1
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Starke I, Fürstenberg S. Investigation of the binding site of ruthenium complexes to short single-stranded oligodeoxynucleotides using electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9231. [PMID: 34866265 DOI: 10.1002/rcm.9231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE In order to elucidate the nature of the interaction between metal complexes and DNA, use was made of short telomere single-stranded oligodeoxynucleotide (ODN) strand 5'-T1 T2 A3 G4 G5 G6 -3' (1) and strands 5'-T1 C2 A3 G4 G5 G6 -3' (2), 5'-T1 T2 A3 C4 G5 G6 -3' (3) and 5'-T1 C2 C3 C4 C5 G6 -3' (4) for the verification of the binding site with four different ruthenium complexes as possible anticancer drug candidates. METHODS The ability to form adducts between ruthenium complexes with short single-stranded 6-mers was investigated through the use of electrospray ionization mass spectrometry (ESI-MS). Full scan ESI mass spectra and collision-induced dissociation (CID) mass spectra were recorded on a high-resolution quadrupole time-of-flight mass spectrometer. The elemental compositions of the adducts and the most important product ions were calculated by exact mass measurements. RESULTS ESI-MS measurements showed that the mono-ruthenated ODNs were the main products produced under the conditions for the four ruthenium complexes and each of the ODNs. The CID results revealed that thymine and guanine are the preferred binding sites depending on the different compositions in the ODNs. However, for the ODN of the type: 5'-T1 C2 C3 C4 C5 G6 -3' the coordination site on cytosine was observed as well. The different ruthenium complexes interacted in the same way. CONCLUSIONS This study showed that the characterization of new ruthenium complexes with short single-stranded telomeric DNA (TTAGGG) and further different ODNs is possible with positive ESI-MS/MS measurement. The identification of thymine and cytosine besides guanine as possible binding sites suggests that the interaction site is highly affected by the ODN's structure.
Collapse
Affiliation(s)
- Ines Starke
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
3
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
4
|
Geisler H, Westermayr J, Cseh K, Wenisch D, Fuchs V, Harringer S, Plutzar S, Gajic N, Hejl M, Jakupec MA, Marquetand P, Kandioller W. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorg Chem 2021; 60:9805-9819. [PMID: 34115482 PMCID: PMC8261824 DOI: 10.1021/acs.inorgchem.1c01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.
Collapse
Affiliation(s)
- Heiko Geisler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Julia Westermayr
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, United Kingdom
| | - Klaudia Cseh
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Dominik Wenisch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Valentin Fuchs
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sophia Harringer
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sarah Plutzar
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Natalie Gajic
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Faculty
of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Waehringer Str. 17, A-1090 Vienna, Austria,Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria,. Phone: +43 1 4277
52609
| |
Collapse
|
5
|
Liang Z, Lin J, Gong X, Cheng Y, Huang C, Zhang J, Wu X, Wang F, Zhao Y, Wu K. Reactions of a photoactivatable diazido Pt(iv) anticancer complex with a single-stranded oligodeoxynucleotide. Dalton Trans 2021; 49:11249-11259. [PMID: 32756682 DOI: 10.1039/d0dt02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum based anticancer agents are widely applied in clinic and their major target is believed to be DNA. Herein, the interaction of a photoactivatable diazido Pt(iv) anticancer prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1) with a 15-mer single-G-containing oligodeoxynucleotide (ODN I: 5'-CT2CTCTTG8T9CT11TCTC-3') was investigated by mass spectrometric methods. Up to penta-platinated ODN I adducts were identified from primary mass spectra while the mono- and di-platinated adducts had the highest intensity. Fragmentation of mono-, di- and tri-platinated I adducts in tandem MS revealed that T2, G8, T11 and T9 are binding sites. No cytosine sites were identified which may be due to the facile loss of Pt adducts from cytosine during CID. The intensity of {Pt(py)2}-bound adducts was comparable to that of {Pt(N3)(py)2}-bound adducts, indicating that the photo-reduction pathway of complex 1 from Pt(iv) to Pt(ii) through two one-electron donations from two azides was substantial. Moreover, no transformation of N3 to NH3 on the {Pt(N3)(py)2}-bound adducts was observed, whereas it is very popular during the reactions of complexes with short ODNs or mono-nucleotides. The oxidation on I induced by the reactive oxygen species (ROS) formed by the photodecomposition of complex 1 was significant, and the oxidation of G8 to 8-hydroxyguanine (8-OH-G), spiroiminodihydantoin (Sp) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) was discovered. These results unambiguously revealed a sequence-length-dependent photochemical reactivity of complex 1 when it interacted with different ODNs, providing deeper understanding in the reactivity of photoactivatable diazido anticancer Pt(iv) prodrugs to DNA.
