1
|
Haak J, Cutsail GE. Distinguishing between aquo and hydroxo coordination in molecular copper complexes by 1H and 17O ENDOR spectroscopy. Dalton Trans 2025; 54:728-744. [PMID: 39569816 DOI: 10.1039/d4dt02708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Aquo and hydroxo ligands play an essential role in the chemistry of many copper enzymes and small molecule catalysts. The formation of a series of copper complexes with H2O and OH- ligands in various positions, including [Cu(bpy)(OAc)(H2O)2,ax]+ (Cu-I), [Cu(bpy)(OH)2,eq(HxO)2,ax] (Cu-III), [Cu(OH)4,eq(HxO)2,ax]2- (Cu-IV), [Cu(bpy)(H2O)2,eq(H2O)2,ax]2+ (Cu-V) and [Cu(bpy)2(H2O)ax]2+ (Cu-VI), were investigated through Electron Paramagnetic Resonance (EPR) and UV-Vis spectroscopy in aqueous copper bipyridine solutions in the dependence of the pH and the copper-to-bipyridine ratio (bpy = 2,2'-bipyridine). 2H- and 17O-enrichment of the copper complexes allowed us to determine the 1H and 17O nuclear hyperfine interactions of their HxO ligands via Q-band Electron Nuclear Double Resonance (ENDOR) spectroscopy. These techniques gave direct insight into the metal-ligand covalencies and geometries and were further supported by Density Functional Theory (DFT) calculations. It is shown that 1H and 17O ENDOR spectroscopy can aid in (1) determining the coordination position, thereby differentiating between equatorial and axial HxO ligands and (2) distinguishing equatorial aqua and hydroxo ligands, particularly through their anisotropic dipolar components. We further studied the influence of trans coordinating ligands on the hyperfine parameters of aquo and hydroxo ligands, enabled through contrasting the coordination environments in the examined complexes, supported by quantum chemical computations.
Collapse
Affiliation(s)
- Julia Haak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45117 Essen, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45117 Essen, Germany
| |
Collapse
|
2
|
Kuilya H, Das P, Basak S, Sarma D, Mazumdar P, Choudhury D, Kalita A. Effect of ligand substituents on the reactivity pathways of copper(II) complexes towards electrocatalytic water oxidation. Dalton Trans 2024; 53:17547-17553. [PMID: 39390912 DOI: 10.1039/d4dt01852d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The electrocatalytic water oxidation activity of three copper(II) complexes [Cu(L1H)(L1)](ClO4) (1), [Cu(L2H)(L2)(H2O)](ClO4) (2) and [Cu(L3H)(L2)](ClO4) (3) with aryl oxime ligands L1H, L2H and L3H [L1H = 1-(pyridin-2-yl)methanone oxime, L2H = 1-(pyridin-2-yl)ethanone oxime and L3H = 1-(pyridin-2-yl)propanone oxime] was investigated. All the three ligands have in common a pyridyl group attached to the carbon centre of the oxime moiety and differ in the second substituent attached to the carbon centre. Electrochemical investigation of the catalytic activity of complexes 1, 2 and 3 shows that the nature of the substituent attached to the carbon centre has an influence on the catalytic pathway and overall catalytic activity of these complexes.
Collapse
Affiliation(s)
- Hemrupa Kuilya
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Pranjal Das
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Swati Basak
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Debajit Sarma
- Department of Chemistry, IIT Patna, Patna 801103, Bihar, India
| | - Pradyumna Mazumdar
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Diganta Choudhury
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Apurba Kalita
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| |
Collapse
|
3
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
4
|
Khan S, Sengupta S, Khan MA, Sk MP, Jana NC, Naskar S. Electrocatalytic Water Oxidation by Mononuclear Copper Complexes of Bis-amide Ligands with N4 Donor: Experimental and Theoretical Investigation. Inorg Chem 2024; 63:1888-1897. [PMID: 38232755 DOI: 10.1021/acs.inorgchem.3c03512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The present work describes electrocatalytic water oxidation of three monomeric copper complexes [CuII(L1)] (1), [CuII(L2)(H2O)] (2), and [CuII(L3)] (3) with bis-amide tetradentate ligands: L1 = N,N'-(1,2-phenylene)dipicolinamide, L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(pyrazine-2-carboxamide), L3 = N,N'-(1,2-phenylene)bis(pyrazine-2-carboxamide), for the production of molecular oxygen by the oxidation of water at pH 13.0. Ligands and all complexes have been synthesized and characterized by single crystal XRD, analytical, and spectroscopic techniques. X-ray crystallographic data show that the ligand coordinates to copper in a dianionic fashion through deprotonation of two -NH protons. Cyclic voltammetry study shows a reversible copper-centered redox couple with one ligand-based oxidation event. The electrocatalytic water oxidation occurs at an onset potential of 1.16 (overpotential, η ≈ 697 mV), 1.2 (η ≈ 737 mV), and 1.23 V (η ≈ 767 mV) for 1, 2, and 3 respectively. A systematic variation of the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. The results of the theoretical (density functional theory) studies show the stepwise ligand-centered oxidation process and the formation of the O-O bond during water oxidation passes through the water nucleophilic attack for all the copper complexes. At pH = 13, the turnover frequencies have been experimentally obtained as 88, 1462, and 10 s-1 (peak current measurements) for complexes 1, 2, and 3, respectively. Production of oxygen gas during controlled potential electrolysis was detected by gas chromatography.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Md Adnan Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Narayan Ch Jana
- School of Chemical Sciences, NISER, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| |
Collapse
|
5
|
Yu K, Wang T, Sun Y, Kang M, Wang X, Zhu D, Xue S, Shen J, Zhang Q, Liu J. Impact of the hybridization form of the coordinated nitrogen atom on the electrocatalytic water oxidation performance of copper complexes with pentadentate amine-pyridine ligands. Dalton Trans 2024; 53:612-618. [PMID: 38063675 DOI: 10.1039/d3dt03185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The field of molecular catalysts places a strong emphasis on the connection between the ligand structure and its catalytic performance. Herein, we changed the type of coordinated nitrogen atom in pentadentate amine-pyridine ligands to explore the impact of its hybridization form on the water oxidation performance of copper complexes. In the electrochemical tests, the copper complex bearing dipyridine-triamine displayed an apparently higher rate constant of 4.97 s-1, while the copper complex with tripyridine-diamine demonstrated overpotential reduction by 56 mV and better long-term electrolytic stability.
