1
|
Yakushev A, Khuyagbaatar J, Düllmann CE, Block M, Cantemir RA, Cox DM, Dietzel D, Giacoppo F, Hrabar Y, Iliaš M, Jäger E, Krier J, Krupp D, Kurz N, Lens L, Löchner S, Mokry C, Mošať P, Pershina V, Raeder S, Rudolph D, Runke J, Sarmiento LG, Schausten B, Scherer U, Thörle-Pospiech P, Trautmann N, Wegrzecki M, Wieczorek P. Manifestation of relativistic effects in the chemical properties of nihonium and moscovium revealed by gas chromatography studies. Front Chem 2024; 12:1474820. [PMID: 39391836 PMCID: PMC11464923 DOI: 10.3389/fchem.2024.1474820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Chemical reactivity of the superheavy elements nihonium (Nh, element 113) and moscovium (Mc, element 115) has been studied by the gas-solid chromatography method using a new combined chromatography and detection setup. The Mc isotope, 288Mc, was produced in the nuclear fusion reaction of 48Ca ions with 243Am targets at the GSI Helmholtzzentrum Darmstadt, Germany. After isolating 288Mc ions in the gas-filled separator TASCA, adsorption of 288Mc and its decay product 284Nh on silicon oxide and gold surfaces was investigated. As a result of this work, the values of the adsorption enthalpy of Nh and Mc on the silicon oxide surface were determined for the first time, - ∆ H ads SiO 2 Mc = 54 - 5 + 11 kJ/mol and - ∆ H ads SiO 2 Nh = 58 - 3 + 8 kJ/mol (68% c.i.). The obtained -ΔH ads values are in good agreement with results of advanced relativistic calculations. Both elements, Nh and Mc, were shown to interact more weakly with the silicon oxide surface than their lighter homologues Tl and Bi, respectively. However, Nh and Mc turned out to be more reactive than the neighbouring closed-shell and quasi-closed-shell elements copernicium (Cn, element 112) and flerovium (Fl, element 114), respectively. The established trend is explained by the influence of strong relativistic effects on the valence atomic orbitals of these elements.
Collapse
Affiliation(s)
- A. Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - J. Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Ch. E. Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - M. Block
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - R. A. Cantemir
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. M. Cox
- Department of Physics, Lund University, Lund, Sweden
| | - D. Dietzel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - F. Giacoppo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Y. Hrabar
- Department of Physics, Lund University, Lund, Sweden
| | - M. Iliaš
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - E. Jäger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Krier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Krupp
- Hochschule Mannheim, Mannheim, Germany
| | - N. Kurz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - L. Lens
- Hochschule Mannheim, Mannheim, Germany
| | - S. Löchner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ch. Mokry
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - P. Mošať
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - V. Pershina
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - S. Raeder
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Rudolph
- Department of Physics, Lund University, Lund, Sweden
| | - J. Runke
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - B. Schausten
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - P. Thörle-Pospiech
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - N. Trautmann
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - M. Wegrzecki
- Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Warsaw, Poland
| | - P. Wieczorek
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
2
|
Demidov YA, Shalaevsky AA, Oleynichenko AV, Rusakov AA. Uncovering chemical homology of superheavy elements: a close look at astatine. Phys Chem Chem Phys 2024; 26:23823-23834. [PMID: 39230259 DOI: 10.1039/d4cp01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depends on theoretical predictions of these elements' properties, especially chemical homology, which allows for successful prototypical experiments with more readily available lighter homologues of SHE. This work is a comprehensive quantum-chemical investigation into astatine (At) as a non-intuitive homologue of element 113, nihonium (Nh). Combining relativistic coupled-cluster and density functional theory approaches, we model the behaviour of At and AtOH in thermochromatographic experiments on a pristine gold surface. Insights into the electronic structure of AtOH and NhOH and accurate estimates of At-gold and AtOH-gold adsorption energies rationalise recent experimental findings and justify the use of At as a chemical homologue of Nh for the successful design of future experiments on Nh detection and chemical characterisation.
Collapse
Affiliation(s)
- Yuriy A Demidov
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
- St. Petersburg Electrotechnical University "LETI", 197376 St. Petersburg, Russia
| | | | - Alexander V Oleynichenko
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, USA.
| |
Collapse
|
3
|
Ryzhkov A, Pershina V, Iliaš M, Shabaev V. Reactivity of Ts and At oxides and oxyhydrides with a gold surface from periodic DFT calculations. Phys Chem Chem Phys 2024; 26:9975-9983. [PMID: 38477329 DOI: 10.1039/d3cp05645g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Adsorption energies, Eads, of oxides and oxyhydrides of the superheavy element (SHEs) Ts and of its lighter homologue At on the gold surface are predicted on the basis of relativistic periodic density functional theory calculations via AMS BAND software. The following compounds were considered: MO, MO2, MOO, and MO(OH) (where M = At and Ts). The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments on reactivity/volatility of SHEs. The results obtained indicate that all the molecules investigated should interact fairly strongly with the gold surface, with those of Ts being more reactive than At ones. The similarity in the Eads values of all the considered At compounds would make it challenging to differentiate between them while measuring their adsorption enthalpies, given experimental uncertainty. However, the difference in Eads among Ts compounds is more pronounced, so that one should be able to differentiate between the species.
Collapse
Affiliation(s)
- Anton Ryzhkov
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
- Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Moscow oblast, Russia
| | - Valeria Pershina
- Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia.
| | - Vladimir Shabaev
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
- Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Moscow oblast, Russia
| |
Collapse
|
4
|
NAGAME Y, SATO TK. Chemical characterization of heavy actinides and light transactinides - Experimental achievements at JAEA. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:165-189. [PMID: 38462500 PMCID: PMC11105975 DOI: 10.2183/pjab.100.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 03/12/2024]
Abstract
The chemical characterization of the heaviest elements at the farthest reach of the periodic table (PT) and the classification of these elements in the PT are undoubtedly crucial and challenging subjects in chemical and physical sciences. The elucidation of the influence of relativistic effects on their outermost electronic configuration is also a critical and fascinating aspect. However, the heaviest elements with atomic numbers Z ≳ 100 must be produced at accelerators using nuclear reactions of heavy ions and target materials. Therefore, production rates for these elements are low, and their half-lives are as short as a few seconds to a few minutes; they are usually available in a quantity of only a few atoms at a time. Here, we review some highlighted studies on heavy actinide and light transactinide chemical characterization performed at the Japan Atomic Energy Agency tandem accelerator facility. We discuss briefly the prospects for future studies of the heaviest elements.
