1
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Asgari S, Mohammadi Ziarani G, Badiei A, Rostami M, Kiani M. Reduced cytotoxicity and boosted antibacterial activity of a hydrophilic nano-architecture magnetic nitrogen-rich copper-based MOF. MATERIALS TODAY COMMUNICATIONS 2022; 33:104393. [DOI: 10.1016/j.mtcomm.2022.104393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
3
|
Mondal K, Dey A, Mistri S. Aminoethylpiperazine Based Metal Schiff Base Complexes: Catalytic and Biological Activities. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keshab Mondal
- Department of Chemistry, Ramananda Centenary College, Laulara, Purulia, India
| | - Avishek Dey
- Department of Botany, Ramananda Centenary College, Laulara, Purulia, India
| | - Soumen Mistri
- Department of Chemistry, Ramananda Centenary College, Laulara, Purulia, India
| |
Collapse
|
4
|
Patra A, Sahay O, Kumar Mahish M, Rani Das M, Saren D, Paul A, Vojtíšek P, Kumar Santra M, Chandra Manna S. Linear dicarboxylato and tridentate chelating ligands coordinated Cu(II) complexes: Syntheses, crystal structures, protein binding and cytotoxicity studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Lee DN, Gwon K, Kim Y, Cho H, Lee S. Immobilization of antibacterial copper metal-organic framework containing glutarate and 1,2-bis(4-pyridyl)ethylene ligands on polydimethylsiloxane and its low cytotoxicity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
|
8
|
Beckmann L, Künstner A, Freschi ML, Huber G, Stölting I, Ibrahim SM, Hirose M, Freitag M, Langan EA, Matschl U, Galuska CE, Fuchs B, Knobloch JK, Busch H, Raasch W. Telmisartan induces a specific gut microbiota signature which may mediate its antiobesity effect. Pharmacol Res 2021; 170:105724. [PMID: 34116209 DOI: 10.1016/j.phrs.2021.105724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Telmisartan prevents diet-induced obesity (DIO) in rodents. Given that the precise underlying mechanism is not known, we examined whether a gut-related mechanism might be involved. Sprague-Dawley rats received cafeteria diet (CD) for 3 months to develop DIO and were administered either telmisartan (8 mg/kgbw) or vehicle. In addition, pair-fed (PF) rats received CD adjusted to TEL and control rats (CON) only received chow. Stool samples were analysed by 16 S rRNA gene amplicon sequencing. CD-fed rats became obese while TEL, PF and CON rats remained lean. Alpha diversity analyses indicated that bacterial diversity was similar before the study but changed over time. Beta diversity revealed a time-, CD- and telmisartan-dependent effect. The Firmicutes/Bacteroidetes ratio and the abundance of Blautia, Allobaculum and Parasutterella were higher in DIO and PF than in CON, but not in TEL. Enterotype (ET)-like clustering analyses, Kleinberg's hub network scoring and random forest analyses also indicated that telmisartan induced a specific signature of gut microbiota. In response to stool transfer from telmisartan-pre-treated donor to high-fat fed acceptor mice, body weight gain was slightly attenuated. We attribute the anti-obesity action of telmisartan treatment to diet-independent alterations in gut microbiota as the microbiota from telmisartan-treated, CD-fed rats clearly differed from those of DIO and PF rats. ET-like clustering network, random forest classification and the higher stability in bacterial co-occurrence network analyses indicate that there is more than one indicator species for telmisartan's specific signature, which is further strengthened by the fact that we cannot identify a single indicator species.
Collapse
Affiliation(s)
- Laura Beckmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Institute of Experimental Dermatology, University of Lübeck, Germany; Institute for Cardiogenetic, University of Lübeck, Germany
| | - Marco L Freschi
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Germany
| | - Ines Stölting
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Misa Hirose
- Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Miriam Freitag
- Departement of Dermatology, University of Lübeck, Germany
| | - Ewan A Langan
- Departement of Dermatology, University of Lübeck, Germany; Dermatological Sciences, University of Manchester, UK
| | - Urte Matschl
- Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina E Galuska
- Leibniz Institute for Farm Animal Biology (FBN) Core Facility Metabolomics, Germany
| | - Beate Fuchs
- Leibniz Institute for Farm Animal Biology (FBN) Core Facility Metabolomics, Germany
| | - Johannes K Knobloch
- Clinic of Infectiology and Microbiology, University Clinic Schleswig-Holstein, Campus Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany; Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Institute of Experimental Dermatology, University of Lübeck, Germany; Institute for Cardiogenetic, University of Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Germany.
