1
|
Steube J, Fritsch L, Kruse A, Bokareva OS, Demeshko S, Elgabarty H, Schoch R, Alaraby M, Egold H, Bracht B, Schmitz L, Hohloch S, Kühne TD, Meyer F, Kühn O, Lochbrunner S, Bauer M. Isostructural Series of a Cyclometalated Iron Complex in Three Oxidation States. Inorg Chem 2024; 63:16964-16980. [PMID: 39222251 DOI: 10.1021/acs.inorgchem.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An isostructural series of FeII, FeIII, and FeIV complexes [Fe(ImP)2]0/+/2+ utilizing the ImP 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene) ligand, combining N-heterocyclic carbenes and cyclometalating functions, is presented. The strong donor motif stabilizes the high-valent FeIV oxidation state yet keeps the FeII oxidation state accessible from the parent FeIII compound. Chemical oxidation of [Fe(ImP)2]+ yields stable [FeIV(ImP)2]2+. In contrast, [FeII(ImP)2]0, obtained by reduction, is highly sensitive toward oxygen. Exhaustive ground state characterization by single-crystal X-ray diffraction, 1H NMR, Mössbauer spectroscopy, temperature-dependent magnetic measurements, a combination of X-ray absorption near edge structure and valence-to-core, as well as core-to-core X-ray emission spectroscopy, complemented by detailed density functional theory (DFT) analysis, reveals that the three complexes [Fe(ImP)2]0/+/2+ can be unequivocally attributed to low-spin d6, d5, and d4 complexes. The excited state landscape of the FeII and FeIV complexes is characterized by short-lived 3MLCT and 3LMCT states, with lifetimes of 5.1 and 1.4 ps, respectively. In the FeII-compound, an energetically low-lying MC state leads to fast deactivation of the MLCT state. The distorted square-pyramidal state, where one carbene is dissociated, can not only relax into the ground state, but also into a singlet dissociated state. Its formation was investigated with time-dependent optical spectroscopy, while insights into its structure were gained by NMR spectroscopy.
Collapse
Affiliation(s)
- Jakob Steube
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Ayla Kruse
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Olga S Bokareva
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Hossam Elgabarty
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Roland Schoch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Mohammad Alaraby
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Hans Egold
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Bastian Bracht
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lennart Schmitz
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Kühn
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Stefan Lochbrunner
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
2
|
Eastham K, Scattergood PA, Chu D, Boota RZ, Soupart A, Alary F, Dixon IM, Rice CR, Hardman SJO, Elliott PIP. Not All 3MC States Are the Same: The Role of 3MC cis States in the Photochemical N ∧N Ligand Release from [Ru(bpy) 2(N ∧N)] 2+ Complexes. Inorg Chem 2022; 61:19907-19924. [PMID: 36450138 DOI: 10.1021/acs.inorgchem.2c03146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ruthenium(II) complexes feature prominently in the development of agents for photoactivated chemotherapy; however, the excited-state mechanisms by which photochemical ligand release operates remain unclear. We report here a systematic experimental and computational study of a series of complexes [Ru(bpy)2(N∧N)]2+ (bpy = 2,2'-bipyridyl; N∧N = bpy (1), 6-methyl-2,2'-bipyridyl (2), 6,6'-dimethyl-2,2'-bipyridyl (3), 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (4), 1-benzyl-4-(6-methylpyrid-2-yl)-1,2,3-triazole (5), 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl (6)), in which we probe the contribution to the promotion of photochemical N∧N ligand release of the introduction of sterically encumbering methyl substituents and the electronic effect of replacement of pyridine by 1,2,3-triazole donors in the N∧N ligand. Complexes 2 to 6 all release the ligand N∧N on irradiation in acetonitrile solution to yield cis-[Ru(bpy)2(NCMe)2]2+, with resultant photorelease quantum yields that at first seem counter-intuitive and span a broad range. The data show that incorporation of a single sterically encumbering methyl substituent on the N∧N ligand (2 and 5) leads to a significantly enhanced rate of triplet metal-to-ligand charge-transfer (3MLCT) state deactivation but with little promotion of photoreactivity, whereas replacement of pyridine by triazole donors (4 and 6) leads to a similar rate of 3MLCT deactivation but with much greater photochemical reactivity. The data reported here, discussed in conjunction with previously reported data on related complexes, suggest that monomethylation in 2 and 5 sterically inhibits the formation of a 3MCcis state but promotes the population of 3MCtrans states which rapidly deactivate 3MLCT states and are prone to mediating ground-state recovery. On the other hand, increased photochemical reactivity in 4 and 6 seems to stem from the accessibility of 3MCcis states. The data provide important insights into the excited-state mechanism of photochemical ligand release by Ru(II) tris-bidentate complexes.