Collapse
Affiliation(s)
- Yuichiro NAGAME
- Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Naka-gun, Ibaraki 319-1195, Japan
| | - Tetsuya K. SATO
- Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Naka-gun, Ibaraki 319-1195, Japan
| |
Collapse
|
5
|
Kotov AA, Kozhedub YS, Glazov DA, Iliaš M, Pershina V, Shabaev VM. Relativistic Coupled-Cluster Calculations of Spectroscopic Properties of Copernicium and Flerovium Monoxides. Chemphyschem 2023; 24:e202200680. [PMID: 36383485 DOI: 10.1002/cphc.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Calculations of spectroscopic properties of the CnO and FlO molecules are performed using ab initio all-electron 4c- and 2c-relativistic coupled-cluster approaches with single, double, and perturbative triple excitations. The corresponding calculation for HgO is also accomplished for comparison with the published data. The dependence of the results on the parameters of the basis set and approximations used is investigated in detail. The overall relative uncertainties of the recommended values on the level of 1-2 % are reached. The calculated spectroscopic constants are indicative of the following trend in the reactivity of the oxides HgO>FlO>CnO. This is confirmed by the trend in the adsorption energies, Eads , of these molecules on the surfaces of gold, quartz, and Teflon. The predicted rather low Eads values for the latter case should guarantee their delivery from the recoil chamber to the chemistry set up in gas-phase experiments.
Collapse
Affiliation(s)
- Artem A Kotov
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Yury S Kozhedub
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Dmitry A Glazov
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banská Bystrica, Slovakia.,Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099, Mainz, Germany.,GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291, Darmstadt, Germany
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291, Darmstadt, Germany
| | - Vladimir M Shabaev
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| |
Collapse
|
6
|
Iliaš M, Pershina V. Reactivity of Group 13 Elements Tl and Element 113, Nh, and of Their Hydroxides with Respect to Various Quartz Surfaces from Periodic Relativistic DFT Calculations. Inorg Chem 2022; 61:15910-15920. [PMID: 36149319 DOI: 10.1021/acs.inorgchem.2c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adsorption properties of group 13 element Tl and the superheavy element Nh, as well of their hydroxides on various modified quartz surfaces, are predicted on the basis of relativistic periodic DFT calculations using the BAND software. The obtained adsorption energies, Eads, of the MOH (M = Tl and Nh) molecules are indicative of the relatively strong interaction of the hydroxides with all the considered quartz surfaces. In contrast, adsorption of the Tl and Nh atoms was found to be significantly weaker. The adsorption strength of both M and MOH (M = Tl and Nh) was shown to increase with the dehydroxylation of the quartz surface. Very good agreement is reached between the calculated Eads(TlOH) of 133 kJ/mol on the fully hydroxylated quartz surface and of 157 kJ/mol on the partially dehydroxylated quartz surface on the one hand and experimental adsorption enthalpies, -ΔHads, of 134/137 ± 5 kJ/mol (at ∼300 °C) and 158 ± 3 kJ/mol (at ∼500 °C), respectively, on the other hand. Thus, we suggest that all the experimental ΔHads values for Tl should be assigned to the adsorption/desorption of the TlOH molecule. For NhOH, its adsorption properties on various quartz surfaces should be very similar to those of TlOH, with slightly smaller Eads values. Adsorption of the Nh atom should, however, be much weaker than that of the Tl atom due to stronger spin-orbit effects in Nh.
Collapse
Affiliation(s)
- Miroslav Iliaš
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia.,GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| |
Collapse
|
7
|
A Progress Report on Laser Resonance Chromatography. ATOMS 2022. [DOI: 10.3390/atoms10030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Research on superheavy elements enables probing the limits of nuclear existence and provides a fertile ground to advance our understanding of the atom’s structure. However, experimental access to these atomic species is very challenging and often requires the development of new technologies and experimental techniques optimized for the study of a single atomic species. The Laser Resonance Chromatography (LRC) technique was recently conceived to enable atomic structure investigations in the region of the superheavy elements. Here, we give an update on the experimental progress and simulation results.
Collapse
|
8
|
Yakushev A, Lens L, Düllmann CE, Khuyagbaatar J, Jäger E, Krier J, Runke J, Albers HM, Asai M, Block M, Despotopulos J, Di Nitto A, Eberhardt K, Forsberg U, Golubev P, Götz M, Götz S, Haba H, Harkness-Brennan L, Herzberg RD, Heßberger FP, Hinde D, Hübner A, Judson D, Kindler B, Komori Y, Konki J, Kratz J, Kurz N, Laatiaoui M, Lahiri S, Lommel B, Maiti M, Mistry AK, Mokry C, Moody KJ, Nagame Y, Omtvedt JP, Papadakis P, Pershina V, Rudolph D, Samiento L, Sato T, Schädel M, Scharrer P, Schausten B, Shaughnessy DA, Steiner J, Thörle-Pospiech P, Toyoshima A, Trautmann N, Tsukada K, Uusitalo J, Voss KO, Ward A, Wegrzecki M, Wiehl N, Williams E, Yakusheva V. On the adsorption and reactivity of element 114, flerovium. Front Chem 2022; 10:976635. [PMID: 36092655 PMCID: PMC9453156 DOI: 10.3389/fchem.2022.976635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly volatile and the least reactive member of group 14. Our experimental observations suggest that Fl exhibits lower reactivity towards Au than the volatile metal Hg, but higher reactivity than the noble gas Rn.