| |
Collapse
|
9
|
Ding D, Liu Z, Zhang H, Xu J, Hou X, Wu J. Synthesis, topological structure and magnetism of a scarce homochiral octanuclear metallarectangle. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Gwon K, Kim Y, Cho H, Lee S, Yang SH, Kim SJ, Lee DN. Robust Copper Metal-Organic Framework-Embedded Polysiloxanes for Biomedical Applications: Its Antibacterial Effects on MRSA and In Vitro Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:719. [PMID: 33809285 PMCID: PMC8000151 DOI: 10.3390/nano11030719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Polysiloxanes (PSs) have been widely utilized in the industry as lubricants, varnishes, paints, release agents, adhesives, and insulators. In addition, their applications have been expanded to include the development of new biomedical materials. To modify PS for application in therapeutic purposes, a flexible antibacterial Cu-MOF (metal-organic framework) consisting of glutarate and 1,2-bis(4-pyridyl)ethane ligands was embedded in PS via a hydrosilylation reaction of vinyl-terminated and H-terminated PSs at 25 °C. The bactericidal activities of the resulting Cu-MOF-embedded PS (PS@Cu-MOF) and the control polymer (PS) were tested against Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. PS@Cu-MOF exhibited more than 80% bactericidal activity toward the tested bacteria at a concentration of 100 μg⋅mL-1 and exhibited a negligible cytotoxicity toward mouse embryonic fibroblasts at the same concentration. Release tests of the Cu(II) ion showed PS@Cu-MOF to be particularly stable in a phosphate-buffered saline solution. Furthermore, its physical and thermal properties, including the phase transition, rheological measurements, swelling ratio, and thermogravimetric profile loss, were similar to those of the control polymer. Moreover, the low cytotoxicity and bactericidal activities of PS@Cu-MOF render it a promising candidate for use in medicinal applications, such as in implants, skin-disease treatment, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea; (K.G.); (S.L.)
| | - Youngmee Kim
- Department of Chemistry and Nano Science, Institute of Nano-Bio Technology, Ewha Womans University, Seoul 03760, Korea; (Y.K.); (S.-H.Y.); (S.-J.K.)
| | - Hyunjun Cho
- Department of Chemistry, Dongguk University, Seoul 04620, Korea;
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea; (K.G.); (S.L.)
| | - So-Hyeon Yang
- Department of Chemistry and Nano Science, Institute of Nano-Bio Technology, Ewha Womans University, Seoul 03760, Korea; (Y.K.); (S.-H.Y.); (S.-J.K.)
| | - Sung-Jin Kim
- Department of Chemistry and Nano Science, Institute of Nano-Bio Technology, Ewha Womans University, Seoul 03760, Korea; (Y.K.); (S.-H.Y.); (S.-J.K.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea; (K.G.); (S.L.)
| |
Collapse
|
11
|
Martínez VR, Aguirre MV, Todaro JS, Lima AM, Stergiopulos N, Ferrer EG, Williams PA. Zinc complexation improves angiotensin II receptor type 1 blockade and in vivo antihypertensive activity of telmisartan. Future Med Chem 2021; 13:13-23. [PMID: 33243020 DOI: 10.4155/fmc-2020-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Angiotensin II receptor blockers were designed as therapeutic agents to block the binding site of the angiotensin II receptor type 1 (AT1R). Methodology: The structure of telmisartan was modified by coordination to the biometal Zn(II), resulting in the compound ZnTelm. Its antihypertensive activity and cellular mechanisms in comparison to telmisartan were studied. Results: Compared with telmisartan, ZnTelm displayed stronger binding to AT1R (binding studies on AT1R-transfected human embryonic kidney cells) and a greater reduction of reactive oxygen species and cytosolic calcium concentration induced by angiotensin II. The antihypertensive activity of the complex (assessed in an N(G)-Nitro-L-arginine methyl ester-induced hypertension model) was significantly higher. ZnTelm also reduced hypertrophy in aortic artery rings and tubular collagen deposition. Conclusion: ZnTelm enhances the AT1R blockade and consequently its antihypertensive effect.