Collapse
Affiliation(s)
- Katie Eastham
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Danny Chu
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Rayhaan Z Boota
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Craig R Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
3
|
Lima M, Marchi RC, Cardoso C, Cook N, Pazin W, Kock F, Venancio T, Martí A, Carlos RM. Bidentate Coordination of 2Apy in cis‐[Ru(phen)2(2Apy)]2+ Aiming at Photobiological Studies. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcia Lima
- IFPI: Instituto Federal de Educacao Ciencia e Tecnologia do Piaui Chemistry BRAZIL
| | | | - Carolina Cardoso
- Instituto Federal de Educacao Ciencia e Tecnologia de Sao Paulo chemistry BRAZIL
| | | | | | - Flavio Kock
- UFSCar: Universidade Federal de Sao Carlos Chemistry BRAZIL
| | - Tiago Venancio
- UFSCar: Universidade Federal de Sao Carlos Chemistry BRAZIL
| | | | - Rose Maria Carlos
- Universidade Federal de Sao Carlos Química Rod Washington Luis Km 235 13565-905 São Carlos-SP BRAZIL
| |
Collapse
|
4
|
Hirahara M, Umemura Y. A Synthetic Route to a Ruthenium Complex via Successive Photosubstitution Reactions. Inorg Chem 2021; 60:13193-13199. [PMID: 34492768 DOI: 10.1021/acs.inorgchem.1c01578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosubstitution reactions of cis-[Ru(bpy)2(MeCN)2]2+ with a pyrazole ligand (pzH) were studied under various conditions toward the development of a photochemical synthetic route to polypyridyl ruthenium complexes (bpy = 2,2'-bipyridine). In the absence of a base, light irradiation of an acetonitrile solution of pyrazole and cis-[Ru(bpy)2(MeCN)2]2+ gave a mixture of the reactant and cis-[Ru(bpy)2(pzH)(MeCN)]2+. In the presence of a mild base such as N,N-dimethylaminopyridine, a second photosubstitution from cis-[Ru(bpy)2(pzH)(MeCN)]2+ to cis-[Ru(bpy)2(pz)(pzH)]+ (1b) was greatly enhanced, as confirmed by UV-vis and 1H nuclear magnetic resonance spectroscopy. The yields of 1b were increased in solvents with moderate coordinating properties, such as acetone. The successive photosubstitution reaction was observed using a stoichiometric amount of pyrazole.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
5
|
Dixon IM, Bonnet S, Alary F, Cuny J. Photoinduced Ligand Exchange Dynamics of a Polypyridyl Ruthenium Complex in Aqueous Solution. J Phys Chem Lett 2021; 12:7278-7284. [PMID: 34323082 DOI: 10.1021/acs.jpclett.1c01424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The understanding of photoinduced ligand exchange mechanisms in polypyridyl ruthenium(II) complexes operating in aqueous solution is of crucial importance to rationalize their photoreactivity. Herein, we demonstrate that a synergetic use of ab initio molecular dynamics simulations and static calculations, both conducted at the DFT level, can provide a full understanding of photosubstitution mechanisms of a monodentate ligand by a solvent water molecule in archetypal ruthenium complexes in explicit water. The simulations show that the photoinduced loss of a monodentate ligand generates an unreactive 16-electron species in a hitherto undescribed pentacoordinated triplet excited state that converts, via an easily accessible crossing point, to a reactive 16-electron singlet ground state, which combines with a solvent water molecule to yield the experimentally observed aqua complex in less than 10 ps. This work paves the way for the rational design of novel photoactive metal complexes relevant for biological applications.
Collapse
Affiliation(s)
- Isabelle M Dixon
- Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, Laboratoire de Chimie et Physique Quantiques, 31062 Toulouse Cedex 9, France
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Fabienne Alary
- Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, Laboratoire de Chimie et Physique Quantiques, 31062 Toulouse Cedex 9, France
| | - Jérôme Cuny
- Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, Laboratoire de Chimie et Physique Quantiques, 31062 Toulouse Cedex 9, France
| |
Collapse
|
6
|
Almeida MP, Kock FVC, de Jesus HCR, Carlos RM, Venâncio T. Probing the acetylcholinesterase inhibitory activity of a novel Ru(II) polypyridyl complex and the supramolecular interaction by (STD)-NMR. J Inorg Biochem 2021; 224:111560. [PMID: 34399231 DOI: 10.1016/j.jinorgbio.2021.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Currently, acetylcholinesterase (AChE) inhibitors are the only anti-Alzheimer drugs commercially available. Despite their wide use those drugs are all dose dependent and their effect last for no longer than two years, with several side effects. The search of novel acetylcholinesterase (AChE) inhibitors remains as the main scientific route. Here we describe the synthesis, characterization, biological activity and an NMR binding-target study of a novel cis-[Ru(Bpy)2(EtPy)2]2+, (RuEtPy), Bpy = 2,2'-bipyridine and EtPy = 4,2-Ethylamino-pyridine) as a potential AChE inhibitor. The classic Ellman's colorimetric assay suggests that the RuEtPy exhibits a high inhibitory activity, following a competitive mechanism, with a remarkable low inhibition constant (Ki ≈ 16.8 μM), together with a IC50 = 39 μM. Hence, we have studied the spatial interactions for this novel candidate towards the human acetylcholinesterase (hAChE) using saturation transfer difference (STD)-NMR, in order to describe the mechanism of the interaction. NMR binding-target results shows that the 4,2-Ethylamino-Pyridine group is spatially closer to hAChE surface chemical arrangement than 2,2' bipyridine counterpart, exerting an efficient intermolecular interaction, with a low dissociation constant (KD ≈ 55 μM), probing that 4,2-Ethylamino-pyridine motif plays a key role in the inhibitory action.