Collapse
Affiliation(s)
- A. Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- *Correspondence: A. Yakushev,
| | - L. Lens
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Ch. E. Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - J. Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - E. Jäger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Krier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Runke
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - H. M. Albers
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Asai
- Japan Atomic Energy Agency, Tokai, Japan
| | - M. Block
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - J. Despotopulos
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - A. Di Nitto
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - K. Eberhardt
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | - M. Götz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - S. Götz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | | - F. P. Heßberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - D. Hinde
- Australian National University, Canberra, ACT, Australia
| | - A. Hübner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Judson
- University of Liverpool, Liverpool, United Kingdom
| | - B. Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - J. Konki
- University of Jyväskylä, Jyväskylä, Finland
| | - J.V. Kratz
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - N. Kurz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Laatiaoui
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - S. Lahiri
- Saha Institute of Nuclear Physics, Kolkata, India
| | - B. Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Maiti
- Indian Institute of Technology Roorkee, Roorkee, India
| | - A. K. Mistry
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Ch. Mokry
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - K. J. Moody
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Y. Nagame
- Japan Atomic Energy Agency, Tokai, Japan
| | | | - P. Papadakis
- University of Liverpool, Liverpool, United Kingdom
| | - V. Pershina
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - T.K. Sato
- Japan Atomic Energy Agency, Tokai, Japan
| | - M. Schädel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - P. Scharrer
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - B. Schausten
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. A. Shaughnessy
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - J. Steiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - P. Thörle-Pospiech
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - N. Trautmann
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - K. Tsukada
- Japan Atomic Energy Agency, Tokai, Japan
| | | | - K.-O. Voss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - A. Ward
- University of Liverpool, Liverpool, United Kingdom
| | - M. Wegrzecki
- Łukasiewicz Research Network—Institute of Electron Technology, Warsaw, Poland
| | - N. Wiehl
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - E. Williams
- Australian National University, Canberra, ACT, Australia
| | - V. Yakusheva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| |
Collapse
|
9
|
Florez E, Smits O, Mewes JM, Jerabek P, Schwerdtfeger P. From the gas phase to the solid state: The chemical bonding in the superheavy element flerovium. J Chem Phys 2022; 157:064304. [DOI: 10.1063/5.0097642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As early as 1975, Pitzer suggested that copernicium, flerovium and oganesson are volatile substances behaving noble-gas like because of their closed-shell configurations and accompanying relativistic effects. It is, however, precarious to predict the chemical bonding and physical behavior of a solid by knowledge of the atomic or molecular properties only. Copernicium and oganesson have been analyzed very recently by our group. Both are predicted to be semi-conductors and volatile substances with rather low melting and boiling points, which may justify a comparison with the noble gas elements. Here we study closed-shell flerovium in detail to predict solid-state properties including the melting point from a decomposition of the total energy into many-body forces derived from relativistic coupled-cluster and from density functional theory. The convergence of such a decomposition for flerovium is critically analyzed, and the problem of using density functional theory is highlighted. We predict that flerovium is in many ways not behaving like a typical noble gas element despite its closed-shell 7$p_{1/2}^2$ configuration and resulting weak interactions. Unlike for the noble gases, the many-body expansion in terms of the interaction energy is not converging smoothly. This makes the accurate prediction of phase transitions very difficult. Nevertheless, a first prediction by Monte-Carlo simulation estimates the melting point at $284\pm 50$ K. Furthermore, calculations for the electronic band gap suggests that flerovium is a semi-conductor similar to copernicium
Collapse
Affiliation(s)
- Edison Florez
- New Zealand Institute for Advanced Study, New Zealand
| | - Odile Smits
- New Zealand Institute for Advanced Study, New Zealand
| | - Jan-Michael Mewes
- University of Bonn Institute of Physical and Theoretical Chemistry, Germany
| | | | - Peter Schwerdtfeger
- Center for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, New Zealand
| |
Collapse
|
10
|
Düllmann CE, Block M, Heßberger FP, Khuyagbaatar J, Kindler B, Kratz JV, Lommel B, Münzenberg G, Pershina V, Renisch D, Schädel M, Yakushev A. Five decades of GSI superheavy element discoveries and chemical investigation. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Superheavy element research has been a strong pillar of the research program at GSI Darmstadt since its foundation. Six new elements were discovered along with many new isotopes. Initial results on chemical properties of the heaviest elements were obtained that allowed for comparing their behavior with that of their lighter homologs and with theoretical predictions. Main achievements of the past five decades of superheavy element research at GSI are described along with an outlook into the future of superheavy element research in Darmstadt.
Collapse
Affiliation(s)
- Christoph E. Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
- Department Chemie – Standort TRIGA , Johannes Gutenberg-Universität Mainz , Fritz-Strassmann-Weg 2, 55128 Mainz , Germany
- Helmholtz-Institut Mainz , Staudingerweg 18, 55128 Mainz , Germany
| | - Michael Block
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
- Department Chemie – Standort TRIGA , Johannes Gutenberg-Universität Mainz , Fritz-Strassmann-Weg 2, 55128 Mainz , Germany
- Helmholtz-Institut Mainz , Staudingerweg 18, 55128 Mainz , Germany
| | - Fritz P. Heßberger
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| | - Jadambaa Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| | - Birgit Kindler
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| | - Jens V. Kratz
- Department Chemie – Standort TRIGA , Johannes Gutenberg-Universität Mainz , Fritz-Strassmann-Weg 2, 55128 Mainz , Germany
| | - Bettina Lommel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| | - Gottfried Münzenberg
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
- Institut für Physik, Johannes Gutenberg-Universität Mainz , Staudingerweg 7, 55128 Mainz , Germany
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| | - Dennis Renisch
- Department Chemie – Standort TRIGA , Johannes Gutenberg-Universität Mainz , Fritz-Strassmann-Weg 2, 55128 Mainz , Germany
- Helmholtz-Institut Mainz , Staudingerweg 18, 55128 Mainz , Germany
| | - Matthias Schädel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| | - Alexander Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstr. 1, 64291 Darmstadt , Germany
| |
Collapse
|
11
|
Pershina V, Iliaš M. Reactivity of superheavy elements Cn and Fl and of their oxides in comparison with homologous species of Hg and Pb, respectively, towards gold and hydroxylated quartz surfaces. Dalton Trans 2022; 51:7321-7332. [PMID: 35482331 DOI: 10.1039/d2dt00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adsorption energies, Eads, and other properties of atoms and oxides of the superheavy elements (SHEs) Cn and Fl, as well as of the homologous species of Hg and Pb, on Au(111) and fully hydroxylated quartz surfaces are predicted on the basis of 2c-DFT calculations and a periodic slab model using BAND software. The ambition of the work is to interpret the outcome of "one-atom-at-a-time" gas-phase chromatography experiments on the reactivity/volatility of SHEs. The present results with an improved (dispersion corrected) exchange-correlation functional show that, in agreement with our earlier predictions and experimental results on Pb, Hg and Cn, the sequence of the Eads values of the atoms on the gold surface should be Pb ≫ Hg > Fl > Cn, with rather moderate Eads values smaller than 90 kJ mol-1 (except for that for Pb). Oxides of Hg, Cn and Fl should be much more reactive with the gold surface than the corresponding atoms, with Eads values of about 200 kJ mol-1. A striking difference in the geometry of the deposited oxides was found between group 12 and group 14. An analysis of the Eads values for M and MO (M = Hg/Cn and Pb/Fl) on the hydroxylated α-quartz surface enables one to conclude that atoms of Hg, Cn and Fl should not interact with such a surface at room temperature, while Pb should adsorb on it. Oxides of these elements, on the contrary, should strongly adsorb on quartz with Eads ≥ 100 kJ mol-1. The present theoretical data agree with the experimental results on the elemental species of Hg, Cn and Fl.