Collapse
Affiliation(s)
- Valeria R Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 no. 1465, La Plata, Argentina
| | - María V Aguirre
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Augusto Martins Lima
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 no. 1465, La Plata, Argentina
| | - Patricia Am Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 no. 1465, La Plata, Argentina
| |
Collapse
|
12
|
Martínez VR, Aguirre MV, Todaro JS, Ferrer EG, Williams PAM. Improvement of the Anticancer Activities of Telmisartan by Zn(II) Complexation and Mechanisms of Action. Biol Trace Elem Res 2020; 197:454-463. [PMID: 31863274 DOI: 10.1007/s12011-019-02013-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
To improve the anticancer activity of telmisartan, its structure has been modified by Zn(II) complexation giving [Zn(Telm)2(H2O)2]·2H2O (ZnTelm). The cytotoxic effect was measured on the human lung cancer cells (A549) and on the lung fibroblast cells (MRC-5). The complex markedly improved anticancer activity (IC50 75 μM) of telmisartan (IC50 125 μM) or ZnSO4 (IC50 225 μM) and did not show toxicity on non-cancer cells, inducing oxidative stress with cellular ROS generation and GSH/GSSG decrease. Apoptosis was the dominant form of cell death for the complex. The Bax/Bcl-XL ratio was significantly increased as well as caspase-3 activation. Both the complex and the ligand bind to bovine serum albumin (BSA) and can be stored and transported by the protein but the interaction with the complex is greater. Telmisartan binds BSA by hydrophobic interactions while the interaction of ZnTelm occurs through van der Waals forces and hydrogen bonding. Therefore, it can be shown that the coordination complex ZnTelm improved the anticancer activity of the antihypertensive drug telmisartan (IC50 75 μM and 125 μM, respectively) and the interaction with BSA. Graphical Abstract Improvement of the anticancer activities of telmisartan by Zn(II) complexation and mechanisms of action. Intrinsic apoptotic pathway: induction ofoxidative stress and regulation of proteins related to apoptosis. The complex interacted with bovine serum albumin (BSA) and can be stored and transported by the protein.
Collapse
Affiliation(s)
- Valeria R Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 N° 1465, La Plata, Argentina
| | - María V Aguirre
- Laboratorio de Investigaciones Bioquímicas. Facultad de Medicina. UNNE, Moreno 1240, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Investigaciones Bioquímicas. Facultad de Medicina. UNNE, Moreno 1240, Corrientes, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 N° 1465, La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 N° 1465, La Plata, Argentina.
| |
Collapse
|
13
|
Podder S, Paul S, Basak P, Xie B, Fullwood NJ, Baldock SJ, Yang Y, Hardy JG, Ghosh CK. Bioactive silver phosphate/polyindole nanocomposites. RSC Adv 2020; 10:11060-11073. [PMID: 35495315 PMCID: PMC9050456 DOI: 10.1039/d0ra01129k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
Materials capable of releasing reactive oxygen species (ROS) can display antibacterial and anticancer activity, and may also have anti-oxidant capacity if they suppress intracellular ROS (e.g. nitric oxide, NO) resulting in anti-inflammatory activity. Herein we report silver phosphate (Ag3PO4)/polyindole (Pln) nanocomposites which display antibacterial, anticancer and anti-inflammatory activity, and have therefore potential for a variety of biomedical applications. Materials capable of releasing reactive oxygen species (ROS) can display antibacterial and anticancer activity, and may also have antioxidant capacity if they suppress intracellular ROS (e.g. nitric oxide, NO) resulting in anti-inflammatory activity.![]()
Collapse
Affiliation(s)
- Soumik Podder
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India .,Department of Electronics and Telecommunication Engineering, C V Raman Global University Mahura Khorda Orissa-752054 India
| | - Samrat Paul
- School of Bioscience and Biomedical Engineering, Jadavpur University Kolkata-700032 India
| | - Piyali Basak
- School of Bioscience and Biomedical Engineering, Jadavpur University Kolkata-700032 India
| | - Bowen Xie
- Institute for Science and Technology in Medicine, School of Medicine, Keele University Stoke-on-Trent ST4 6QG UK
| | - Nigel J Fullwood
- Department of Biomedical and Life Sciences, Lancaster University Lancaster LA1 4YG UK
| | - Sara J Baldock
- Department of Chemistry, Lancaster University Lancaster Lancashire LA1 4YB UK
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University Stoke-on-Trent ST4 6QG UK
| | - John G Hardy
- Department of Chemistry, Lancaster University Lancaster Lancashire LA1 4YB UK .,Materials Science Institute, Lancaster University Lancaster Lancashire LA1 4YB UK
| | - Chandan K Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| |
Collapse
|
14
|