Collapse
Affiliation(s)
- Zujun Liang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yiyu Cheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
6
|
Kar B, Roy N, Pete S, Moharana P, Paira P. Ruthenium and iridium based mononuclear and multinuclear complexes: A Breakthrough of Next-Generation anticancer metallopharmaceuticals. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Rodriguez J, Mosquera J, Learte-Aymamı́ S, Vázquez ME, Mascareñas JL. Stimuli-Responsive DNA Binding by Synthetic Systems. Acc Chem Res 2020; 53:2286-2298. [PMID: 32997936 DOI: 10.1021/acs.accounts.0c00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA is the molecule responsible for the storage and transmission of the genetic information in living organisms. The expression of this information is highly regulated. In eukaryotes, it is achieved mainly at the transcription level thanks to specialized proteins called transcription factors (TFs) that recognize specific DNA sequences, thereby promoting or inhibiting the transcription of particular genes. In many cases, TFs are present in the cell in an inactive form but become active in response to an external signal, which might modify their localization and DNA binding properties or modulate their interactions with the rest of the transcriptional machinery. As a result of the crucial role of TFs, the design of synthetic peptides or miniproteins that can emulate their DNA binding properties and eventually respond to external stimuli is of obvious interest. On the other hand, although the B-form double helix is the most common DNA secondary structure, it is not the only one with an essential biological function. Guanine quadruplexes (GQs) have received considerable attention due to their critical role in the regulation of gene expression, which is usually associated with a change in the GQ conformation. Thus, the development of GQ probes whose properties can be controlled using external signals is also of significant relevance.In this Account, we present a summary of the recent efforts toward the development of stimuli-responsive synthetic DNA binders with a particular emphasis on our own contributions. We first introduce the structure of B and GQ DNAs, and some of the main factors underlying their selective recognition. We then discuss some of the different approaches used for the design of stimulus-mediated DNA binders. We have organized our discussion according to whether the interaction takes place with duplex or guanine quadruplex DNAs, and each section is divided according to the nature of the stimulus (i.e., physical or chemical). Regarding physical stimuli, light (through the incorporation of photolabile protecting groups or photoisomerizable agents) is the most common input for the activation/deactivation of DNA binding events. With respect to chemical signals, the use of metals (through the incorporation of metal-coordinating groups in the DNA binding agent) has allowed the development of a wide range of stimuli-responsive DNA binders. More recently, redox-based systems have also been used to control DNA interactions.This Account ends with a "Conclusions and Outlook" section highlighting some of the general lessons that have been learned and future directions toward further advancing the field.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Mosquera
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Soraya Learte-Aymamı́
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Huang C, Ma Z, Lin J, Gong X, Zhang F, Wu X, Wang F, Zheng W, Zhao Y, Wu K. Tandem Mass Spectrometry Reveals Preferential Ruthenation of Thymines in Human Telomeric G-Quadruplex DNA by an Organometallic Ruthenium Anticancer Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fengfeng Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Zheng
- Peking University Health Science Center, Beijing 100191, People’s Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| |
Collapse
|
9
|
Lal B, Kanwal A, Altaf AA, Badshah A, Asghar F, Akhter S, Ullah S, Khan SI, Tahir MN. Synthesis, crystal structure, spectral and electrochemical characterization, DNA binding and free radical scavenging studies of ferrocene-based thioureas. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1651846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bhajan Lal
- Institute of Chemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Ammarah Kanwal
