1
|
Djeghader A, Rendon J, Biaso F, Gerbaud G, Nitschke W, Schoepp-Cothenet B, Soulimane T, Grimaldi S. Structural and Spectroscopic Investigations of pH-Dependent Mo(V) Species in a Bacterial Sulfite-Oxidizing Enzyme. Inorg Chem 2024. [PMID: 39561325 DOI: 10.1021/acs.inorgchem.4c02584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Mono-pyranopterin-containing sulfite-oxidizing enzymes (SOEs), including eukaryotic sulfite oxidases and homologous prokaryotic sulfite dehydrogenases (SDHs), are molybdenum enzymes that exist in almost all forms of life, where they catalyze the direct oxidation of sulfite into sulfate, playing a key role in protecting cells and organisms against sulfite-induced damage. To decipher their catalytic mechanism, we have previously provided structural and spectroscopic evidence for direct coordination of HPO42- to the Mo atom at the active site of the SDH from the hyperthermophilic bacterium Thermus thermophilus (TtSDH), mimicking the proposed sulfate-bound intermediate proposed to be formed during catalysis. In this work, by solving the X-ray crystallographic structure of the unbound enzyme, we resolve the changes in the hydrogen bonding network in the molybdenum environment that enable the stabilization of the previously characterized phosphate adduct. In addition, electron paramagnetic resonance spectroscopic study of the enzyme over a wide pH range reveals the formation of pH-dependent Mo(V) species, a characteristic feature of eukaryotic SOEs. The combined use of HYSCORE, H2O/D2O exchange, and density functional theory calculations allows the detailed characterization of a typical low pH Mo(V) species previously unreported in bacterial SOEs, underlining the conservation of the active site properties of SOEs irrespective of their source organism.
Collapse
Affiliation(s)
- Ahmed Djeghader
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Julia Rendon
- Aix Marseille Univ, CNRS, BIP UMR7281, IMM, IM2B, Marseille 13009, France
| | - Frédéric Biaso
- Aix Marseille Univ, CNRS, BIP UMR7281, IMM, IM2B, Marseille 13009, France
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, BIP UMR7281, IMM, IM2B, Marseille 13009, France
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, BIP UMR7281, IMM, IM2B, Marseille 13009, France
| | | | - Tewfik Soulimane
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Stéphane Grimaldi
- Aix Marseille Univ, CNRS, BIP UMR7281, IMM, IM2B, Marseille 13009, France
| |
Collapse
|
2
|
Nemykin VN, Sabin JR, Kail BW, Upadhyay A, Hendrich MP, Basu P. Influence of the ligand-field on EPR parameters of cis- and trans-isomers in Mo V systems relevant to molybdenum enzymes: Experimental and density functional theory study. J Inorg Biochem 2023; 245:112228. [PMID: 37149488 PMCID: PMC10330323 DOI: 10.1016/j.jinorgbio.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The electron paramagnetic resonance (EPR) investigation of mononuclear cis- and trans-(L1O)MoOCl2 complexes [L1OH = bis(3,5-dimethylpyrazolyl)-3-tert-butyl-2-hydroxy-5-methylphenyl)methane] reveals a significant difference in their spin Hamiltonian parameters which reflect different equatorial and axial ligand fields created by the heteroscorpionate donor atoms. Density functional theory (DFT) was used to calculate the values of principal components and relative orientations of the g and A tensors, and the molecular framework in four pairs of isomeric mononuclear oxo‑molybdenum(V) complexes (cis- and trans-(L1O)MoOCl2, cis,cis- and cis,trans-(L-N2S2)MoOCl [L-N2S2H2 = N,N'-dimethyl-N,N'-bis(mercaptophenyl)ethylenediamine], cis,cis- and cis,trans-(L-N2S2)MoO(SCN), and cis- and trans-[(dt)2MoO(OMe)]2- [dtH2 = 2,3-dimercapto-2-butene]). Scalar relativistic DFT calculations were conducted using three different exchange-correlation functionals. It was found that the use of hybrid exchange-correlation functional with 25% of the Hartree-Fock exchange leads to the best quantitative agreement between theory and experiment. A simplified ligand-field approach was used to analyze the influence of the ligand fields in all cis- and trans-isomers on energies and contributions of molybdenum d-orbital manifold to g and A tensors and relative orientations. Specifically, contributions that originated from the spin-orbit coupling of the dxz, dyz, and dx2-y2 orbitals into the ground state have been discussed. The new findings are discussed in the context of the experimental data of mononuclear molybdoenzyme, DMSO reductase.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee - Knoxville, Knoxville, TN 37996, USA; Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Jared R Sabin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Brian W Kail