Bhunia A, Bertolasi V, Manna SC. Tridentate Schiff base and 4,4′‐bipyridine coordinated di/polynuclear Cu (II) complexes: Synthesis, crystal structure, DNA/protein binding and catecholase activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Apurba Bhunia
- Department of ChemistryVidyasagar University Midnapore West Bengal 721102 India
| | - Valerio Bertolasi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Centro di Strutturistica DiffrattometricaUniversità di Ferrara Ferrara Italy
| | - Subal Chandra Manna
- Department of ChemistryVidyasagar University Midnapore West Bengal 721102 India
| |
Collapse
|
15
|
Jo JH, Kim HC, Huh S, Kim Y, Lee DN. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans 2019; 48:8084-8093. [PMID: 31033965 DOI: 10.1039/c9dt00791a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) can be utilized as antibacterial agents due to their effective antibacterial activities. Four three-dimensional (3D) Cu-MOFs formulated as [Cu2(Glu)2(μ-L)]·x(H2O) (Glu is glutarate, and L is bpy = 4,4'-bipyridine (1), bpa = 1,2-bis(4-pyridyl)ethane (2), bpe = 1,2-bis(4-pyridyl)ethylene (3), and bpp = 1,2-bis(4-pyridyl)propane (4)) were synthesized by hydrothermal reactions or modified literature methods. Their solid-state structures were slightly modified to increase their hydrolytic stabilities in aqueous solution. Despite the seemingly sufficient void spaces in all the solvent-free MOFs, only the thermally activated form of MOF 2 displayed selective gas uptake ability for CO2 over N2 and H2. The antibacterial activities of the four Cu-MOFs, 1, 2, 3, and 4, were investigated by determining their minimal bactericidal concentration (MBC) values against five strains of bacteria, including E. coli, S. aureus, K. pneumonia, P. aeruginosa, and MRSA, which can be easily met in our daily surrounding environments. Although these Cu-MOFs were found to be structurally very stable in aqueous medium during antibacterial activity tests, they exhibited excellent antibacterial activities against all five kinds of bacteria, including Gram-positive bacteria (S. aureus and MRSA) and Gram-negative bacteria (E. coli, K. pneumonia, and P. aeruginosa), with very low MBCs. The robust 3D frameworks with surface active metal sites rather than the small amount of leached CuII ions may participate more strongly in inactivating various kinds of bacteria and reduce potential cytotoxicity mainly caused by leached metal ions.
Collapse
Affiliation(s)
- Jin Hyoung Jo
- Department of Chemistry and Protein Research Centre for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
| | - Hyun-Chul Kim
- Department of Chemistry and Protein Research Centre for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea. and Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Seong Huh
- Department of Chemistry and Protein Research Centre for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
| | - Youngmee Kim
- Institute of Nano-Bio Technology and Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
16
|
Tetranuclear Schiff base copper(II) complexes: Syntheses, crystal structure, DNA/protein binding and catecholase-like activity. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Bhunia A, Vojtíšek P, Manna SC. DFT/TD-DFT calculation, photophysical properties, DNA/protein binding and catecholase activity of chelating ligand based trigonal bipyramidal copper(II) complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Vasylevskyi S, Holzheu A, Fromm KM. Solid-state structure and antimicrobial and cytotoxicity studies of a cucurbit[6]uril-like Cu 6L 4 constructed from 3,5-bis[(1H-tetrazol-5-yl)methyl]-4H-1,2,4-triazol-4-amine. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1413-1419. [PMID: 30398196 DOI: 10.1107/s2053229618013670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/25/2018] [Indexed: 11/10/2022]
Abstract
3,5-Bis[(1H-tetrazol-5-yl)methyl]-4H-1,2,4-triazol-4-amine (H2L) associates under deprotonation with CuSO4 in aqueous medium to form a new waisted barrel-shaped M6L4 cluster, namely hexaaquatetrakis{μ4-3,5-bis[(1H-tetrazol-5-yl)methyl]-4H-1,2,4-triazol-4-amine}-μ4-sulfato-hexacopper(II) sulfate hydrate, [Cu6(SO4)(C6H6N12)4(H2O)6]SO4·nH2O (n = ∼23) (1). Cluster 1 resembles concave cucurbit[6]uril and has one disordered sulfate anion trapped inside the cage, which additionally stabilizes the Cu6 unit. The CuII ions have either a square-pyramidal or a distorted octahedral geometry. The equatorial positions are filled by N atoms from the L2- ligand, while the axial positions are occupied by coordinated water molecules and O atoms of the sulfate counter-ion. In the solid state, the Cu6 clusters are connected through a large number of hydrogen bonds formed by uncoordinated water molecules and an additional sulfate anion. The compound shows good antimicrobial activity against E. coli tested with the Kirby Bauer approach. In addition, the cell viability towards HeLa and L-929 cells was studied.