Collapse
Affiliation(s)
- Kaishan Yu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, P. R. China.
| | - Tao Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Yue Sun
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Mei Kang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Xinxin Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Dingwei Zhu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Siyi Xue
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Qijian Zhang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Jinxuan Liu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, P. R. China.
| |
Collapse
|
6
|
Kulesa KM, Padilha DS, Thapa B, Mazumder S, Losovyj Y, Schlegel HB, Scarpellini M, Verani CN. A bioinspired cobalt catalyst based on a tripodal imidazole/pyridine platform capable of water reduction and oxidation. J Inorg Biochem 2023; 242:112162. [PMID: 36841008 DOI: 10.1016/j.jinorgbio.2023.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The prototypical drug carrier [CoII(L1)Cl]PF6 (1), where L1 is a tripodal amine bound to pyridine and methyl-imidazoles, had its electrocatalytic water splitting activity studied under different pH conditions. This species contains a high-spin 3d7 CoII metal center, and is capable of generating both H2 from water reduction and O2 from water oxidation. Turnover numbers reach 390 after 3 h for water reduction. Initial water oxidation activity is molecular, with TONs of 71 at pH 7 and 103 at pH 11.5. The results reveal that species 1 can undergo several redox transformations, including reduction to the 3d8 CoI species that precedes a LS3d6 hydride for water reduction, as well as nominal CoIVO and CoIII-OOH species required for water oxidation. Post-catalytic analyses confirm the molecular nature of reduction and support initial molecular activity for oxidation.
Collapse
Affiliation(s)
- Krista M Kulesa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Diego S Padilha
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-611, Brazil
| | - Bishnu Thapa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, Bloomington, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | - Marciela Scarpellini
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-611, Brazil.
| | - Cláudio N Verani
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
7
|
den Boer D, Konovalov AI, Siegler MA, Hetterscheid DGH. Unusual Water Oxidation Mechanism via a Redox-Active Copper Polypyridyl Complex. Inorg Chem 2023; 62:5303-5314. [PMID: 36989161 PMCID: PMC10091478 DOI: 10.1021/acs.inorgchem.3c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 03/30/2023]
Abstract
To improve Cu-based water oxidation (WO) catalysts, a proper mechanistic understanding of these systems is required. In contrast to other metals, high-oxidation-state metal-oxo species are unlikely intermediates in Cu-catalyzed WO because π donation from the oxo ligand to the Cu center is difficult due to the high number of d electrons of CuII and CuIII. As a consequence, an alternative WO mechanism must take place instead of the typical water nucleophilic attack and the inter- or intramolecular radical-oxo coupling pathways, which were previously proposed for Ru-based catalysts. [CuII(HL)(OTf)2] [HL = Hbbpya = N,N-bis(2,2'-bipyrid-6-yl)amine)] was investigated as a WO catalyst bearing the redox-active HL ligand. The Cu catalyst was found to be active as a WO catalyst at pH 11.5, at which the deprotonated complex [CuII(L-)(H2O)]+ is the predominant species in solution. The overall WO mechanism was found to be initiated by two proton-coupled electron-transfer steps. Kinetically, a first-order dependence in the catalyst, a zeroth-order dependence in the phosphate buffer, a kinetic isotope effect of 1.0, a ΔH⧧ value of 4.49 kcal·mol-1, a ΔS⧧ value of -42.6 cal·mol-1·K-1, and a ΔG⧧ value of 17.2 kcal·mol-1 were found. A computational study supported the formation of a Cu-oxyl intermediate, [CuII(L•)(O•)(H2O)]+. From this intermediate onward, formation of the O-O bond proceeds via a single-electron transfer from an approaching hydroxide ion to the ligand. Throughout the mechanism, the CuII center is proposed to be redox-inactive.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Andrey I. Konovalov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
8
|
Ruan G, Fridman N, Maayan G. Borate Buffer as a Key Player in Cu-Based Homogeneous Electrocatalytic Water Oxidation. Chemistry 2022; 28:e202202407. [PMID: 36040755 PMCID: PMC9828671 DOI: 10.1002/chem.202202407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Borate buffer was found to have both structural and functional roles within a low-cost tri-copper electrocatalyst for homogeneous water oxidation that exhibits a high turnover frequency of 310 s-1 . The borate buffer was shown to facilitate the catalytic activity by both bridging the three Cu ions and participating in O-O bond formation. Phosphate and acetate buffers did not show such roles, making borate a unique player in this catalytic system.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion CityHaifa3200008Israel
| | - Natalia Fridman
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion CityHaifa3200008Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion CityHaifa3200008Israel
| |
Collapse
|
9
|
Huang Q, Chen J, Luan P, Ding C, Li C. Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts. Chem Sci 2022; 13:8797-8803. [PMID: 35975146 PMCID: PMC9350663 DOI: 10.1039/d2sc02213c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The rational design of efficient catalysts for electrochemical water oxidation highly depends on the understanding of reaction pathways, which still remains a challenge. Herein, mononuclear and binuclear cobalt phthalocyanine (mono-CoPc and bi-CoPc) with a well-defined molecular structure are selected as model electrocatalysts to study the water oxidation mechanism. We found that bi-CoPc on a carbon support (bi-CoPc/carbon) shows an overpotential of 357 mV at 10 mA cm-2, much lower than that of mono-CoPc/carbon (>450 mV). Kinetic analysis reveals that the rate-determining step (RDS) of the oxygen evolution reaction (OER) over both electrocatalysts is a nucleophilic attack process involving a hydroxy anion (OH-). However, the substrate nucleophilically attacked by OH- for bi-CoPc is the phthalocyanine cation-radical species (CoII-Pc-Pc˙+-CoII-OH) that is formed from the oxidation of the phthalocyanine ring, while cobalt oxidized species (Pc-CoIII-OH) is involved in mono-CoPc as evidenced by the operando UV-vis spectroelectrochemistry technique. DFT calculations show that the reaction barrier for the nucleophilic attack of OH- on CoII-Pc-Pc˙+-CoII-OH is 1.67 eV, lower than that of mono-CoPc with Pc-CoIII-OH nucleophilically attacked by OH- (1.78 eV). The good agreement between the experimental and theoretical results suggests that bi-CoPc can effectively stabilize the accumulated oxidative charges in the phthalocyanine ring, and is thus bestowed with a higher OER performance.