Collapse
Affiliation(s)
- Marlon P Almeida
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Flávio V C Kock
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Hugo C R de Jesus
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil; Centre for Blood Research, Life Sciences Centre, 4.420 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia (UBC), Vancouver, Canada
| | - Rose M Carlos
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Tiago Venâncio
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Chatterjee M, Mondal S, Hazari AS, Záliš S, Kaim W, Lahiri GK. Variable electronic structure and spin distribution in bis(2,2'-bipyridine)-metal complexes (M = Ru or Os) of 4,5-dioxido- and 4,5-diimido-pyrene. Dalton Trans 2021; 50:4191-4201. [PMID: 33683255 DOI: 10.1039/d1dt00282a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The odd-electron compounds [M(bpy)2(L1)](ClO4) M = Ru ([1](ClO4)) or Os ([2](ClO4)), and the even-electron species [M(bpy)2(H2L2)](ClO4)2, M = Ru ([3](ClO4)2) or Os ([4](ClO4)2) were obtained from pyrene-4,5-dione, L1, or 4,5-diaminopyrene, H4L2, and were characterised structurally, electrochemically and spectroscopically. Experimental and computational analysis (TD-DFT) revealed rather different electronic structures and spin distributions of the paramagnetic monocations 1+-4+. EPR investigations and electronic absorption studies exhibit increasing metal contributions to the singly occupied MO along the series 1+ < 3+ < 4+ < 2+, illustrated by g value and long-wavelength absorbance. In addition to variations of the metal (Ru,Os) and the donor atoms (O,NH) the extension of the π system of the semiquinone-type ligand has a large effect on the electronic structure of the paramagnetic cations.
Collapse
Affiliation(s)
- Madhumita Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | | | | | | | | | | |
Collapse
|
8
|
Deshpande MS, Morajkar SM, Srinivasan BR, Ahirwar MB, Deshmukh MM. Effect of the electronic structure on the robustness of ruthenium( ii) bis-phenanthroline compounds for photodissociation of the co-ligand: synthesis, structural characterization, and density functional theory study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05921h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodissociation of co-ligand in cis-[Ru(phen)2(L)2](PF6)2 (phen = 1,10-phenanthroline, L = isoquinoline 1; phthalazine 2), upon blue light irradiation was investigated via both experimental and DFT studies.
Collapse
Affiliation(s)
| | | | | | - Mini Bharati Ahirwar
- Department of Chemistry
- Dr Harisingh Gour Vishwavidyalaya (A Central University)
- Sagar
- India
| | - Milind M. Deshmukh
- Department of Chemistry
- Dr Harisingh Gour Vishwavidyalaya (A Central University)
- Sagar
- India
| |
Collapse
|
9
|
Martin SM, Oldacre AN, Pointer CA, Huang T, Repa GM, Fredin LA, Young ER. Proton-controlled non-exponential photoluminescence in a pyridylamidine-substituted Re(I) complex. Dalton Trans 2021; 50:7265-7276. [PMID: 33954322 DOI: 10.1039/d1dt01132d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical intuition and well-known design principles can typically be used to create ligand environments in transition metal complexes to deliberately tune reactivity for desired applications. However, intelligent ligand design does not always result in the expected outcomes. Herein we report the synthesis and characterization of a tricarbonyl rhenium (2,2'-bipyridine) 4-pyridylamidine, Re(4-Pam), complex with unexpected photophysical properties. Photoluminescence kinetics of Re(4-Pam) undergoes non-exponential decay, which can be deconvolved into two emission lifetimes. However, upon protonation of the amidine functionality of the 4-pyridylamidine to form Re(4-PamH), a single exponential decay is observed. To understand and rationalize these experimental observations, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are employed. The symmetry or asymmetry of the protonated or deprotonated 4-pyridylamidine ligand, respectively, is the key factor in switching between one and two photoluminescence lifetimes. Specifically, rotation of the dihedral angle formed between the bipyridine and 4-Pam ligand leads to two rotamers of Re(4-Pam) with degenerate triplet- to ground-state transitions.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Amanda N Oldacre
- Department of Chemistry, St Lawrence University, Canton, New York 13617, USA
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Tao Huang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Gil M Repa
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| |
Collapse
|
10
|