Collapse
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany.
| | - Miroslav Iliaš
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Mainz, Germany.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
| |
Collapse
|
12
|
Yakushev A, Lens L, Düllmann CE, Block M, Brand H, Calverley T, Dasgupta M, Di Nitto A, Götz M, Götz S, Haba H, Harkness-Brennan L, Herzberg RD, Heßberger FP, Hinde D, Hübner A, Jäger E, Judson D, Khuyagbaatar J, Kindler B, Komori Y, Konki J, Kratz J, Krier J, Kurz N, Laatiaoui M, Lommel B, Lorenz C, Maiti M, Mistry A, Mokry C, Nagame Y, Papadakis P, Såmark-Roth A, Rudolph D, Runke J, Sarmiento L, Sato T, Schädel M, Scharrer P, Schausten B, Steiner J, Thörle-Pospiech P, Toyoshima A, Trautmann N, Uusitalo J, Ward A, Wegrzecki M, Yakusheva V. First Study on Nihonium (Nh, Element 113) Chemistry at TASCA. Front Chem 2021; 9:753738. [PMID: 34917588 PMCID: PMC8669335 DOI: 10.3389/fchem.2021.753738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Nihonium (Nh, element 113) and flerovium (Fl, element 114) are the first superheavy elements in which the 7p shell is occupied. High volatility and inertness were predicted for Fl due to the strong relativistic stabilization of the closed 7p 1/2 sub-shell, which originates from a large spin-orbit splitting between the 7p 1/2 and 7p 3/2 orbitals. One unpaired electron in the outermost 7p 1/2 sub-shell in Nh is expected to give rise to a higher chemical reactivity. Theoretical predictions of Nh reactivity are discussed, along with results of the first experimental attempts to study Nh chemistry in the gas phase. The experimental observations verify a higher chemical reactivity of Nh atoms compared to its neighbor Fl and call for the development of advanced setups. First tests of a newly developed detection device miniCOMPACT with highly reactive Fr isotopes assure that effective chemical studies of Nh are within reach.
Collapse
Affiliation(s)
- A. Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - L. Lens
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Ch. E. Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - M. Block
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - H. Brand
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - T. Calverley
- Department of Physics, University of Liverpool, Liverpool, United Kingdom
| | - M. Dasgupta
- Department of Nuclear Physics, Australian National University, Canberra, ACT, Australia
| | - A. Di Nitto
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - M. Götz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - S. Götz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | - R-D. Herzberg
- Department of Physics, University of Liverpool, Liverpool, United Kingdom
| | - F. P. Heßberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - D. Hinde
- Department of Nuclear Physics, Australian National University, Canberra, ACT, Australia
| | - A. Hübner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - E. Jäger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Judson
- Department of Physics, University of Liverpool, Liverpool, United Kingdom
| | - J. Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - B. Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - J. Konki
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - J.V. Kratz
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - J. Krier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - N. Kurz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Laatiaoui
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - B. Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - M. Maiti
- Indian Institute of Technology Roorkee, Roorkee, India
| | - A.K. Mistry
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Ch. Mokry
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Y. Nagame
- Japan Atomic Energy Agency, Tokai, Japan
| | - P. Papadakis
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | | | - D. Rudolph
- Department of Physics, Lund University, Lund, Sweden
| | - J. Runke
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - T.K. Sato
- Japan Atomic Energy Agency, Tokai, Japan
| | - M. Schädel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - P. Scharrer
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - B. Schausten
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Steiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - P. Thörle-Pospiech
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - N. Trautmann
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - J. Uusitalo
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - A. Ward
- Department of Physics, University of Liverpool, Liverpool, United Kingdom
| | - M. Wegrzecki
- Łukasiewicz-Instytut Mikroelektroniki I Fotoniki, Warsaw, Poland
| | - V. Yakusheva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| |
Collapse
|
13
|
Pawlędzio S, Malinska M, Woińska M, Wojciechowski J, Andrade Malaspina L, Kleemiss F, Grabowsky S, Woźniak K. Relativistic Hirshfeld atom refinement of an organo-gold(I) compound. IUCRJ 2021; 8:608-620. [PMID: 34258009 PMCID: PMC8256711 DOI: 10.1107/s2052252521004541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
The main goal of this study is the validation of relativistic Hirshfeld atom refinement (HAR) as implemented in Tonto for high-resolution X-ray diffraction datasets of an organo-gold(I) compound. The influence of the relativistic effects on statistical parameters, geometries and electron density properties was analyzed and compared with the influence of electron correlation and anharmonic atomic motions. Recent work in this field has indicated the importance of relativistic effects in the static electron density distribution of organo-mercury compounds. This study confirms that differences in electron density due to relativistic effects are also of significant magnitude for organo-gold compounds. Relativistic effects dominate not only the core region of the gold atom, but also influence the electron density in the valence and bonding region, which has measurable consequences for the HAR refinement model parameters. To study the effects of anharmonic motion on the electron density distribution, dynamic electron density difference maps were constructed. Unlike relativistic and electron correlation effects, the effects of anharmonic nuclear motion are mostly observed in the core area of the gold atom.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Maura Malinska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | | | - Lorraine Andrade Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Florian Kleemiss
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
14
|
Pershina V, Iliaš M, Yakushev A. Reactivity of the Superheavy Element 115, Mc, and Its Lighter Homologue, Bi, with Respect to Gold and Hydroxylated Quartz Surfaces from Periodic Relativistic DFT Calculations: A Comparison with Element 113, Nh. Inorg Chem 2021; 60:9796-9804. [PMID: 34142795 DOI: 10.1021/acs.inorgchem.1c01076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adsorption energies (Eads) of the superheavy element (SHE) Mc, its lighter homologue (Bi), as well as of another superheavy element Nh and some lighter homologues of SHEs on gold and hydroxylated quartz surfaces are predicted via periodic relativistic density functional theory calculations. The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments that are examining the reactivity and volatility of Mc. The obtained Eads values of the Bi and Mc atoms on the Au(111) surface are >200 kJ/mol. On the hydroxylated quartz surface, Mc should adsorb with a minimal energy of 58 kJ/mol. On both types of surfaces, Eads(Mc) should be ∼100 kJ/mol smaller than Eads(Bi) due to strong relativistic effects on its valence 7p electrons. A comparison with other SHEs under investigation shows that Mc should adsorb on gold more strongly than Cn, Nh, and Fl, while on quartz, Mc should adsorb like Nh, with both of them absorbing more strongly than volatile Cn and Fl. The highest reactivity of Mc in the row of the 7p elements is caused by the largest orbital and relativistic destabilization and expansion of the 7p3/2 atomic orbital. Using the calculated Eads, the distribution of the Nh and Mc events in the gas-phase chromatography column with quartz and gold-plated detectors is predicted via Monte Carlo simulations. As a result, Mc atoms should be almost 100% adsorbed in the first section of the chromatography column on quartz, while a few atoms of Nh can reach the second part of the column with gold-plated detectors.