Collapse
Affiliation(s)
- Qing'e Huang
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peng Luan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Bika P, Ioannidis N, Gatou MA, Sanakis Y, Dallas P. Copper Coordination and the Induced Morphological Changes in Covalent Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3082-3089. [PMID: 35239353 DOI: 10.1021/acs.langmuir.1c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we reveal the coordination of copper ions absorbed by a series of covalent organic frameworks. The frameworks were synthesized through the nucleophilic substitution of either cyanuric chloride or phosphonitrilic chloride trimer by 4,4'-bipyridine, and they were utilized as absorbers for the removal of copper ions from aqueous solutions. The exfoliated counterpart of the layered network was compared to the bulk materials in terms of the copper retention capacity and efficiency. The ion absorption capacity of copper ranged from 100 to 290 mg/g depending on the morphology and chemical structure of the framework. As evidenced by the SEM and XRD analysis, the copper absorption induced certain morphological changes in the networks. EPR spectroscopy revealed the key finding of this study: the trigonal bipyramidal configuration of the copper ions in their divalent state, coordinated with the nitrogen of the core units, 4,4'-bipyridine, and chlorine ions. The analysis of the thoroughgoing experiments bridges the gap between coordination molecular chemistry and the field of covalent organic frameworks. EPR explores how the unique trigonal bipyramidal coordination could be suppressed in the end by the environment and, more specifically, by the addition of glycerol to the aqueous dispersions of the covalent organic frameworks.
Collapse
Affiliation(s)
- Panagiota Bika
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, 15341 Athens, Greece
| | - Nikolaos Ioannidis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, 15341 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou Str., GR-15780 Zografou, Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, 15341 Athens, Greece
| | - Panagiotis Dallas
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, 15341 Athens, Greece
| |
Collapse
|
11
|
Hsu WC, Wang YH. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. CHEMSUSCHEM 2022; 15:e202102378. [PMID: 34881515 DOI: 10.1002/cssc.202102378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
The utilization of earth-abundant low-toxicity metal ions in the construction of highly active and efficient molecular catalysts promoting the water oxidation reaction is important for developing a sustainable artificial energy cycle. However, the kinetic and thermodynamic properties of the currently available molecular water oxidation catalysts (MWOCs) have not been comprehensively investigated. This Review summarizes the current status of MWOCs based on first-row transition metals in terms of their turnover frequency (TOF, a kinetic property) and overpotential (η, a thermodynamic property) and uses the relationship between log(TOF) and η to assess catalytic performance. Furthermore, the effects of the same ligand classes on these MWOCs are discussed in terms of TOF and η, and vice versa. The collective analysis of these relationships provides a metric for the direct comparison of catalyst systems and identifying factors crucial for catalyst design.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
12
|
den Hartog S, Neukermans S, Samanipour M, Ching HV, Breugelmans T, Hubin A, Ustarroz J. Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Bera M, Keshari K, Bhardwaj A, Gupta G, Mondal B, Paria S. Electrocatalytic Water Oxidation Activity of Molecular Copper Complexes: Effect of Redox-Active Ligands. Inorg Chem 2022; 61:3152-3165. [PMID: 35119860 DOI: 10.1021/acs.inorgchem.1c03537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two molecular copper(II) complexes, (NMe4)2[CuII(L1)] (1) and (NMe4)2[CuII(L2)] (2), ligated by a N2O2 donor set of ligands [L1 = N,N'-(1,2-phenylene)bis(2-hydroxy-2-methylpropanamide), and L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(2-hydroxy-2-methylpropanamide)] have been synthesized and thoroughly characterized. An electrochemical study of 1 in a carbonate buffer at pH 9.2 revealed a reversible copper-centered redox couple at 0.51 V, followed by two ligand-based oxidation events at 1.02 and 1.25 V, and catalytic water oxidation at an onset potential of 1.28 V (overpotential of 580 mV). The electron-rich nature of the ligand likely supports access to high-valent copper species on the CV time scale. The results of the theoretical electronic structure investigation were quite consistent with the observed stepwise ligand-centered oxidation process. A constant potential electrolysis experiment with 1 reveals a catalytic current density of >2.4 mA cm-2 for 3 h. A one-electron-oxidized species of 1, (NMe4)[CuIII(L1)] (3), was isolated and characterized. Complex 2, on the contrary, revealed copper and ligand oxidation peaks at 0.505, 0.90, and 1.06 V, followed by an onset water oxidation (WO) at 1.26 V (overpotential of 560 mV). The findings show that the ligand-based oxidation reactions strongly depend upon the ligand's electronic substitution; however, such effects on the copper-centered redox couple and catalytic WO are minimal. The energetically favorable mechanism has been established through the theoretical calculation of stepwise reaction energies, which nicely explains the experimentally observed electron transfer events. Furthermore, as revealed by the theoretical calculations, the O-O bond formation process occurs through a water nucleophilic attack mechanism with an easily accessible reaction barrier. This study demonstrates the importance of redox-active ligands in the development of molecular late-transition-metal electrocatalysts for WO reactions.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akhil Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhaskar Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
14
|
Oladipupo O, Brown SR, Lamb RW, Gray JL, Cameron CG, DeRegnaucourt AR, Ward NA, Hall JF, Xu Y, Petersen CM, Qu F, Shrestha AB, Thompson MK, Bonizzoni M, Webster CE, McFarland SA, Kim Y, Papish ET. Light-responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochem Photobiol 2022; 98:102-116. [PMID: 34411308 PMCID: PMC8810589 DOI: 10.1111/php.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 μM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.