Soupart A, Alary F, Heully JL, Elliott PIP, Dixon IM. Theoretical Study of the Full Photosolvolysis Mechanism of [Ru(bpy)3]2+: Providing a General Mechanistic Roadmap for the Photochemistry of [Ru(N^N)3]2+-Type Complexes toward Both Cis and Trans Photoproducts. Inorg Chem 2020; 59:14679-14695. [DOI: 10.1021/acs.inorgchem.0c01843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Paul I. P. Elliott
- Department of Chemistry and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
11
|
Soupart A, Alary F, Heully JL, Elliott PI, Dixon IM. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
On the Possible Coordination on a 3MC State Itself? Mechanistic Investigation Using DFT-Based Methods. INORGANICS 2020. [DOI: 10.3390/inorganics8020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding light-induced ligand exchange processes is key to the design of efficient light-releasing prodrugs or photochemically driven functional molecules. Previous mechanistic investigations had highlighted the pivotal role of metal-centered (MC) excited states in the initial ligand loss step. The question remains whether they are equally important in the subsequent ligand capture step. This article reports the mechanistic study of direct acetonitrile coordination onto a 3MC state of [Ru(bpy)3]2+, leading to [Ru(bpy)2(κ1-bpy)(NCMe)]2+ in a 3MLCT (metal-to-ligand charge transfer) state. Coordination of MeCN is indeed accompanied by the decoordination of one pyridine ring of a bpy ligand. As estimated from Nudged Elastic Band calculations, the energy barrier along the minimum energy path is 20 kcal/mol. Interestingly, the orbital analysis conducted along the reaction path has shown that creation of the metallic vacancy can be achieved by reverting the energetic ordering of key dσ* and bpy-based π* orbitals, resulting in the change of electronic configuration from 3MC to 3MLCT. The approach of the NCMe lone pair contributes to destabilizing the dσ* orbital by electrostatic repulsion.
Collapse
|
13
|
Mede T, Jäger M, Schubert US. High-Yielding Syntheses of Multifunctionalized Ru II Polypyridyl-Type Sensitizer: Experimental and Computational Insights into Coordination. Inorg Chem 2019; 58:9822-9832. [PMID: 31322344 DOI: 10.1021/acs.inorgchem.9b00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RuII complexes based on functionalized 2,6-di(quinolin-8-yl)pyridine (dqp) ligands feature excellent photophysical and geometrical properties, thus suggesting dqp ligands as ideal surrogates for 2,2'-bipyridine (bpy) or 2,2':6',2″-terpyridine (tpy). However, the synthesis of multifunctionalized [Ru(dqp)2]2+-based complexes is often low-yielding, which has hampered their practical value to date. In this study, a universal high-yielding route was explored and corroborated by a mechanistic investigation based on 1H NMR, MS, and density functional theory. With application of high-boiling but less-coordinating solvents (i.e., DMF) during the coordination of dqp by the precursor [Ru(dqp)(MeCN)3]2+, the required reaction temperature is lowered considerably (by 30 °C). In comparison to tpy, the reaction rate for dqp is further reduced which is assigned to the higher steric demand upon the coordination process. Namely, the onset of coordination of a tpy derivative at 60 °C and of dqp at 90 °C is significantly milder than in previous protocols. The versatility of the procedure is demonstrated by the high-yielding syntheses of multifunctionalized RuII complexes reaching up to 90%, whereby the presence of hydroxyl groups and losses during purification may lower the isolated yields substantially. In addition, the same strategy of high-boiling but less-coordinating solvents enabled a milder one-pot protocol to prepare [Ru(dqp)2]2+ from a [Ru(MeCN)6]2+ source, i.e., without the need for in situ reduction or halide abstraction as typical for RuIIICl3 hydrate. Hence, the developed protocol benefits from an improved thermal tolerance of sensitive functional groups, which may be applicable also to related polypyridyl-type ligands.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstraße 10 , 07743 Jena , Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstraße 10 , 07743 Jena , Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstraße 10 , 07743 Jena , Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany
| |
Collapse
|
14
|
Roveda AC, Santos WG, Souza ML, Adelson CN, Gonçalves FS, Castellano EE, Garino C, Franco DW, Cardoso DR. Light-activated generation of nitric oxide (NO) and sulfite anion radicals (SO3˙−) from a ruthenium(ii) nitrosylsulphito complex. Dalton Trans 2019; 48:10812-10823. [DOI: 10.1039/c9dt01432b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This manuscript describes the preparation of a new Ru(ii) nitrosylsulphito complex,trans-[Ru(NH3)4(isn)(N(O)SO3)]+(complex1), its spectroscopic and structural characterization, photochemistry, and thermal reactivity.