- Cast Metals and Foundry Technology Centre (CM and FT) PCSIR, Daska, District Sialkot, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amin Badshah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiza Asghar
- Department of Chemistry, University of Wah, Wah, Pakistan
| | - Sadia Akhter
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shafiq Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Ishtiaq Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
10
|
Cheng Y, Zeng W, Cheng Y, Zhang J, Zou T, Wu K, Wang F. Selective binding of an organoruthenium complex to G-rich human telomeric sequence by tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2152-2158. [PMID: 30252980 DOI: 10.1002/rcm.8292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Human telomeric DNA is reported to be a potential target for anticancer organometallic ruthenium(II) complexes, however, the interaction sites were not clearly discriminated and identified. METHODS In the current study, tandem mass spectrometry (MS/MS) using collision-induced dissociation (CID) was firstly introduced to identify the interaction sites of an organometallic ruthenium(II) complex [(η6 -biphenyl)Ru(en)Cl][PF6 ] (1; en = ethylenediamine) with 5'-T1 T2 A3 G4 G5 G6 -3' (I), the repeating unit of human telomeric DNA, in both positive- and negative-ion mode at a low reaction molar ratio (1/I = 0.2) which was applied to preserve the site selectivity. RESULTS Mass spectrometric results showed that mono-ruthenated I was the main product under the conditions. In positive-ion mode, MS/MS results indicated that ruthenium complex 1 binds to T2 or G6 in strand I. However, in negative-ion mode, no efficient information was obtained for exact identification of ruthenation sites which may be attributed to losses of fragment ions due to charge neutralization by the coordination of the positively charged ruthenium complex to the short MS/MS fragments. CONCLUSIONS This is the first report of using top-down MS to characterize the interactions of organometallic ruthenium(II) complexes and human telomeric DNA. Thymine can be thermodynamically competitive with guanine for binding to ruthenium complexes even at low reaction molar ratio, which inspired us to explore in greater depth the significance of thymine binding.
Collapse
Affiliation(s)
- Yiyu Cheng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy Sciences, Beijing, 100049, PR China
| | - Yang Cheng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Jishuai Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Tao Zou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy Sciences, Beijing, 100049, PR China
| |
Collapse
|
11
|
Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu S, Liang A, Wu K, Zeng W, Luo Q, Wang F. Binding of Organometallic Ruthenium Anticancer Complexes to DNA: Thermodynamic Base and Sequence Selectivity. Int J Mol Sci 2018; 19:ijms19072137. [PMID: 30041439 PMCID: PMC6073332 DOI: 10.3390/ijms19072137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
Organometallic ruthenium(II) complexes [(η⁶-arene)Ru(en)Cl][PF₆] (arene = benzene (1), p-cymene (2), indane (3), and biphenyl (4); en = ethylenediamine) are promising anticancer drug candidates both in vitro and in vivo. In this paper, the interactions between ruthenium(II) complexes and 15-mer single- and double-stranded oligodeoxynucleotides (ODNs) were thermodynamically investigated using high performance liquid chromatography (HPLC) and electrospray ionization mass spectroscopy (ESI-MS). All of the complexes bind preferentially to G₈ on the single strand 5'-CTCTCTT₇G₈T₉CTTCTC-3' (I), with complex 4 containing the most hydrophobic ligand as the most reactive one. To the analogs of I (changing T₇ and/or T₉ to A and/or C), complex 4 shows a decreasing affinity to the G₈ site in the following order: -AG₈T- (K: 5.74 × 10⁴ M-1) > -CG₈C- > -TG₈A- > -AG₈A- > -AG₈C- > -TG₈T- (I) ≈ -CG₈A- (K: 2.81 × 10⁴ M-1). In the complementary strand of I, the G bases in the middle region are favored for ruthenation over guanine (G) bases in the end of oligodeoxynucleotides (ODNs). These results indicate that both the flanking bases (or base sequences) and the arene ligands play important roles in determining the binding preference, and the base- and sequence-selectivity, of ruthenium complex in binding to the ODNs.