Collapse
Affiliation(s)
- Olaitan Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Spenser R. Brown
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Robert W. Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Jessica L. Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Alexa R. DeRegnaucourt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nicholas A. Ward
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - James Fletcher Hall
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yifei Xu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Courtney M. Petersen
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ambar B. Shrestha
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew K. Thompson
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
15
|
Water oxidation and oxygen reduction reactions: A mechanistic perspective. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Yu K, Sun Y, Zhu D, Xu Z, Wang J, Shen J, Zhang Q, Zhao W. A low-cost commercial Cu( ii)–EDTA complex for electrocatalytic water oxidation in neutral aqueous solution. Chem Commun (Camb) 2022; 58:12835-12838. [DOI: 10.1039/d2cc04846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low-cost commercial Cu complex [Cu(EDTA)(H2O)] is developed as a molecular catalyst for OER with high efficiency and durable stability.
Collapse
Affiliation(s)
- Kaishan Yu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yue Sun
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dingwei Zhu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Ziyi Xu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jiayi Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qijian Zhang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Wei Zhao
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
17
|
Gil‐Sepulcre M, Garrido‐Barros P, Oldengott J, Funes‐Ardoiz I, Bofill R, Sala X, Benet‐Buchholz J, Llobet A. Consecutive Ligand‐Based Electron Transfer in New Molecular Copper‐Based Water Oxidation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcos Gil‐Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Pablo Garrido‐Barros
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Jan Oldengott
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Ignacio Funes‐Ardoiz
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universitad de La Rioja 26006 Logroño Spain
| | - Roger Bofill
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Valles 08193 Barcelona Spain
| | - Xavier Sala
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Valles 08193 Barcelona Spain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Valles 08193 Barcelona Spain
| |
Collapse
|
18
|
Xu Z, Zheng Z, Chen Q, Wang J, Yu K, Xia X, Shen J, Zhang Q. Electrocatalytic water oxidation by a water-soluble copper complex with a pentadentate amine-pyridine ligand. Dalton Trans 2021; 50:10888-10895. [PMID: 34308951 DOI: 10.1039/d1dt01821c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble copper complex with a diamine-tripyridine ligand was synthesized successfully and well characterized. It was found to be catalytically active for the water oxidation reaction under basic conditions. Based on the electrochemical test result, this copper complex displayed an apparent rate constant (kcat) of 0.81 s-1 for the oxygen evolution reaction in 0.1 M phosphate buffer solution at pH 11.0. More importantly, the copper complex remained stable over 3 h of a bulk electrolysis experiment at 1.60 V with a Faradaic efficiency of 90.7% for O2 evolution, and the decrement of current density was only 1.9%. These results suggest that the pentadentate copper complex is an efficient and durable homogeneous Earth-abundant electrocatalyst for water oxidation.
Collapse
Affiliation(s)
- Ziyi Xu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Zilin Zheng
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Qi Chen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Jiayi Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Kaishan Yu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Xin Xia
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China. and Changshu Research Institute, Dalian University of Technology, Changshu 215500, P. R. China
| | - Qijian Zhang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| |
Collapse
|
19
|
Gorantla KR, Mallik BS. Mechanistic Insight into the O 2 Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. J Phys Chem A 2021; 125:6461-6473. [PMID: 34282907 DOI: 10.1021/acs.jpca.1c06008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mononuclear complexes ([(bztpen)Cu] (BF4)2 (bztpen = N-benzyl-N,N',N'-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH2)] (BF4)2 (dbzbpen = N,N'-dibenzyl-N,N'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O2 evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)]2+ occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]+). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]2+) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]2+) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
20
|
Gil-Sepulcre M, Garrido-Barros P, Oldengott J, Funes-Ardoiz I, Bofill R, Sala X, Benet-Buchholz J, Llobet A. Consecutive Ligand-Based Electron Transfer in New Molecular Copper-Based Water Oxidation Catalysts. Angew Chem Int Ed Engl 2021; 60:18639-18644. [PMID: 34015172 PMCID: PMC8456863 DOI: 10.1002/anie.202104020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Indexed: 11/16/2022]
Abstract
Water oxidation to dioxygen is one of the key reactions that need to be mastered for the design of practical devices based on water splitting with sunlight. In this context, water oxidation catalysts based on first‐row transition metal complexes are highly desirable due to their low cost and their synthetic versatility and tunability through rational ligand design. A new family of dianionic bpy‐amidate ligands of general formula H2LNn− (LN is [2,2′‐bipyridine]‐6,6′‐dicarboxamide) substituted with phenyl or naphthyl redox non‐innocent moieties is described. A detailed electrochemical analysis of [(L4)Cu]2− (L4=4,4′‐(([2,2′‐bipyridine]‐6,6′‐dicarbonyl)bis(azanediyl))dibenzenesulfonate) at pH 11.6 shows the presence of a large electrocatalytic wave for water oxidation catalysis at an η=830 mV. Combined experimental and computational evidence, support an all ligand‐based process with redox events taking place at the aryl‐amide groups and at the hydroxido ligands.