Collapse
Affiliation(s)
- Antonio C. Roveda
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Willy G. Santos
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Maykon L. Souza
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | | | | | | | - Claudio Garino
- Dept. of Chemistry and NIS Interdepartmental Centre
- University of Turin
- Italy
| | - Douglas W. Franco
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Daniel R. Cardoso
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| |
Collapse
|
15
|
Soupart A, Alary F, Heully JL, Elliott PIP, Dixon IM. Exploration of Uncharted 3PES Territory for [Ru(bpy)3]2+: A New 3MC Minimum Prone to Ligand Loss Photochemistry. Inorg Chem 2018; 57:3192-3196. [DOI: 10.1021/acs.inorgchem.7b03229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Paul I. P. Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, U.K
- Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, U.K
| | - Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
16
|
Nisbett K, Tu YJ, Turro C, Kodanko JJ, Schlegel HB. DFT Investigation of Ligand Photodissociation in [Ru II(tpy)(bpy)(py)] 2+ and [Ru II(tpy)(Me 2bpy)(py)] 2+ Complexes. Inorg Chem 2017; 57:231-240. [PMID: 29257679 DOI: 10.1021/acs.inorgchem.7b02398] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photoinduced ligand dissociation of pyridine occurs much more readily in [Ru(tpy)(Me2bpy)(py)]2+ than in [Ru(tpy)(bpy)(py)]2+ (tpy = 2,2':6',2″-terpyridine; bpy = 2,2'-bipyridine, Me2bpy = 6,6'-dimethyl-2,2'-bipyridine; py = pyridine). The S0 ground state and the 3MLCT and 3MC excited states of these complexes have been studied using BP86 density functional theory with the SDD basis set and effective core potential on Ru and the 6-31G(d) basis set for the rest of the atoms. In both complexes, excitation by visible light and intersystem crossing leads to a 3MLCT state in which an electron from a Ru d orbital has been promoted to a π* orbital of terpyridine, followed by pyridine release after internal conversion to a dissociative 3MC state. Interaction between the methyl groups and the other ligands causes significantly more strain in [Ru(tpy)(Me2bpy)(py)]2+ than in [Ru(tpy)(bpy)(py)]2+, in both the S0 and 3MLCT states. Transition to the dissociative 3MC states releases this strain, resulting in lower barriers for ligand dissociation from [Ru(tpy)(Me2bpy)(py)]2+ than from [Ru(tpy)(bpy)(py)]2+. Analysis of the molecular orbitals along relaxed scans for stretching the Ru-N bonds reveals that ligand photodissociation is promoted by orbital mixing between the ligand π* orbital of tpy in the 3MLCT state and the dσ* orbitals that characterize the dissociative 3MC states. Good overlap and strong mixing occur when the Ru-N bond of the leaving ligand is perpendicular to the π* orbital of terpyridine, favoring the release of pyridine positioned in a cis fashion to the terpyridine ligand.
Collapse
Affiliation(s)
- Khalin Nisbett
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Yi-Jung Tu
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Caraballo RM, Rosi P, Hodak JH, Baraldo LM. Photosubstitution of Monodentate Ligands from RuII-Dicarboxybipyridine Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rolando M. Caraballo
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires; Instituto de Química-Física de Materiales; Ambientes y Energía (INQUIMAE); Buenos Aires Argentina
| | - Pablo Rosi
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
| | - José H. Hodak
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires; Instituto de Química-Física de Materiales; Ambientes y Energía (INQUIMAE); Buenos Aires Argentina
| | - Luis M. Baraldo
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires; Instituto de Química-Física de Materiales; Ambientes y Energía (INQUIMAE); Buenos Aires Argentina
| |
Collapse
|
18
|
|
19
|
Kubeil M, Vernooij RR, Kubeil C, Wood BR, Graham B, Stephan H, Spiccia L. Studies of Carbon Monoxide Release from Ruthenium(II) Bipyridine Carbonyl Complexes upon UV-Light Exposure. Inorg Chem 2017; 56:5941-5952. [PMID: 28467070 DOI: 10.1021/acs.inorgchem.7b00599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The UV-light-induced CO release characteristics of a series of ruthenium(II) carbonyl complexes of the form trans-Cl[RuLCl2(CO)2] (L = 4,4'-dimethyl-2,2'-bipyridine, 4'-methyl-2,2'-bipyridine-4-carboxylic acid, or 2,2'-bipyridine-4,4'-dicarboxylic acid) have been elucidated using a combination of UV-vis absorbance and Fourier transform infrared spectroscopies, multivariate curve resolution alternating least-squares analysis, and density functional theory calculations. In acetonitrile, photolysis appears to proceed via a serial three-step mechanism involving the sequential formation of [RuL(CO)(CH3CN)Cl2], [RuL(CH3CN)2Cl2], and [RuL(CH3CN)3Cl]+. Release of the first CO molecule occurs quickly (k1 ≫ 3 min-1), while release of the second CO molecule proceeds at a much more modest rate (k2 = 0.099-0.17 min-1) and is slowed by the presence of electron-withdrawing carboxyl substituents on the bipyridine ligand. In aqueous media (1% dimethyl sulfoxide in H2O), the two photodecarbonylation steps proceed much more slowly (k1 = 0.46-1.3 min-1 and k2 = 0.026-0.035 min-1, respectively) and the influence of the carboxyl groups is less pronounced. These results have implications for the design of new light-responsive CO-releasing molecules ("photoCORMs") intended for future medical use.