Collapse
Affiliation(s)
- Suyan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Jarosova P, Paroulek P, Rajecky M, Rajecka V, Taborska E, Eritja R, Aviñó A, Mazzini S, Gargallo R, Taborsky P. Naturally occurring quaternary benzo[c]phenanthridine alkaloids selectively stabilize G-quadruplexes. Phys Chem Chem Phys 2018; 20:21772-21782. [DOI: 10.1039/c8cp02681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the interaction of six natural benzo[c]phenanthridine alkaloids (macarpine, sanguilutine, sanguirubine, chelerythrine, sanguinarine and chelirubine) with parallel and antiparallel G-quadruplex DNA structures was studied.
Collapse
Affiliation(s)
- Petra Jarosova
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Petr Paroulek
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Michal Rajecky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | | | - Eva Taborska
- Faculty of Medicine
- Masaryk University
- Brno 62500
- Czech Republic
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Stefania Mazzini
- Department of Food
- Environmental and Nutritional Sciences (DEFENS)
- Section of Chemical and Biomolecular Sciences
- University of Milan
- Milan 20133
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Petr Taborsky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| |
Collapse
|
14
|
Asadi Z, Nasrollahi N, Karbalaei-Heidari H, Eigner V, Dusek M, Mobaraki N, Pournejati R. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:125-135. [PMID: 28178588 DOI: 10.1016/j.saa.2017.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3×103 and 1.2×103M-1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1>C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran.
| | - Neda Nasrollahi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Hamidreza Karbalaei-Heidari
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Vaclav Eigner
- Institute of Physics ASCR, v.v.i, Na Slovance 2, Praha 821182, Czech Republic
| | - Michal Dusek
- Institute of Physics ASCR, v.v.i, Na Slovance 2, Praha 821182, Czech Republic
| | - Nabiallah Mobaraki
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Roya Pournejati
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
15
|
Rodríguez J, Mosquera J, Couceiro JR, Vázquez ME, Mascareñas JL. Ruthenation of Non-stacked Guanines in DNA G-Quadruplex Structures: Enhancement of c-MYC Expression. Angew Chem Int Ed Engl 2016; 55:15615-15618. [PMID: 27860057 PMCID: PMC5299515 DOI: 10.1002/anie.201607965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/29/2016] [Indexed: 11/21/2022]
Abstract
Guanine quadruplexes (GQs) are compact four-stranded DNA structures that play a key role in the control of a variety of biological processes, including gene transcription. Bulky ruthenium complexes featuring a bipyridine, a terpyridine, and one exchangeable ligand ([Ru(terpy)(bpy)X]n+ ) are able to metalate exposed guanines present in the GQ of the c-MYC promoter region that are not involved in quadruplex base pairing. qRT-PCR and western-blot experiments indicated that the complexes promote a remarkable increase in the expression of this oncogene. We also show that exchangeable thioether ligands (X=RSR', Met) allow regulation of the metalating activity of the complex with visible light.