Collapse
Affiliation(s)
- Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jan Oldengott
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ignacio Funes-Ardoiz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universitad de La Rioja, 26006, Logroño, Spain
| | - Roger Bofill
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Valles, 08193, Barcelona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Valles, 08193, Barcelona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Valles, 08193, Barcelona, Spain
| |
Collapse
|
21
|
Ruan G, Ghosh P, Fridman N, Maayan G. A Di-Copper-Peptoid in a Noninnocent Borate Buffer as a Fast Electrocatalyst for Homogeneous Water Oxidation with Low Overpotential. J Am Chem Soc 2021; 143:10614-10623. [PMID: 34237937 DOI: 10.1021/jacs.1c03225] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Water electrolysis is a promising approach toward low-cost renewable fuels; however, the high overpotential and slow kinetics limit its applicability. Studies suggest that either dinuclear copper (Cu) centers or the use of borate buffer can lead to efficient catalysis. We previously demonstrated the ability of peptoids-N-substituted glycine oligomers-to stabilize high-oxidation-state metal ions and to form self-assembled di-copper-peptoid complexes. Capitalizing on these features herein we report on a unique Cu-peptoid duplex, Cu2(BEE)2, that is a fast and stable homogeneous electrocatalyst for water oxidation in borate buffer at pH 9.35, with low overpotential and a high turnover frequency of 129 s-1 (peak current measurements) or 5503 s-1 (FOWA); both are the highest reported for Cu-based water electrocatalysts to date. BEE is a peptoid trimer having one 2,2'-bipyridine ligand and two ethanolic groups, easily synthesized on solid support. Cu2(BEE)2 was characterized by single-crystal X-ray diffraction and various spectroscopic and electrochemical techniques, demonstrating its ability to maintain stable in four cycles of controlled potential electrolysis, leading to a high overall turnover number of 51.4 in a total of 2 h. Interestingly, the catalytic activity of control complexes having only one ethanolic side chain is 2 orders of magnitude lower than that of Cu2(BEE)2. On the basis of this comparison and on mechanistic studies, we propose that the ethanolic side chains and the borate buffer have significant roles in the high stability and catalytic activity of Cu2(BEE)2; the -OH groups facilitate protons transfer, while the borate species enables oxygen transfer toward O-O bond formation.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.,The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
22
|
Kondo M, Tatewaki H, Masaoka S. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem Soc Rev 2021; 50:6790-6831. [PMID: 33977932 DOI: 10.1039/d0cs01442g] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four-electron oxidation of water (2H2O → O2 + 4H+ + 4e-) is considered the main bottleneck in artificial photosynthesis. In nature, this reaction is catalysed by a Mn4CaO5 cluster embedded in the oxygen-evolving complex of photosystem II. Ruthenium-based complexes have been successful artificial molecular catalysts for mimicking this reaction. However, for practical and large-scale applications in the future, molecular catalysts that contain earth-abundant first-row transition metal ions are preferred owing to their high natural abundance, low risk of depletion, and low costs. In this review, the frontier of water oxidation reactions mediated by first-row transition metal complexes is described. Special attention is paid towards the design of molecular structures of the catalysts and their reaction mechanisms, and these factors are expected to serve as guiding principles for creating efficient and robust molecular catalysts for water oxidation using ubiquitous elements.
Collapse
Affiliation(s)
- Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan
| | - Hayato Tatewaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Chattopadhyay S, Ghatak A, Ro Y, Guillot R, Halime Z, Aukauloo A, Dey A. Ligand Radical Mediated Water Oxidation by a Family of Copper o-Phenylene Bis-oxamidate Complexes. Inorg Chem 2021; 60:9442-9455. [PMID: 34137590 DOI: 10.1021/acs.inorgchem.1c00546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the reactivity landscape for the activation of water until the formation of the O-O bond and O2 release in molecular chemistry is a decisive step in guiding the elaboration of cost-effective catalysts for the oxygen-evolving reaction (OER). Copper(II) complexes have recently caught the attention of chemists as catalysts for the 4e-/4H+ water oxidation process. While a copper(IV) intermediate has been proposed as the reactive intermediate species, no spectroscopic signature has been reported so far. Copper(III) ligand radical species have also been formulated and supported by theoretical studies. We found, herein, that the reactivity sequence for the water oxidation with a family of Copper(II) o-phenylene bis-oxamidate complexes is a function of the substitution pattern on the periphery of the aromatic ring. In-situ EPR, FTIR, and rR spectroelectrochemical studies helped to sequence the elementary electrochemical and chemical events leading toward the O2 formation selectively at the copper center. EPR and FTIR spectroelectrochemistry suggests that ligand-centered oxidations are preferred over metal-centered oxidations. rR spectroelectrochemical study revealed the accumulation of a bis-imine bound copper(II) superoxide species, as the reactive intermediate, under catalytic turnover, which provides the evidence for the O-O bond formation during OER.