Collapse
Affiliation(s)
- Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Robbin R Vernooij
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Conventry CV4 7AL, U.K
| | | | | | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400, D-01328 Dresden, Germany
| | | |
Collapse
|
20
|
Smith NA, Zhang P, Greenough SE, Horbury MD, Clarkson GJ, McFeely D, Habtemariam A, Salassa L, Stavros VG, Dowson CG, Sadler PJ. Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chem Sci 2017; 8:395-404. [PMID: 28451184 PMCID: PMC5365061 DOI: 10.1039/c6sc03028a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
The novel photoactive ruthenium(ii) complex cis-[Ru(bpy)2(INH)2][PF6]2 (1·2PF6, INH = isoniazid) was designed to incorporate the anti-tuberculosis drug, isoniazid, that could be released from the Ru(ii) cage by photoactivation with visible light. In aqueous solution, 1 rapidly released two equivalents of isoniazid and formed the photoproduct cis-[Ru(bpy)2(H2O)2]2+ upon irradiation with 465 nm blue light. We screened for activity against bacteria containing the three major classes of cell envelope: Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, and Mycobacterium smegmatis in vitro using blue and multi-colored LED multi-well arrays. Complex 1 is inactive in the dark, but when photoactivated is 5.5× more potent towards M. smegmatis compared to the clinical drug isoniazid alone. Complementary pump-probe spectroscopy measurements along with density functional theory calculations reveal that the mono-aqua product is formed in <500 ps, likely facilitated by a 3MC state. Importantly, complex 1 is highly selective in killing mycobacteria versus normal human cells, towards which it is relatively non-toxic. This work suggests that photoactivatable prodrugs such as 1 are potentially powerful new agents in combatting the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Nichola A Smith
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Pingyu Zhang
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Simon E Greenough
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Michael D Horbury
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Daniel McFeely
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Luca Salassa
- CIC biomaGUNE , Paseo de Miramón 182 , Donostia-San Sebastián , 20009 , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC) , P.K. 1072 , Donostia-San Sebastián , 20080 , Spain
- Ikerbasque , Basque Foundation for Science , Bilbao , 48011 , Spain
| | - Vasilios G Stavros
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Christopher G Dowson
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| |
Collapse
|
21
|
Dixon IM, Heully JL, Alary F, Elliott PIP. Theoretical illumination of highly original photoreactive3MC states and the mechanism of the photochemistry of Ru(ii) tris(bidentate) complexes. Phys Chem Chem Phys 2017; 19:27765-27778. [DOI: 10.1039/c7cp05532c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elucidation of the photoreactive mechanism of ruthenium(ii) complexes is reported along with identification of crucial and highly original metal-centred states.
Collapse
Affiliation(s)
- Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS/Université Toulouse 3 – Paul Sabatier
- Université de Toulouse
- Toulouse
- France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS/Université Toulouse 3 – Paul Sabatier
- Université de Toulouse
- Toulouse
- France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS/Université Toulouse 3 – Paul Sabatier
- Université de Toulouse
- Toulouse
- France
| | | |
Collapse
|
22
|
DNA interaction studies and photoinduced ligand exchange kinetics of a sterically strained ruthenium(II) complex. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Silva DES, Cali MP, Pazin WM, Carlos-Lima E, Salles Trevisan MT, Venâncio T, Arcisio-Miranda M, Ito AS, Carlos RM. Luminescent Ru(II) Phenanthroline Complexes as a Probe for Real-Time Imaging of Aβ Self-Aggregation and Therapeutic Applications in Alzheimer’s Disease. J Med Chem 2016; 59:9215-9227. [DOI: 10.1021/acs.jmedchem.6b01130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debora E. S. Silva
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Mariana P. Cali
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Wallance M. Pazin
- Departamento de
Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Estevão Carlos-Lima
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo 04023-062, Brazil
| | - Maria Teresa Salles Trevisan
- Departamento
de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Ceará Fortaleza, 60451-970, Brazil
| | - Tiago Venâncio
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Manoel Arcisio-Miranda
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo 04023-062, Brazil
| | - Amando S. Ito
- Departamento de
Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Rose M. Carlos
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
24
|
Sun Q, Dereka B, Vauthey E, Lawson Daku LM, Hauser A. Ultrafast transient IR spectroscopy and DFT calculations of ruthenium(ii) polypyridyl complexes. Chem Sci 2016; 8:223-230. [PMID: 28451169 PMCID: PMC5308284 DOI: 10.1039/c6sc01220e] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
Ultrafast time-resolved infrared spectroscopy of [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine), [Ru(mbpy)3]2+ (mbpy = 6-methyl-2,2'-bipyridine) and [Ru(mphen)3]2+ (mphen = 2-methyl-1,10'-phenanthroline) in deuterated acetonitrile serves to elucidate the evolution of the system following pulsed excitation into the 1MLCT band at 400 nm. While for [Ru(bpy)3]2+ no intermediate state can be evidenced for the relaxation of the corresponding 3MLCT state back to the ground state, for [Ru(mbpy)3]2+ and [Ru(mphen)3]2+ an intermediate state with a lifetime of about 400 ps is observed. The species associated IR difference spectra of this state are in good agreement with the calculated difference spectra of the lowest energy 3dd state using DFT. The calculated potential energy curves for all the complexes in the triplet manifold along the metal-ligand distance show that for [Ru(bpy)3]2+ the 3dd state is at a higher energy than the 3MLCT state and that there is a substantial barrier between the two minima. For [Ru(mbpy)3]2+ and [Ru(mphen)3]2+, the 3dd state is at a lower energy than the 3MLCT state.
