N, Caravan P. [Gd(CyPic3A)(H2O)2]-: a stable, bis(aquated) and high-relaxivity Gd(III) complex. Chem Commun (Camb) 2013; 49:8060-2. [PMID: 23903523 PMCID: PMC3791611 DOI: 10.1039/c3cc44116d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report the synthesis and MR relevant properties of CyPic3A, a heptadentate chelator that forms ternary Gd(III) complexes of hydration state q = 2. [Gd(CyPic3A)(H2O)2](-) affords an r1 value of 5.70 mM(-1) s(-1) at 1.41 T and 310 K and displays thermodynamic stability and kinetic inertness comparable to FDA approved MR imaging probes.
Collapse
Affiliation(s)
- Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
38
|
Strategies for optimizing water-exchange rates of lanthanide-based contrast agents for magnetic resonance imaging. Molecules 2013; 18:9352-81. [PMID: 23921796 PMCID: PMC3775326 DOI: 10.3390/molecules18089352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022] Open
Abstract
This review describes recent advances in strategies for tuning the water-exchange rates of contrast agents for magnetic resonance imaging (MRI). Water-exchange rates play a critical role in determining the efficiency of contrast agents; consequently, optimization of water-exchange rates, among other parameters, is necessary to achieve high efficiencies. This need has resulted in extensive research efforts to modulate water-exchange rates by chemically altering the coordination environments of the metal complexes that function as contrast agents. The focus of this review is coordination-chemistry-based strategies used to tune the water-exchange rates of lanthanide(III)-based contrast agents for MRI. Emphasis will be given to results published in the 21st century, as well as implications of these strategies on the design of contrast agents.
Collapse
|