Collapse
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Miroslav Iliaš
- Helmholtz Institute Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
| | - Alexander Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| |
Collapse
|
15
|
Steinegger P. Open questions on chemistry in the synthesis and characterization of superheavy elements. Commun Chem 2021; 4:87. [PMID: 36697629 PMCID: PMC9814703 DOI: 10.1038/s42004-021-00529-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Affiliation(s)
- Patrick Steinegger
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
16
|
Såmark-Roth A, Cox DM, Rudolph D, Sarmiento LG, Carlsson BG, Egido JL, Golubev P, Heery J, Yakushev A, Åberg S, Albers HM, Albertsson M, Block M, Brand H, Calverley T, Cantemir R, Clark RM, Düllmann CE, Eberth J, Fahlander C, Forsberg U, Gates JM, Giacoppo F, Götz M, Götz S, Herzberg RD, Hrabar Y, Jäger E, Judson D, Khuyagbaatar J, Kindler B, Kojouharov I, Kratz JV, Krier J, Kurz N, Lens L, Ljungberg J, Lommel B, Louko J, Meyer CC, Mistry A, Mokry C, Papadakis P, Parr E, Pore JL, Ragnarsson I, Runke J, Schädel M, Schaffner H, Schausten B, Shaughnessy DA, Thörle-Pospiech P, Trautmann N, Uusitalo J. Spectroscopy along Flerovium Decay Chains: Discovery of ^{280}Ds and an Excited State in ^{282}Cn. PHYSICAL REVIEW LETTERS 2021; 126:032503. [PMID: 33543956 DOI: 10.1103/physrevlett.126.032503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively. A prompt coincidence between a 9.60(1)-MeV α particle event and a 0.36(1)-MeV conversion electron marked the first observation of an excited state in an even-even isotope of the heaviest man-made elements, namely ^{282}Cn. Spectroscopy of ^{288}Fl decay chains fixed Q_{α}=10.06(1) MeV. In one case, a Q_{α}=9.46(1)-MeV decay from ^{284}Cn into ^{280}Ds was observed, with ^{280}Ds fissioning after only 518 μs. The impact of these findings, aggregated with existing data on decay chains of ^{286,288}Fl, on the size of an anticipated shell gap at proton number Z=114 is discussed in light of predictions from two beyond-mean-field calculations, which take into account triaxial deformation.
Collapse
Affiliation(s)
- A Såmark-Roth
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - D M Cox
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - D Rudolph
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - L G Sarmiento
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - B G Carlsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - J L Egido
- Departamento de Física Teórica and CIAFF, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P Golubev
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - J Heery
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - A Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - S Åberg
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - H M Albers
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - M Albertsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - M Block
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - H Brand
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - T Calverley
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - R Cantemir
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - R M Clark
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ch E Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Eberth
- Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
| | - C Fahlander
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - U Forsberg
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - J M Gates
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - F Giacoppo
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, 55099 Mainz, Germany
| | - M Götz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - S Götz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - R-D Herzberg
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - Y Hrabar
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - E Jäger
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - D Judson
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - J Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, 55099 Mainz, Germany
| | - B Kindler
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - I Kojouharov
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - J V Kratz
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Krier
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - N Kurz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - L Lens
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Ljungberg
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - B Lommel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - J Louko
- Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - C-C Meyer
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - A Mistry
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - C Mokry
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - P Papadakis
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - E Parr
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - J L Pore
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - I Ragnarsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - J Runke
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - M Schädel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - H Schaffner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - B Schausten
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - D A Shaughnessy
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - P Thörle-Pospiech
- Helmholtz Institute Mainz, 55099 Mainz, Germany
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - N Trautmann
- Department Chemie-Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Uusitalo
- Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
17
|
Cao C, Vernon RE, Schwarz WHE, Li J. Understanding Periodic and Non-periodic Chemistry in Periodic Tables. Front Chem 2021; 8:813. [PMID: 33490030 PMCID: PMC7818537 DOI: 10.3389/fchem.2020.00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The chemical elements are the "conserved principles" or "kernels" of chemistry that are retained when substances are altered. Comprehensive overviews of the chemistry of the elements and their compounds are needed in chemical science. To this end, a graphical display of the chemical properties of the elements, in the form of a Periodic Table, is the helpful tool. Such tables have been designed with the aim of either classifying real chemical substances or emphasizing formal and aesthetic concepts. Simplified, artistic, or economic tables are relevant to educational and cultural fields, while practicing chemists profit more from "chemical tables of chemical elements." Such tables should incorporate four aspects: (i) typical valence electron configurations of bonded atoms in chemical compounds (instead of the common but chemically atypical ground states of free atoms in physical vacuum); (ii) at least three basic chemical properties (valence number, size, and energy of the valence shells), their joint variation across the elements showing principal and secondary periodicity; (iii) elements in which the (sp)8, (d)10, and (f)14 valence shells become closed and inert under ambient chemical conditions, thereby determining the "fix-points" of chemical periodicity; (iv) peculiar elements at the top and at the bottom of the Periodic Table. While it is essential that Periodic Tables display important trends in element chemistry we need to keep our eyes open for unexpected chemical behavior in ambient, near ambient, or unusual conditions. The combination of experimental data and theoretical insight supports a more nuanced understanding of complex periodic trends and non-periodic phenomena.