Collapse
Affiliation(s)
- Serhii Vasylevskyi
- Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Anja Holzheu
- Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Katharina M Fromm
- Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| |
Collapse
|
19
|
Paul A, Puschmann H, Manna SC. Synthesis, crystal structure and DNA/protein binding of tetranuclear Cu(II) complexes with a double-open-cubane like core framework. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Martínez VR, Aguirre MV, Todaro JS, Piro OE, Echeverría GA, Ferrer EG, Williams PAM. Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol In Vitro 2018; 48:205-220. [PMID: 29408668 DOI: 10.1016/j.tiv.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn2(azil)2(H2O)4]·2H2O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA.
Collapse
Affiliation(s)
- Valeria R Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina
| | - María V Aguirre
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina.
| |
Collapse
|
21
|
Rasheduzzaman M, Moon JH, Lee JH, Nazim UM, Park SY. Telmisartan generates ROS-dependent upregulation of death receptor 5 to sensitize TRAIL in lung cancer via inhibition of autophagy flux. Int J Biochem Cell Biol 2018; 102:20-30. [DOI: 10.1016/j.biocel.2018.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
|
22
|
Hu J, Chen S, Mao R, Liao C, Yang H, Zhao J. Cytotoxicity, dual-targeting apoptosis induction evaluation of multinuclear cu complexes based on pyrazine-benzimidazole derivative. J Inorg Biochem 2018; 186:246-256. [DOI: 10.1016/j.jinorgbio.2018.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022]
|
23
|
Copper(II) complex derived from axial chiral heterocyclic spiro ligand: Crystal structure, characterization and SOD activity. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Mortada B, Matar TA, Sakaya A, Atallah H, Kara Ali Z, Karam P, Hmadeh M. Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorg Chem 2017; 56:4740-4745. [DOI: 10.1021/acs.inorgchem.7b00429] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boushra Mortada
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Tamara Abou Matar
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Aya Sakaya
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Hala Atallah
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Zeinab Kara Ali
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Pierre Karam
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Mohamad Hmadeh
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| |
Collapse
|
25
|
Naveen P, Jain R, Kalaivani P, Shankar R, Dallemer F, Prabhakaran R. Unpredicted formation of copper(ii) complexes containing 2-thiophen-2-yl-1-thiophen-2-ylmethyl-1H-benzoimidazole and their most promising in vitro cytotoxicity in MCF-7 and HeLa cell lines over cisplatin. NEW J CHEM 2017. [DOI: 10.1039/c7nj01273j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An in situ reaction of CuCl2·2H2O, o-phenylenediamine, thiophene-2-carbaldehyde and sodium azide in methanol afforded complex 1a.