Collapse
Affiliation(s)
- Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Youngju Ro
- Université Paris Saclay, ICMMO CNRS 8182, F-91405 Orsay, Cedex, France
| | - Régis Guillot
- Université Paris Saclay, ICMMO CNRS 8182, F-91405 Orsay, Cedex, France
| | - Zakaria Halime
- Université Paris Saclay, ICMMO CNRS 8182, F-91405 Orsay, Cedex, France
| | - Ally Aukauloo
- Université Paris Saclay, ICMMO CNRS 8182, F-91405 Orsay, Cedex, France.,Institute for integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay, UMR 9198, F-91191 Gif-sur-Yvette, France
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
24
|
Geer AM, Musgrave III C, Webber C, Nielsen RJ, McKeown BA, Liu C, Schleker PPM, Jakes P, Jia X, Dickie DA, Granwehr J, Zhang S, Machan CW, Goddard WA, Gunnoe TB. Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ana M. Geer
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles Musgrave III
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher Webber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert J. Nielsen
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Bradley A. McKeown
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - P. Philipp M. Schleker
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
- Institute of Energy and Climate Research - Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Jakes
- Institute of Energy and Climate Research - Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Josef Granwehr
- Institute of Energy and Climate Research - Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles W. Machan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
25
|
Ali A, Prakash D, Majumder P, Ghosh S, Dutta A. Flexible Ligand in a Molecular Cu Electrocatalyst Unfurls Bidirectional O 2/H 2O Conversion in Water. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Afsar Ali
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | - Divyansh Prakash
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | - Piyali Majumder
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research (TIFR), Hyderabad, Telengana 500046, India
| | - Arnab Dutta
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
- Chemistry Department, Indian Institute of Technology Bombay, Powai 400076, India
| |
Collapse
|
26
|
Shi NN, Xie WJ, Zhang DM, Fan YH, Cui LS, Wang M. A mononuclear copper complex as bifunctional electrocatalyst for CO2 reduction and water oxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Zhang L, Mathew S, Hessels J, Reek JNH, Yu F. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:234-250. [PMID: 32991076 PMCID: PMC7820963 DOI: 10.1002/cssc.202001876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Collapse
Affiliation(s)
- Lu‐Hua Zhang
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Simon Mathew
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joeri Hessels
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Fengshou Yu
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
28
|
Gatto G, De Palo A, Carrasco AC, Pizarro AM, Zacchini S, Pampaloni G, Marchetti F, Macchioni A. Modulating the water oxidation catalytic activity of iridium complexes by functionalizing the Cp*-ancillary ligand: hints on the nature of the active species. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02306j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comparative study on the behavior of a series of iridium dimeric WOCs with modified Cp* ligands reveals the key role played by the variable substituent.
Collapse
Affiliation(s)
- Giordano Gatto
- Department of Chemistry, Biology and Biotechnology and CIRCC
- University of Perugia
- 06123 Perugia
- Italy
| | - Alice De Palo
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | | | | | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- 40136 Bologna
- Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
29
|
Domestici C, Tensi L, Zaccaria F, Kissimina N, Valentini M, D'Amato R, Costantino F, Zuccaccia C, Macchioni A. Molecular and heterogenized dinuclear Ir-Cp* water oxidation catalysts bearing EDTA or EDTMP as bridging and anchoring ligands. Sci Bull (Beijing) 2020; 65:1614-1625. [PMID: 36659037 DOI: 10.1016/j.scib.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/21/2023]
Abstract
The development of efficient water oxidation catalysts (WOCs) is of key importance in order to drive sustainable reductive processes aimed at producing renewable fuels. Herein, two novel dinuclear complexes, [(Cp*Ir)2(μ-κ3-O,N,O-H4-EDTMP)] (Ir-H4-EDTMP, H4-EDTMP4- = ethylenediamine tetra(methylene phosphonate)) and [(Cp*Ir)2(μ-κ3-O,N,O-EDTA)] (Ir-EDTA, EDTA4- = ethylenediaminetetraacetate), were synthesized and completely characterized in solution, by multinuclear and multidimensional NMR spectroscopy, and in the solid state, by single crystal X-Ray diffraction. They were supported onto rutile TiO2 nanocrystals obtaining Ir-H4-EDTMP@TiO2 and Ir-EDTA@TiO2 hybrid materials. Both molecular complexes and hybrid materials were found to be efficient catalysts for WO driven by NaIO4, providing almost quantitative yields, and TON values only limited by the amount of NaIO4 used. As for the molecular catalysts, Ir-H4-EDTMP (TOF up to 184 min-1) exhibited much higher activity than Ir-EDTA (TOF up to 19 min-1), likely owing to the higher propensity of the former to generate a coordination vacancy through the dissociation of a Ir-OP bond (2.123 Å, significantly longer than Ir-OC, 2.0913 Å), which is a necessary step to activate these saturated complexes. Ir-H4-EDTMP@TiO2 (up to 33 min-1) and Ir-EDTA@TiO2 (up to 41 min-1) hybrid materials showed similar activity that was only marginally reduced in the second and third catalytic runs carried out after having separated the supernatant, which did not show any sign of activity, instead. The observed TOF values for hybrid materials are higher than those reported for analogous systems deriving from heterogenized mononuclear complexes. This suggests that supporting dinuclear molecular precursors could be a successful strategy to obtain efficient heterogenized water oxidation catalysts.
Collapse
Affiliation(s)
- Chiara Domestici
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy
| | - Leonardo Tensi
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy
| | - Francesco Zaccaria
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| | - Nade Kissimina
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy; École Supérieure d'Ingénieurs de Rennes, University of Rennes 1, Rennes 35042, France
| | | | - Roberto D'Amato
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| |
Collapse
|
30
|
Yao W, DeRegnaucourt AR, Shrewsbury ED, Loadholt KH, Silprakob W, Qu F, Brewster TP, Papish ET. Reinvestigating Catalytic Alcohol Dehydrogenation with an Iridium Dihydroxybipyridine Catalyst. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenzhi Yao
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Alexa R. DeRegnaucourt
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Emily D. Shrewsbury
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Kylie H. Loadholt
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Weerachai Silprakob
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Timothy P. Brewster
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
31
|
Garrido-Barros P, Moonshiram D, Gil-Sepulcre M, Pelosin P, Gimbert-Suriñach C, Benet-Buchholz J, Llobet A. Redox Metal-Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. J Am Chem Soc 2020; 142:17434-17446. [PMID: 32935982 DOI: 10.1021/jacs.0c06515] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.