Collapse
Affiliation(s)
- Changsu Cao
- Department of Chemistry, Tsinghua University, Beijing, China
| | | | - W. H. Eugen Schwarz
- Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, University of Siegen, Siegen, Germany
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
18
|
Egido JL, Jungclaus A. Predominance of Triaxial Shapes in Transitional Super-Heavy Nuclei: Ground-State Deformation and Shape Coexistence along the Flerovium (Z=114) Chain of Isotopes. PHYSICAL REVIEW LETTERS 2020; 125:192504. [PMID: 33216585 DOI: 10.1103/physrevlett.125.192504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
We present the first triaxial beyond-mean-field study of even-even super-heavy nuclei. Calculations for the even Flerovium isotopes towards the supposed N=184 neutron shell closure were performed using the effective finite-range density-dependent Gogny force. They include the restoration of the particle-number and angular-momentum symmetries and the mixing of different shapes using the generator coordinate method. The importance of the γ degree of freedom is highlighted by comparing the triaxial to axial-symmetric calculations performed within the same framework. For the three even Fl isotopes between the prolate ^{288}Fl and the oblate ^{296}Fl triaxial ground-state shapes are predicted, whereas axial-symmetric calculations suggest a sharp prolate-oblate shape transition between ^{290}Fl and ^{292}Fl. A novel type of shape coexistence, namely, that between two different triaxial shapes, is predicted to occur in ^{290}Fl. Finally, the existence of a neutron shell closure at N=184 is confirmed, while no evidence is found for Z=114 being a proton magic number.
Collapse
Affiliation(s)
- J Luis Egido
- Departamento de Física Teórica and CIAFF, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Andrea Jungclaus
- Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
| |
Collapse
|
19
|
Ferrier MG, Kmak KN, Kerlin WM, Valdez CA, Despotopulos JD. Transactinide studies with sulfur macrocyclic extractant using mercury. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07320-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Chapman K. The transuranic elements and the island of stability. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190535. [PMID: 32811362 DOI: 10.1098/rsta.2019.0535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Since the 1930s the synthesis of nuclides too unstable to exist naturally on Earth has stretched the periodic table to 118 elements. While the lighter transuranic elements have found uses, the isotopes of those past lawrencium, the superheavy elements, are too unstable to exist outside the laboratory. In the 1970s, leading element discoverers Glenn Seaborg at the University of California, Berkeley, USA, and Georgy Flerov, at the Joint Institute for Nuclear Research in Dubna, USSR, took interest in a supposed 'island of stability', leading from the nuclear shell model of Maria Goeppert Mayer and Hans Jensen, and predicted elements with so-called magic numbers of protons and neutrons would be far more stable. This review shall look at the historical developments that led to the field of element discovery, the attempts to discover superheavy elements in nature based on the island of stability, and the subsequent successful synthesis of elements and the implications of their half-lives and properties. This article is part of the theme issue 'Mendeleev and the periodic table'.
Collapse
|
21
|
Abstract
Mendeleev's introduction of the periodic table of elements is one of the most important milestones in the history of chemistry, as it brought order into the known chemical and physical behaviour of the elements. The periodic table can be seen as parallel to the Standard Model in particle physics, in which the elementary particles known today can be ordered according to their intrinsic properties. The underlying fundamental theory to describe the interactions between particles comes from quantum theory or, more specifically, from quantum field theory and its inherent symmetries. In the periodic table, the elements are placed into a certain period and group based on electronic configurations that originate from the Pauli and Aufbau principles for the electrons surrounding a positively charged nucleus. This order enables us to approximately predict the chemical and physical properties of elements. Apparent anomalies can arise from relativistic effects, partial-screening phenomena (of type lanthanide contraction) and the compact size of the first shell of every l-value. Further, ambiguities in electron configurations and the breakdown of assigning a dominant configuration, owing to configuration mixing and dense spectra for the heaviest elements in the periodic table. For the short-lived transactinides, the nuclear stability becomes an important factor in chemical studies. Nuclear stability, decay rates, spectra and reaction cross sections are also important for predicting the astrophysical origin of the elements, including the production of the heavy elements beyond iron in supernova explosions or neutron-star mergers. In this Perspective, we critically analyse the periodic table of elements and the current status of theoretical predictions and origins for the heaviest elements, which combine both quantum chemistry and physics.
Collapse
|
22
|
Pershina V, Iliaš M. Properties and Reactivity of Hydroxides of Group 13 Elements In, Tl, and Nh from Molecular and Periodic DFT Calculations. Inorg Chem 2019; 58:9866-9873. [PMID: 31287670 DOI: 10.1021/acs.inorgchem.9b00949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adsorption energies, Eads, of gaseous hydroxides of In, Tl, and the superheavy element Nh on surfaces of Teflon and gold are predicted using molecular and periodic relativistic DFT calculations. The ambition of the work is to assist related "one atom at a time" gas-phase chromatography experiments on the volatility of NhOH. The obtained low values of Eads(MOH), where M = In, Tl, Nh, on Teflon should guarantee easy transportation of the molecules through the Teflon capillaries from the accelerator to the chemistry setup. Straightforward band-structure DFT calculations using the revPBE-D3(BJ) functional have given an Eads(MOH) value of 161.4 kJ/mol on the Au(111) surface, being indicative of significant molecule-surface interaction. The MOH-gold surface binding is shown to take place via the oxygen atom of the hydroxide, with the oxygen-gold charge density transfer increasing from InOH to NhOH. The trend in Eads(MOH) is shown to be InOH < TlOH < NhOH, caused by increasing molecular dipole moments and decreasing stability of the hydroxides in this row. A trend in Eads of the atoms of these elements on gold is, however, opposite, In > Tl > Nh, caused by the increasing relativistic contraction and stabilization of the np1/2 AO with Z. These opposite trends in Eads(MOH) and Eads(M) in group 13 lead to almost equal Eads(Nh) and Eads(NhOH) values, making identification of Nh, as a type of species, difficult by measuring its adsorption enthalpy on gold.
Collapse
Affiliation(s)
| | - Miroslav Iliaš
- Helmholtz-Institut Mainz , Johannes Gutenberg-Universität , 55099 Mainz , Germany.,GSI Helmholtzzentrum für Schwerionenforschung , Planckstraße 1 , D-64291 Darmstadt , Germany.,Department of Chemistry, Faculty of Natural Sciences , Matej Bel University , Tajovského 40 , 97401 Banská Bystrica , Slovakia
| |
Collapse
|
23
|
Pershina V. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Theoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6th one. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.