Collapse
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
16
|
Rodríguez J, Mosquera J, Couceiro JR, Vázquez ME, Mascareñas JL. Ruthenation of Non-stacked Guanines in DNA G-Quadruplex Structures: Enhancement ofc-MYCExpression. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
17
|
Seršen S, Šket P, Plavec J, Turel I. Interactions of two cytotoxic organoruthenium(II) complexes with G-quadruplex. J Inorg Biochem 2016; 160:70-7. [DOI: 10.1016/j.jinorgbio.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
18
|
Lozano G, Jimenez-Aparicio R, Herrero S, Martinez-Salas E. Fingerprinting the junctions of RNA structure by an open-paddlewheel diruthenium compound. RNA (NEW YORK, N.Y.) 2016; 22:330-8. [PMID: 26759454 PMCID: PMC4748811 DOI: 10.1261/rna.054353.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/05/2015] [Indexed: 05/17/2023]
Abstract
RNA function is determined by its structural organization. The RNA structure consists of the combination of distinct secondary structure motifs connected by junctions that play an essential role in RNA folding. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probing is an established methodology to analyze the secondary structure of long RNA molecules in solution, which provides accurate data about unpaired nucleotides. However, the residues located at the junctions of RNA structures usually remain undetected. Here we report an RNA probing method based on the use of a novel open-paddlewheel diruthenium (OPW-Ru) compound [Ru2Cl2(µ-DPhF)3(DMSO)] (DPhF = N,N'-diphenylformamidinate). This compound has four potential coordination sites in a singular disposition to establish covalent bonds with substrates. As a proof of concept, we have analyzed the reactivity of OPW-Ru toward RNA using two viral internal ribosome entry site (IRES) elements whose function depends on the structural organization of the molecule. Our study suggests that the compound OPW-Ru preferentially attacks at positions located one or two nucleotides away from junctions or bulges of the RNA structure. The OPW-Ru fingerprinting data differ from that obtained by other chemical reagents and provides new information about RNA structure features.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain
| | - Reyes Jimenez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Santiago Herrero
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | |
Collapse
|
19
|
Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015; 20:17244-74. [PMID: 26393560 PMCID: PMC6332046 DOI: 10.3390/molecules200917244] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.
Collapse
|
20
|
Liu S, Wu K, Zheng W, Zhao Y, Luo Q, Xiong S, Wang F. Identification and discrimination of binding sites of an organoruthenium anticancer complex to single-stranded oligonucleotides by mass spectrometry. Analyst 2015; 139:4491-6. [PMID: 25028701 DOI: 10.1039/c4an00807c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We here report the identification of the binding sites of an organometallic ruthenium anticancer complex [(η(6)-biphenyl)Ru(en)Cl](+) (1) to single-stranded oligodeoxynucleotides (ODNs) 5'-CCCA4G5C6CC-3' (I) and 5'-CCC3G4A5CCC-3' (II) by mass spectrometry. The MS analysis of exonuclease ladders demonstrated that the 5'-exonuclease bovine spleen phosphodiesterase digestion of I and II mono-ruthenated by complex 1 was arrested solely at A4 and partially at C3 and G4, respectively, and that the 3'-exonuclease snake venom phosphodiesterase digestion of the ruthenated ODNs was arrested solely at G5 and G4, respectively, due to the ruthenation. These results did not allow unambiguous identification of ruthenation sites on the metallated ODNs. In contrast, tandem mass spectrometry analysis with CID fragmentation of the mono-ruthenated ODNs provided sequential and complementary [a(i) - B]/wi fragments, leading to unambiguous identification of G5 in I and G4 in II as the ruthenation sites on the ODN adducts, which is in line with the high selectivity of the complex towards guanine base as reported previously. These findings suggest that caution should be raised with regard to the identification of the binding sites of metal complexes, in particular complexes with bulky ligands, like biphenyl in complex 1, to DNA by MS analysis of exonuclease ladders of the metallated adducts, because the bulky ligands may adopt such an orientation that they block the exonuclease cleavage of the 5'- or 3'-side phosphodiester bonds adjacent to the binding sites, leading to digestion stalling at the nucleotides before the binding sites.