Collapse
Affiliation(s)
- Qinchao Sun
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Bogdan Dereka
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Eric Vauthey
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Latévi M Lawson Daku
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Andreas Hauser
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| |
Collapse
|
25
|
Göttle AJ, Alary F, Boggio-Pasqua M, Dixon IM, Heully JL, Bahreman A, Askes SHC, Bonnet S. Pivotal Role of a Pentacoordinate (3)MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study. Inorg Chem 2016; 55:4448-56. [PMID: 27054312 DOI: 10.1021/acs.inorgchem.6b00268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A mechanistic study of the photocleavage of the methylthioethanol ligand (Hmte) in the series of ruthenium complexes [Ru(tpy)(N-N)(Hmte)](2+) (tpy = 2,2':6',2″-terpyridine, N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), dmbpy (6,6'-dimethyl-2,2'-bipyridine)) was performed using density functional theory. These studies reveal the decisive role of two quasi-degenerate triplet metal-centered states, denoted (3)MChexa and (3)MCpenta, on the lowest triplet potential energy surface. It also shows how the population of the specific pentacoordinate (3)MCpenta state, characterized by a geometry more accessible for the attack of a solvent molecule, is a key step for the efficiency of the photosubstitution reaction. The difference in the photosubstitution quantum yields experimentally observed for this series of complexes (from φ = 0.022 for N-N = bpy up to φ = 0.30 for N-N = dmbpy) is rationalized by the existence of this (3)MCpenta photoreactive state and by the different topologies of the triplet excited-state potential energy surfaces, rather than by the sole steric properties of these polypyridinyl ligands.
Collapse
Affiliation(s)
- Adrien J Göttle
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Azadeh Bahreman
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sven H C Askes
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
26
|
Magde D, Magde MD, Glazer EC. So-called “dual emission” for 3MLCT luminescence in ruthenium complex ions: What is really happening? Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Spectroscopy and Chemical Bonding in Transition Metal Complexes. STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2015_195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Jäger M, Freitag L, González L. Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Habtemariam A, Garino C, Ruggiero E, Alonso-de Castro S, Mareque-Rivas JC, Salassa L. Photorelease of Pyridyl Esters in Organometallic Ru(II) Arene Complexes. Molecules 2015; 20:7276-91. [PMID: 25905605 PMCID: PMC6272714 DOI: 10.3390/molecules20047276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
New Ru(II) arene complexes of formula [(η6-p-cym)Ru(N-N)(X)]2+ (where p-cym = para-cymene, N-N = 2,2'-bipyrimidine (bpm) or 2,2'-bipyridine (bpy) and X = m/p-COOMe-Py, 1-4) were synthesised and characterized, including the molecular structure of complexes [(η6-p-cym)Ru(bpy)(m-COOMe-Py)]2+ (3) and [(η6-p-cym)Ru(bpy) (p-COOMe-Py)]2+ (4) by single-crystal X-ray diffraction. Complexes 1-4 are stable in the dark in aqueous solution over 48 h and photolysis studies indicate that they can photodissociate the monodentate m/p-COOMe-Py ligands selectively with yields lower than 1%. DFT and TD-DFT calculations (B3LYP/LanL2DZ/6-31G**) performed on singlet and triplet states pinpoint a low-energy triplet state as the reactive state responsible for the selective dissociation of the monodentate pyridyl ligands.
Collapse
Affiliation(s)
- Abraha Habtemariam
- CIC biomaGUNE, Donostia–San Sebastián 20009, Spain; E-Mails: (A.H.); (E.R.); (S.A.C.); (J.C.M.-R.)