Collapse
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1 , D-64291 Darmstadt , Germany
| |
Collapse
|
24
|
Conradie J, Ghosh A. Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist. Inorg Chem 2019; 58:8735-8738. [PMID: 31203606 DOI: 10.1021/acs.inorgchem.9b01139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present here a relativistic density functional theory investigation of the penta- and heptavalent states of gold and roentgenium, employing the ZORA (zeroth order regular approximation to the Dirac equation) Hamiltonian, including spin-orbit coupling at the two-component level, and large all-electron relativistic Slater-type quadruple-ζ quadruple polarization (ZORA-STO-QZ4P) basis sets. Unsurprisingly, our calculations confirm the stability of the experimentally known complexes AuF6- and Au2F10 with respect to decomposition to trivalent Au products and F2. The calculations also predict that RgF6- and Rg2F10 should be even more stable with respect to an analogous decomposition pathway. Like an earlier DFT study ( Inorg. Chem. 2007, 46 (13), 5338-5342), our calculations rule out the true heptavalent Au complex AuF7 as a stable species, preferring instead a Cs AuF5···F2 formulation. Remarkably, our calculations confirm a D5 h pentagonal-bipyramidal structure of RgF7 as the global minimum, at an energy of approximately half an electron volt below the RgF5···F2 form.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department of Chemistry , University of Tromsø , N-9037 Tromsø , Norway.,Department of Chemistry , University of the Free State , 9300 Bloemfontein , Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry , University of Tromsø , N-9037 Tromsø , Norway
| |
Collapse
|
25
|
Abstract
Abstract
Some highlight examples on the study of production and chemical properties of heaviest elements carried out mostly at GSI Darmstadt are presented. They focus on the production of some of the heaviest known elements (114Fl, 115Mc, and 117Mc), studies of non-fusion reactions, and on chemical studies of 114Fl. This is the heaviest element, for which chemical studies have been performed to date.
Collapse
|
26
|
Abstract
Abstract
The fundamental principles of the periodic table guide the research and development of the challenging experiments with transactinide elements. This guidance is elucidated together with experimental results from gas phase chemical studies of the transactinide elements with the atomic numbers 104–108 and 112–114. Some deduced chemical properties of these superheavy elements are presented here in conjunction with trends established by the periodic table. Finally, prospects are presented for further chemical investigations of transactinides based on trends in the periodic table.
Collapse
Affiliation(s)
- Robert Eichler
- Laboratory of Radiochemistry, Paul Scherrer Institute , Forschungsstrasse 111 , 5232 Villigen PSI , Switzerland
| |
Collapse
|
27
|
Chemey AT, Albrecht-Schmitt TE. Evolution of the periodic table through the synthesis of new elements. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This brief introduction to the synthesis and chemistry of elements discovered since 1940 is focused primarily on Z=93–118. The goal of this work is not to simply catalogue the nuclear fusion reactions needed to prepare new elements, but rather to focus on the chemical and physical properties that these elements possess. These elements share a single common feature in that they all have large Z values, and thus have electronic structures that are significantly altered by both scalar relativistic effects and spin-orbit coupling. These effects scale nonlinearly with increasing Z and create unexpected deviations both across series and down groups of elements. The magnitude of these effects is large enough that orbital energies rearrange and mix in ways that complicate incomplete depictions of electronic structure that are based solely on electron repulsion. Thus, the primary aim of this review is to document the impact of relativistic effects on electronic structure and how this has altered not just our understanding of the chemistry of heavy elements, but has even created in the need to rearrange the Periodic Table itself.
Collapse
Affiliation(s)
- Alexander T. Chemey
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee, FL 32306 , USA
| | | |
Collapse
|
28
|
|
29
|
Trombach L, Ehlert S, Grimme S, Schwerdtfeger P, Mewes JM. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Phys Chem Chem Phys 2019; 21:18048-18058. [DOI: 10.1039/c9cp02455g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Presenting an accurate yet efficient plane-wave DFT approach for the computational exploration of the bulk properties of the super-heavy main-group elements including copernicium (Cn–Og, Z = 112–118).
Collapse
Affiliation(s)
- Lukas Trombach
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Universität Bonn
- D-53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Universität Bonn
- D-53115 Bonn
- Germany
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| | - Jan-Michael Mewes
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| |
Collapse
|
30
|
Abstract
Abstract
This review describes some key accomplishments of Günter Herrmann such as the establishment of the TRIGA Mark II research reactor at Mainz University, the identification of a large number of very neutron-rich fission products by fast, automated chemical separations, the study of their nuclear structure by spectroscopy with modern detection techniques, and the measurement of fission yields. After getting the nuclear chemistry group, the target laboratory, and the mass separator group established at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, a number of large international collaborations were organized exploring the mechanism of deeply inelastic multi-nucleon transfer reactions in collisions of Xe and U ions with U targets, Ca and U ions with Cm targets, and the search for superheavy elements with chemical separations after these bombardments. After the Chernobyl accident, together with members of the Institute of Physics, a powerful laser technique, the resonance ionization mass spectometry (RIMS) was established for the ultra-trace detection of actinides and long-lived fission products in environmental samples. RIMS was also applied to determine with high precision the first ionization potentials of actinides all the way up to einsteinium. In the late 1980ies, high interest arose in results obtained in fusion-evaporation reactions between light projectiles and heavy actinide targets investigating the chemical properties of transactinide elements (Z≥104). Remarkable was the observation, that their chemical properties deviated from those of their lighter homologs in the Periodic Table because their valence electrons are increasingly influenced by relativistic effects. These chemical results could be reproduced with relativistic quantum-chemical calculations. The present review is selecting and describing examples for fast chemical separations that were successful at the TRIGA Mainz and heavy-ion reaction studies at GSI Darmstadt.