Collapse
Affiliation(s)
- Suyan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen ZF, Qin QP, Qin JL, Zhou J, Li YL, Li N, Liu YC, Liang H. Water-Soluble Ruthenium(II) Complexes with Chiral 4-(2,3-Dihydroxypropyl)-formamide Oxoaporphine (FOA): In Vitro and in Vivo Anticancer Activity by Stabilization of G-Quadruplex DNA, Inhibition of Telomerase Activity, and Induction of Tumor Cell Apoptosis. J Med Chem 2015; 58:4771-89. [PMID: 25988535 DOI: 10.1021/acs.jmedchem.5b00444] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three water-soluble ruthenium(II) complexes with chiral 4-(2,3-dihydroxypropyl)-formamide oxoaporphine (FOA) were synthesized and characterized. It was found that these ruthenium(II) complexes exhibited considerable in vitro anticancer activities and that they were the effective stabilizers of telomeric and G-quadruplex-DNA (G4-DNA) in promoter of c-myc, which acted as a telomerase inhibitor targeting G4-DNA and induced cell senescence and apoptosis. Interestingly, the in vitro anticancer activity of 6 (LC-003) was higher than those of 4 (LC-001) and 5 (LC-002), more selective for BEL-7404 cells than for normal HL-7702 cells, and preferred to activate caspases-3/9. The different biological behaviors of the ruthenium complexes could be correlated with the chiral nature of 4-(2,3-dihydroxypropyl)-formamide oxoaporphine. More significantly, 6 exhibited effective inhibitory on tumor growth in BEL-7402 xenograft mouse model and higher in vivo safety than cisplatin. These mechanistic insights indicate that 6 displays low toxicity and can be a novel anticancer drug candidate.
Collapse
Affiliation(s)
- Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Qi-Pin Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Jiao-Lan Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Jie Zhou
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Yu-Lan Li
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Nan Li
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| |
Collapse
|
22
|
Yu Z, Han M, Cowan JA. Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper-Acridine-ATCUN Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Yu Z, Han M, Cowan JA. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper-acridine-ATCUN complex. Angew Chem Int Ed Engl 2014; 54:1901-5. [PMID: 25504651 DOI: 10.1002/anie.201410434] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/11/2022]
Abstract
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper-acridine-ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA)
| | | | | |
Collapse
|
24
|
From Traditional Drug Design to Catalytic Metallodrugs: A Brief History of the Use of Metals in Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.2478/medr-2014-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractTraditional drug design has been effective in the development of therapies for a variety of disease states but there is a need for new approaches that will tackle new challenges and complement current paradigms. The use of metals in medicine has resulted in several successes and allows for the introduction of properties that cannot be achieved by use of organic compounds alone, but also introduces new challenges that can be addressed by a careful understanding of the principles of inorganic chemistry. Toward this end, the unique structural and coordination chemistry, as well as the reactivity of metals, has been used to design novel classes of therapeutic and diagnostic agents. This review briefly summarizes progress in the field of therapeutics, from the earliest use of metals to more recent efforts to design catalytic metallodrugs that promote the irreversible inactivation of therapeutically relevant targets.
Collapse
|
25
|
Wu Q, Chen T, Zhang Z, Liao S, Wu X, Wu J, Mei W, Chen Y, Wu W, Zeng L, Zheng W. Microwave-assisted synthesis of arene ruthenium(ii) complexes [(η6-RC6H5)Ru(m-MOPIP)Cl]Cl (R = -H and -CH3) as groove binder to c-myc G4 DNA. Dalton Trans 2014; 43:9216-25. [DOI: 10.1039/c3dt53635a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two arene Ru(ii) complexes are prepared under microwave irradiation and display application potential as small molecule inhibitors of c-myc G4 DNA.
Collapse
Affiliation(s)
- Qiong Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou, P.R. China
| | - Zhao Zhang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Siyan Liao
- School of Pharmaceutical Sciences
- Guangzhou Medical University
- Guangzhou, P.R. China
| | - Xiaohui Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Jian Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Wenjie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
- Department of Chemistry
- Jinan University
| | - Yanhua Chen
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Weili Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Lingli Zeng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou, P.R. China
| | - Wenjie Zheng
- Department of Chemistry
- Jinan University
- Guangzhou, P.R. China
| |
Collapse
|