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA
| | - Anup Upadhyay
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA; Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Kim Y, Kim J, Nguyen LK, Lee YM, Nam W, Kim SH. EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00522g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
Collapse
Affiliation(s)
- Yujeong Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| | - Jin Kim
- Department of Chemistry
- Sunchon National University
- Suncheon 57922
- Rep. of Korea
| | - Linh K. Nguyen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Sun Hee Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| |
Collapse
|
4
|
Kirk ML, Kc K. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. Met Ions Life Sci 2020; 20:/books/9783110589757/9783110589757-015/9783110589757-015.xml. [PMID: 32851830 PMCID: PMC8176780 DOI: 10.1515/9783110589757-015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The last 20 years have seen a dramatic increase in our mechanistic understanding of the reactions catalyzed by pyranopterin Mo and W enzymes. These enzymes possess a unique cofactor (Moco) that contains a novel ligand in bioinorganic chemistry, the pyranopterin ene-1,2-dithiolate. A synopsis of Moco biosynthesis and structure is presented, along with our current understanding of the role Moco plays in enzymatic catalysis. Oxygen atom transfer (OAT) reactivity is discussed in terms of breaking strong metal-oxo bonds and the mechanism of OAT catalyzed by enzymes of the sulfite oxidase (SO) family that possess dioxo Mo(VI) active sites. OAT reactivity is also discussed in members of the dimethyl sulfoxide (DMSO) reductase family, which possess des-oxo Mo(IV) sites. Finally, we reveal what is known about hydride transfer reactivity in xanthine oxidase (XO) family enzymes and the formate dehydrogenases. The formal hydride transfer reactivity catalyzed by xanthine oxidase family enzymes is complex and cleaves substrate C-H bonds using a mechanism that is distinct from monooxygenases. The chapter primarily highlights developments in the field that have occurred since ~2000, which have contributed to our collective structural and mechanistic understanding of the three canonical pyranopterin Mo enzymes families: XO, SO, and DMSO reductase.
Collapse
|
5
|
Del Barrio M, Sensi M, Fradale L, Bruschi M, Greco C, de Gioia L, Bertini L, Fourmond V, Léger C. Interaction of the H-Cluster of FeFe Hydrogenase with Halides. J Am Chem Soc 2018; 140:5485-5492. [PMID: 29590528 DOI: 10.1021/jacs.8b01414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
FeFe hydrogenases catalyze H2 oxidation and production using an "H-cluster", where two Fe ions are bound by an aza-dithiolate (adt) ligand. Various hypotheses have been proposed (by us and others) to explain that the enzyme reversibly inactivates under oxidizing, anaerobic conditions: intramolecular binding of the N atom of adt, formation of the so-called "Hox/inact" state or nonproductive binding of H2 to isomers of the H-cluster. Here, we show that none of the above explains the new finding that the anaerobic, oxidative, H2-dependent reversible inactivation is strictly dependent on the presence of Cl- or Br-. We provide experimental evidence that chloride uncompetitively inhibits the enzyme: it reversibly binds to catalytic intermediates of H2 oxidation (but not to the resting "Hox" state), after which oxidation locks the active site into a stable, saturated, inactive form, the structure of which is proposed here based on DFT calculations. The halides interact with the amine group of the H-cluster but do not directly bind to iron. It should be possible to stabilize the inhibited state in amounts compatible with spectroscopic investigations to explore further this unexpected reactivity of the H-cluster of hydrogenase.