Collapse
Affiliation(s)
- Jens-Volker Kratz
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| |
Collapse
|
31
|
Lens L, Yakushev A, Düllmann CE, Asai M, Ballof J, Block M, David HM, Despotopulos J, Di Nitto A, Eberhardt K, Even J, Götz M, Götz S, Haba H, Harkness-Brennan L, Heßberger FP, Herzberg RD, Hoffmann J, Hübner A, Jäger E, Judson D, Khuyagbaatar J, Kindler B, Komori Y, Konki J, Kratz JV, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lommel B, Maiti M, Mistry AK, Mokry C, Moody K, Nagame Y, Omtvedt JP, Papadakis P, Pershina V, Runke J, Schädel M, Scharrer P, Sato T, Shaughnessy D, Schausten B, Thörle-Pospiech P, Trautmann N, Tsukada K, Uusitalo J, Ward A, Wegrzecki M, Wiehl N, Yakusheva V. Online chemical adsorption studies of Hg, Tl, and Pb on SiO2 and Au surfaces in preparation for chemical investigations on Cn, Nh, and Fl at TASCA. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Online gas-solid adsorption studies with single-atom quantities of Hg, Tl, and Pb, the lighter homologs of the superheavy elements (SHE) copernicium (Cn, Z=112), nihonium (Nh, Z=113), and flerovium (Fl, Z=114), were carried out using short-lived radioisotopes. The interaction with Au and SiO2 surfaces was studied and the overall chemical yield was determined. Suitable radioisotopes were produced in fusion-evaporation reactions, isolated in the gas-filled recoil separator TASCA, and flushed rapidly to an adjacent setup of two gas chromatography detector arrays covered with SiO2 (first array) and Au (second array). While Tl and Pb adsorbed on the SiO2 surface, Hg interacts only weakly and reached the Au-covered array. Our results contribute to elucidating the influence of relativistic effects on chemical properties of the heaviest elements by providing experimental data on these lighter homologs.
Collapse
Affiliation(s)
- Lotte Lens
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Alexander Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Christoph Emanuel Düllmann
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Masato Asai
- Japan Atomic Energy Agency , 319-1195 Tokai-mura, Naka-gun, Ibaraki , Japan
| | - Jochen Ballof
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Section Isolde, Cern , 1211 Geneva , Switzerland
| | - Michael Block
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Helena May David
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | | | - Antonio Di Nitto
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Klaus Eberhardt
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Julia Even
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
- KVI-Center for Advanced Radiation , Technology University of Groningen , 9747 AA Groningen , The Netherlands
| | - Michael Götz
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Stefan Götz
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | | | | | - Fritz Peter Heßberger
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Rodi D. Herzberg
- Department of Physics , University of Liverpool , L69 7ZE Liverpool , UK
| | - Jan Hoffmann
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Annett Hübner
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Egon Jäger
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Daniel Judson
- Department of Physics , University of Liverpool , L69 7ZE Liverpool , UK
| | - Jadambaa Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Birgit Kindler
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | | | - Joonas Konki
- Section Isolde, Cern , 1211 Geneva , Switzerland
- Department of Physics , University of Jyväskylä , 40014 Jyväskylä , Finland
| | - Jens Volker Kratz
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
| | - Jörg Krier
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Nikolaus Kurz
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Mustapha Laatiaoui
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Susanta Lahiri
- Chemical Sciences Division , Saha Institute of Nuclear Physics , 700064 Kolkata , India
| | - Bettina Lommel
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Moumita Maiti
- Department of Physics , Indian Institute of Technology Roorkee , 247667 Uttarakhand , India
| | - Andrew K. Mistry
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Christoph Mokry
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Ken Moody
- Lawrence Livermore National Laboratory , Livermore, CA 94551 , USA
| | - Yuichiro Nagame
- Japan Atomic Energy Agency , 319-1195 Tokai-mura, Naka-gun, Ibaraki , Japan
| | | | | | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Jörg Runke
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Matthias Schädel
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Japan Atomic Energy Agency , 319-1195 Tokai-mura, Naka-gun, Ibaraki , Japan
| | - Paul Scharrer
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Tetsuya Sato
- Japan Atomic Energy Agency , 319-1195 Tokai-mura, Naka-gun, Ibaraki , Japan
| | - Dawn Shaughnessy
- Lawrence Livermore National Laboratory , Livermore, CA 94551 , USA
| | - Brigitta Schausten
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
| | - Petra Thörle-Pospiech
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Norbert Trautmann
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
| | - Kazuaki Tsukada
- Japan Atomic Energy Agency , 319-1195 Tokai-mura, Naka-gun, Ibaraki , Japan
| | - Juha Uusitalo
- Department of Physics , University of Jyväskylä , 40014 Jyväskylä , Finland
| | - Andrew Ward
- Department of Physics , University of Liverpool , L69 7ZE Liverpool , UK
| | | | - Norbert Wiehl
- Institut für Kernchemie , Johannes Gutenberg-Universität , 55122 Mainz , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| | - Vera Yakusheva
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Helmholtz-Institut Mainz , 55099 Mainz , Germany
| |
Collapse
|
32
|
|
33
|
Pershina V. Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations. Inorg Chem 2018; 57:3948-3955. [DOI: 10.1021/acs.inorgchem.8b00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
| |
Collapse
|
34
|
|
35
|
Jadambaa K. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201716300030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
|
37
|
Düllmann CE. Studying Chemical Properties of the Heaviest Elements: One Atom at a Time. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/10619127.2017.1280333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christoph E. Düllmann
- Institute of Nuclear Chemistry & PRISMA Cluster of Excellence, Johannes Gutenberg University Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz Institute Mainz, Germany
| |
Collapse
|
38
|
|
39
|
Schwerdtfeger P. Toward an accurate description of solid-state properties of superheavy elements. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
|
41
|
Despotopulos JD, Kmak KN, Gharibyan N, Henderson RA, Moody KJ, Shaughnessy DA, Sudowe R. Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in hydrochloric acid. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4917-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Pershina V. Theoretical chemistry of superheavy elements: Support for experiment. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613107002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Düllmann CE. On the search for elements beyondZ=118. An outlook based on lessons from the heaviest known elements. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613108004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
|
45
|
Microscopic interaction of single atomic elemental Hg with a sulfur surface. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
|
47
|
Khuyagbaatar J, Yakushev A, Düllmann C, Ackermann D, Andersson LL, Block M, Brand H, Even J, Forsberg U, Hartmann W, Herzberg RD, Heßberger F, Hoffmann J, Hübner A, Jäger E, Jeppsson J, Kindler B, Kratz J, Krier J, Kurz N, Lommel B, Maiti M, Minami S, Rudolph D, Runke J, Sarmiento L, Schädel M, Schausten B, Steiner J, Heidenreich TTD, Uusitalo J, Wiehl N, Yakusheva V. Fission in the landscape of heaviest elements: Some recent examples. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613103003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Interaction of elemental mercury with selenium surfaces: model experiments for investigations of superheavy elements copernicium and flerovium. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5018-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
|
50
|
Rudolph D, Forsberg U, Sarmiento L, Golubev P, Fahlander C. Superheavy-element spectroscopy: Correlations along element 115 decay chains. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201611701001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|