Collapse
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDE A Nanociencia), Calle Faraday, 9, 28049 Madrid, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Primavera Pelosin
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
32
|
de Carvalho AB, Diogo GM, Correa RS, Taylor JG. Synthesis and Molecular Structure of a Chiral Bipyridine-Menthol Ether. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620050121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Goralski ST, Manes TA, Lumsden SEA, Lynch VM, Rose MJ. Divergent Solution and Solid-State Structures of Mono- and Dinuclear Nickel(II) Pyridone Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Goralski
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Taylor A. Manes
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Simone E. A. Lumsden
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J. Rose
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Brandl T, Kerzig C, Le Pleux L, Prescimone A, Wenger OS, Mayor M. Improved Photostability of a Cu I Complex by Macrocyclization of the Phenanthroline Ligands. Chemistry 2020; 26:3119-3128. [PMID: 31794079 PMCID: PMC7079024 DOI: 10.1002/chem.201904754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/30/2019] [Indexed: 11/12/2022]
Abstract
The development of molecular materials for conversion of solar energy into electricity and fuels is one of the most active research areas, in which the light absorber plays a key role. While copper(I)‐bis(diimine) complexes [CuI(L)2]+ are considered as potent substitutes for [RuII(bpy)3]2+, they exhibit limited structural integrity as ligand loss by substitution can occur. In this article, we present a new concept to stabilize copper bis(phenanthroline) complexes by macrocyclization of the ligands which are preorganized around the CuI ion. Using oxidative Hay acetylene homocoupling conditions, several CuI complexes with varying bridge length were prepared and analyzed. Absorption and emission properties are assessed; rewardingly, the envisioned approach was successful since the flexible 1,4‐butadiyl‐bridged complex does show enhanced MLCT absorption and emission, as well as improved photostability upon irradiation with a blue LED compared to a reference complex.
Collapse
Affiliation(s)
- Thomas Brandl
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Loïc Le Pleux
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Karim S, Chakraborty A, Samanta D, Zangrando E, Ghosh T, Das D. A dinuclear iron complex as an efficient electrocatalyst for homogeneous water oxidation reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00011f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel dinuclear iron complex of a Schiff base ligand has been exploited as a homogeneous water splitting electrocatalyst having possible real life application in renewable energy.
Collapse
Affiliation(s)
- Suhana Karim
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| | | | | | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- Italy
| | - Totan Ghosh
- Netaji Subhas Institute of Technology
- Patna
- India
| | - Debasis Das
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
36
|
Fagiolari L, Zaccaria F, Costantino F, Vivani R, Mavrokefalos CK, Patzke GR, Macchioni A. Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Trans 2020; 49:2468-2476. [DOI: 10.1039/c9dt04306c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Doping low-cost LDHs with noble metal atoms represents a promising approach to develop effective heterogeneous Water Oxidation Catalysts.
Collapse
Affiliation(s)
- Lucia Fagiolari
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Francesco Zaccaria
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Ferdinando Costantino
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences
- Università di Perugia - Via del Liceo 1
- I-06123 Perugia
- Italy
| | | | - Greta R. Patzke
- Department of Chemistry
- University of Zurich - Winterthurerstrasse 190
- CH-8057 Zurich
- Switzerland
| | - Alceo Macchioni
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| |
Collapse
|
37
|
Patra SG, Illés E, Mizrahi A, Meyerstein D. Cobalt Carbonate as an Electrocatalyst for Water Oxidation. Chemistry 2019; 26:711-720. [PMID: 31644825 DOI: 10.1002/chem.201904051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Indexed: 12/22/2022]
Abstract
CoII salts in the presence of HCO3 - /CO3 2- in aqueous solutions act as electrocatalysts for water oxidation. It comprises of several key steps: (i) A relatively small wave at Epa ≈0.71 V (vs. Ag/AgCl) owing to the CoIII/II redox couple. (ii) A second wave is observed at Epa ≈1.10 V with a considerably larger current. In which the CoIII undergoes oxidation to form a CoIV species. The large current is attributed to catalytic oxidation of HCO3 - /CO3 2- to HCO4 - . (iii) A process with very large currents at >1.2 V owing to the formation of CoV (CO3 )3 - , which oxidizes both water and HCO3 - /CO3 2- . These processes depend on [CoII ], [NaHCO3 ], and pH. Chronoamperometry at 1.3 V gives a green deposit. It acts as a heterogeneous catalyst for water oxidation. DFT calculations point out that Con (CO3 )3 n-6 , n=4, 5 are attainable at potentials similar to those experimentally observed.