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Claudio Garino
- Department of Chemistry and NIS Centre of Excellence, University of Turin, Turin 10125, Italy; E-Mail:
| | - Emmanuel Ruggiero
- CIC biomaGUNE, Donostia–San Sebastián 20009, Spain; E-Mails: (A.H.); (E.R.); (S.A.C.); (J.C.M.-R.)
| | - Silvia Alonso-de Castro
- CIC biomaGUNE, Donostia–San Sebastián 20009, Spain; E-Mails: (A.H.); (E.R.); (S.A.C.); (J.C.M.-R.)
| | - Juan C. Mareque-Rivas
- CIC biomaGUNE, Donostia–San Sebastián 20009, Spain; E-Mails: (A.H.); (E.R.); (S.A.C.); (J.C.M.-R.)
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Luca Salassa
- CIC biomaGUNE, Donostia–San Sebastián 20009, Spain; E-Mails: (A.H.); (E.R.); (S.A.C.); (J.C.M.-R.)
- Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), Donostia–San Sebastián 20080, Spain
| |
Collapse
|
30
|
Sakuda E, Matsumoto C, Ando Y, Ito A, Mochida K, Nakagawa A, Kitamura N. Dual Emissions from Ruthenium(II) Complexes Having 4-Arylethynyl-1,10-phenanthroline at Low Temperature. Inorg Chem 2015; 54:3245-52. [DOI: 10.1021/ic502843x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eri Sakuda
- PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama Prefecture 332-0012, Japan
| | | | | | - Akitaka Ito
- Department
of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
31
|
Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem Crossing Processes in Transition Metal Complexes: TD-DFT and Spin-Orbit Coupling. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2015; 368:377-413. [DOI: 10.1007/128_2015_635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Wang XM, Chen S, Fan RQ, Zhang FQ, Yang YL. Facile luminescent tuning of ZnII/HgII complexes based on flexible, semi-rigid and rigid polydentate Schiff bases from blue to green to red: structural, photophysics, electrochemistry and theoretical calculations studies. Dalton Trans 2015; 44:8107-25. [DOI: 10.1039/c5dt00057b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of ZnII/HgII Schiff base complexes could be tuned by changing the ligand structures.
Collapse
Affiliation(s)
- Xin-Ming Wang
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| | - Shuo Chen
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| | - Rui-Qing Fan
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| | - Fu-Qiang Zhang
- Department of Chemistry
- Shangqiu Normal University
- Shangqiu 476000
- P. R. of China
| | - Yu-Lin Yang
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| |
Collapse
|
33
|
Sun Q, Mosquera-Vazquez S, Suffren Y, Hankache J, Amstutz N, Lawson Daku LM, Vauthey E, Hauser A. On the role of ligand-field states for the photophysical properties of ruthenium(II) polypyridyl complexes. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Mazumder S, Thomas RA, Lord RL, Schlegel HB, Endicott JF. A density functional theory and spectroscopic study of intramolecular quenching of metal-to-ligand charge-transfer excited states in some mono-bipyridine ruthenium(II) complexes. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexes [Ru(NCCH3)4bpy]2+ and [Ru([14]aneS4)bpy]2+ ([14]aneS4 = 1,4,8,11-tetrathiacyclotetradecane, bpy = 2,2′-bipyridine) have similar absorption and emission spectra but the 77 K metal-to-ligand charge-transfer (MLCT) excited state emission lifetime of the latter is less than 0.3% that of the former. Density functional theory modeling of the lowest energy triplet excited states indicates that triplet metal centered (3MC) excited states are about 3500 cm−1 lower in energy than their 3MLCT excited states in both complexes. The differences in excited state lifetimes arise from a much larger coordination sphere distortion for [Ru(NCCH3)4bpy]2+ and the associated larger reorganizational barrier for intramolecular electron transfer. The smaller ruthenium ligand distortions of the [Ru([14]aneS4)bpy]2+ complex are apparently a consequence of stereochemical constraints imposed by the macrocyclic [14]aneS4 ligand, and the 3MC excited state calculated for the unconstrained [Ru(S(CH3)2)4bpy]2+ complex (S(CH3)2 = dimethyl sulfide) is distorted in a manner similar to that of [Ru(NCCH3)4bpy]2+. Despite the lower energy calculated for its 3MC than 3MLCT excited state, [Ru(NCCH3)4bpy]2+ emits strongly in 77 K glasses with an emission quantum yield of 0.47. The emission is biphasic with about a 1 μs lifetime for its dominant (86%) emission component. The 405 nm excitation used in these studies results in a significant amount of photodecomposition in the 77 K glasses. This is a temperature-dependent biphotonic process that most likely involves the bipyridine-radical anionic moiety of the 3MLCT excited state. A smaller than expected value found for the radiative rate constant is consistent with a lower energy 3MC than 3MLCT state.
Collapse
Affiliation(s)
- Shivnath Mazumder
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ryan A. Thomas
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Richard L. Lord
- Grand Valley State University, 1 Campus Dr., Allendale, MI 49401-9403, USA
| | | | - John F. Endicott
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|