Collapse
Affiliation(s)
- P. Naveen
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| | - Ruchi Jain
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560012
- India
| | - P. Kalaivani
- Department of Chemistry
- Nirmala College for Women
- Bharathiar University
- Coimbatore-641 018
- India
| | - R. Shankar
- Department of Physics
- Bharathiar University
- Coimbatore-641046
- India
| | - F. Dallemer
- Laboratoire Chimie Provence-CNRS
- UMR7246
- Université of Aix-Marseille
- Campus Scientifique de Saint-Jérôme
- F-13397 Marseille Cedex 20
| | - R. Prabhakaran
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| |
Collapse
|
26
|
González-Ballesteros N, Pérez-Álvarez D, Rodríguez-Argüelles MC, Henriques MS, Paixão JA, Prado-López S. Synthesis, spectral characterization and X-ray crystallographic study of new copper(I) complexes. Antitumor activity in colon cancer. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
DNA/protein binding, cytotoxicity and catecholase activity studies of a piperazinyl moiety ligand based nickel(II) complex. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)-irbesartan complex: structure-antihypertensive activity relationships in Cu(II)-sartan complexes. J Biol Inorg Chem 2016; 21:851-63. [PMID: 27507083 DOI: 10.1007/s00775-016-1384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV-visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(·)) scavenger (IC50 = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. Experimental and DFT characterization of an irbesartan copper(II) complex has been performed. The complex exhibits low scavenging activity against DPPH(·) and significant growth inhibition of LNCaP and DU 145 prostate cancer cell lines. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. This compound improved the antihypertensive effect of irbesartan. This effect was observed earlier for the mononuclear Cu-candesartan complex, but not in structurally modified sartans forming dinuclear or octanuclear Cu-sartan compounds.
Collapse
|
29
|
Mansour AM, El Bakry EM, Abdel-Ghani NT. Photocatalytic degradation of methylene blue with copper(II) oxide synthesized by thermal decomposition of Flubendazole complexes. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Paul A, Mistri S, Bhunia A, Manna S, Puschmann H, Chandra Manna S. Synthesis, crystal structure, DFT/TDDFT calculation, photophysical properties and DNA binding studies of morpholino moiety ligand based two Cu(ii) complexes in combination with carboxylates. RSC Adv 2016. [DOI: 10.1039/c6ra05570b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Two Cu(II) compounds have been characterized by structure analyses and DFT/TD-DFT calculations. Both the complexes potentially bind with CT-DNA and corresponding binding constants are in the order of 105 M−1.
Collapse
Affiliation(s)
- Aparup Paul
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Soumen Mistri
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Apurba Bhunia
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Soumen Manna
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | | | - Subal Chandra Manna
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| |
Collapse
|
31
|
Cano-Peñalver JL, Griera M, García-Jerez A, Hatem-Vaquero M, Ruiz-Torres MP, Rodríguez-Puyol D, Frutos SD, Rodríguez-Puyol M. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function. Mol Med 2015; 21:873-885. [PMID: 26562149 DOI: 10.2119/molmed.2015.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis-related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage.
Collapse
Affiliation(s)
- José Luis Cano-Peñalver
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea García-Jerez
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Hatem-Vaquero
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - María Piedad Ruiz-Torres
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.,Biomedical Research Foundation and Nephrology Department, Hospital Príncipe de Asturias, Alcalà de Henares, Madrid, Spain
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Rodríguez-Puyol
- Department of Systems Biology, Physiology Unit, Universidad de Alcalà, Alcalà de Henares, Madrid, Spain.,Instituto Reina Sofia de Investigaciόn Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Leite Ferreira B, Brandão P, Dos Santos A, Gai Z, Cruz C, Reis M, Santos T, Félix V. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1061126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Paula Brandão
- TEMA−NRD, Departamento de Engenharia Mecânica, Universidade de Aveiro, Aveiro, Portugal
| | - A.M. Dos Santos
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Z. Gai
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - C. Cruz
- Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil
| | - M.S. Reis
- Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil
| | - T.M. Santos
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - V. Félix
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
- iBiMED, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
33
|
Su H, Sun F, Jia J, He H, Wang A, Zhu G. A highly porous medical metal–organic framework constructed from bioactive curcumin. Chem Commun (Camb) 2015; 51:5774-7. [DOI: 10.1039/c4cc10159f] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly porous bio-MOF, medi-MOF-1, constructed from Zn and curcumin has been successfully synthesized, which exhibits great potential in bioapplications.
Collapse
Affiliation(s)
- Hongmin Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Jiangtao Jia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Hongming He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Aifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Guangshan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
34
|
Zhou YH, Chen LQ, Lv QC, Tao J, Liu XW, Cheng Y. Synthesis, Structure, and Bio-activity of a Copper(II)-OH2Complex based onN,N′-Bis(2-quinolinylmethyl)amantadine. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|