Collapse
Affiliation(s)
- Shanti G Patra
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for, Compact Accelerators, Radiation Sources and Application, Ariel University, 40700, Ariel, Israel
| | - Erzsébet Illés
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for, Compact Accelerators, Radiation Sources and Application, Ariel University, 40700, Ariel, Israel
| | - Amir Mizrahi
- Department of Chemistry, Nuclear Research Centre Negev, 84190, Beer-Sheva, Israel
| | - Dan Meyerstein
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for, Compact Accelerators, Radiation Sources and Application, Ariel University, 40700, Ariel, Israel.,Department of Chemistry, Ben-Gurion University, 84105, Beer-Sheva, Israel
| |
Collapse
|
38
|
Shah WA, Mir S, Abbas S, Ibrahim S, Noureen L, Kondinski A, Turner DR, Kögerler P, Nadeem MA. Robust and efficient electrocatalyst for water oxidation based on 4,4′-oxybis(benzoate)-linked copper(II) hydroxido layers. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Corbucci I, Zaccaria F, Heath R, Gatto G, Zuccaccia C, Albrecht M, Macchioni A. Iridium Water Oxidation Catalysts Based on Pyridine‐Carbene Alkyl‐Substituted Ligands. ChemCatChem 2019. [DOI: 10.1002/cctc.201901092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilaria Corbucci
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Francesco Zaccaria
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Rachel Heath
- Department für Chemie und BiochemieUniversität Bern Bern CH-3012 Switzerland
| | - Giordano Gatto
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Cristiano Zuccaccia
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Martin Albrecht
- Department für Chemie und BiochemieUniversität Bern Bern CH-3012 Switzerland
| | - Alceo Macchioni
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| |
Collapse
|
40
|
Mao QY, Pang YJ, Li XC, Chen GJ, Tan HW. Theoretical Study of the Mechanisms of Two Copper Water Oxidation Electrocatalysts with Bipyridine Ligands. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiu-Yun Mao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Yun-Jie Pang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Xi-Chen Li
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Guang-Ju Chen
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| |
Collapse
|
41
|
Wang J, Liu Y, Mao X, Shi N, Zhang X, Wang H, Fan Y, Wang M. Two Trinuclear Cu
II
Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem Asian J 2019; 14:2685-2693. [DOI: 10.1002/asia.201900531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jin‐Miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ya‐Rong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xue‐Yang Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ning‐Ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Hui‐Sheng Wang
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430074 P. R. China
| | - Yu‐Hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| |
Collapse
|
42
|
|
43
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 430] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
44
|
Szyrwiel Ł, Lukács D, Ishikawa T, Brasun J, Szczukowski Ł, Szewczuk Z, Setner B, Pap JS. Electrocatalytic water oxidation influenced by the ratio between Cu2+ and a multiply branched peptide ligand. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Copper Containing Molecular Systems in Electrocatalytic Water Oxidation—Trends and Perspectives. Catalysts 2019. [DOI: 10.3390/catal9010083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Molecular design represents an exciting platform to refine mechanistic details of electrocatalytic water oxidation and explore new perspectives. In the growing number of publications some general trends seem to be outlined concerning the operation mechanisms, with the help of experimental and theoretical approaches that have been broadly applied in the case of bioinorganic systems. In this review we focus on bio-inspired Cu-containing complexes that are classified according to the proposed mechanistic pathways and the related experimental evidence, strongly linked to the applied ligand architecture. In addition, we devote special attention to features of molecular compounds, which have been exploited in the efficient fabrication of catalytically active thin films.
Collapse
|
46
|
Liu Y, Han Y, Zhang Z, Zhang W, Lai W, Wang Y, Cao R. Low overpotential water oxidation at neutral pH catalyzed by a copper(ii) porphyrin. Chem Sci 2019; 10:2613-2622. [PMID: 30996977 PMCID: PMC6419937 DOI: 10.1039/c8sc04529a] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Low-overpotential water oxidation catalyzed by copper(ii) porphyrin to produce O2 in neutral aqueous solution and H2O2 in acidic solution.
Low overpotential water oxidation under mild conditions is required for new energy conversion technologies with potential application prospects. Extensive studies on molecular catalysis have been performed to gain fundamental knowledge for the rational designing of cheap, efficient and robust catalysts. We herein report a water-soluble CuII complex of tetrakis(4-N-methylpyridyl)porphyrin (1), which catalyzes the oxygen evolution reaction (OER) in neutral aqueous solutions with small overpotentials: the onset potential of the catalytic water oxidation wave measured at current density j = 0.10 mA cm–2 is 1.13 V versus a normal hydrogen electrode (NHE), which corresponds to an onset overpotential of 310 mV. Constant potential electrolysis of 1 at neutral pH and at 1.30 V versus NHE displayed a substantial and stable current for O2 evolution with a faradaic efficiency of >93%. More importantly, in addition to the 4e water oxidation to O2 at neutral pH, 1 can catalyze the 2e water oxidation to H2O2 in acidic solutions. The produced H2O2 is detected by rotating ring–disk electrode measurements and by the sodium iodide method after bulk electrolysis at pH 3.0. This work presents an efficient and robust Cu-based catalyst for water oxidation in both neutral and acidic solutions. The observation of H2O2 during water oxidation catalysis is rare and will provide new insights into the water oxidation mechanism.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Yongzhen Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zongyao Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Wenzhen Lai
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China.,Institute of Drug Discovery Technology , Ningbo University , Ningbo 315211 , China
| | - Rui Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China . .,Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
47
|
Buvailo HI, Makhankova VG, Kokozay VN, Omelchenko IV, Shishkina SV, Jezierska J, Pavliuk MV, Shylin SI. Copper-containing hybrid compounds based on extremely rare [V2Mo6O26]6– POM as water oxidation catalysts. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00040b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid Cu/V/Mo compounds with rare [α-V2Mo6O26]6– and oxides prepared by their thermal degradation were used as catalysts for water oxidation.
Collapse
Affiliation(s)
- Halyna I. Buvailo
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
| | | | - Vladimir N. Kokozay
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
| | - Irina V. Omelchenko
- Institute for Single Crystals
- National Academy of Sciences of Ukraine
- 61001 Kharkiv
- Ukraine
| | - Svitlana V. Shishkina
- Institute for Single Crystals
- National Academy of Sciences of Ukraine
- 61001 Kharkiv
- Ukraine
| | - Julia Jezierska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Mariia V. Pavliuk
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Sergii I. Shylin
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
48
|
Lloret-Fillol J, Costas M. Water oxidation at base metal molecular catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Macchioni A. The Middle-Earth between Homogeneous and Heterogeneous Catalysis in Water Oxidation with Iridium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800798] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alceo Macchioni
- Department of Chemistry; Biology and Biotechnology; University of Perugia; Via Elce di Sotto 8 06123 - Perugia Italy
| |
Collapse
|
50
|
Cook BJ, Polezhaev AV, Chen CH, Pink M, Caulton KG. A multimetal-ligand cooperative approach to CO2 activation. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|