Collapse
Affiliation(s)
- Melisa Del Barrio
- Aix Marseille Université , CNRS, Bioénergétique et Ingénierie des Protéines , Marseille , France
| | - Matteo Sensi
- Aix Marseille Université , CNRS, Bioénergétique et Ingénierie des Protéines , Marseille , France
| | - Laura Fradale
- Aix Marseille Université , CNRS, Bioénergétique et Ingénierie des Protéines , Marseille , France
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 Milan , Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 Milan , Italy
| | - Luca de Gioia
- Department of Biotechnologies and Biosciences , University of Milano-Bicocca , 20126 Milan , Italy
| | - Luca Bertini
- Department of Biotechnologies and Biosciences , University of Milano-Bicocca , 20126 Milan , Italy
| | - Vincent Fourmond
- Aix Marseille Université , CNRS, Bioénergétique et Ingénierie des Protéines , Marseille , France
| | - Christophe Léger
- Aix Marseille Université , CNRS, Bioénergétique et Ingénierie des Protéines , Marseille , France
| |
Collapse
|
6
|
Enemark JH. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations. Dalton Trans 2017. [PMID: 28640289 DOI: 10.1039/c7dt01731f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (Pi) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.
Collapse
Affiliation(s)
- John H Enemark
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85711, USA.
| |
Collapse
|
7
|
Rendon J, Biaso F, Ceccaldi P, Toci R, Seduk F, Magalon A, Guigliarelli B, Grimaldi S. Elucidating the Structures of the Low- and High-pH Mo(V) Species in Respiratory Nitrate Reductase: A Combined EPR, 14,15N HYSCORE, and DFT Study. Inorg Chem 2017; 56:4423-4435. [DOI: 10.1021/acs.inorgchem.6b03129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia Rendon
- Aix Marseille Univ, CNRS, BIP, Marseille, France
| | | | - Pierre Ceccaldi
- Aix Marseille Univ, CNRS, BIP, Marseille, France
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - René Toci
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Farida Seduk
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Axel Magalon
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | |
Collapse
|
8
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Young CG. Chemical systems modeling the d1 Mo(V) states of molybdenum enzymes. J Inorg Biochem 2016; 162:238-252. [PMID: 27432259 DOI: 10.1016/j.jinorgbio.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Charles G Young
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
10
|
Maurelli S, Morra E, Van Doorslaer S, Busico V, Chiesa M. EPR investigation of TiCl3 dissolved in polar solvents--implications for the understanding of active Ti(III) species in heterogeneous Ziegler-Natta catalysts. Phys Chem Chem Phys 2015; 16:19625-33. [PMID: 25109263 DOI: 10.1039/c4cp02722a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate Ti(III)-chloro complexes obtained by dissolving TiCl3 in anhydrous and hydrated methanol. Two distinctly different species, characterized by different g matrices are observed in the two cases. Hyperfine sublevel correlation (HYSCORE) spectroscopy is found to be a powerful method to identify the type of nuclei surrounding the Ti(3+) ion. For the first time, the hyperfine and nuclear quadrupole data of Ti(III)-bound (35/37)Cl nuclei are reported together with (1)H and (13)C hyperfine data of the coordinated methanol molecules. DFT modelling allows interpreting the measured spin Hamiltonian parameters in terms of microscopic models of the solvated species. The theoretical observable properties (g matrix, (35/37)Cl, (1)H and (13)C hyperfine tensors) are in quantitative agreement with the experiments for two families of complexes: [TiCln(CH3OH)6-n]((3-n)+) (with n ranging from 1 to 3) and [Ti(CH3OH)5(OH)](2+) or [Ti(CH3OH)5(OCH3)](2+). The first complex is observed in anhydrous methanol, while the second type of complex is observed when water is added to the solution, the presence of OH(-) and/or CH3O(-) species being promoted by water hydrolysis. The results obtained for the frozen solutions are critically compared to EPR spectra recorded for a MgCl2-supported Ti-based Ziegler-Natta model catalyst.
Collapse
Affiliation(s)
- Sara Maurelli
- University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Kappler U, Enemark JH. Sulfite-oxidizing enzymes. J Biol Inorg Chem 2014; 20:253-64. [DOI: 10.1007/s00775-014-1197-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
|
12
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
13
|
Klein EL, Belaidi AA, Raitsimring AM, Davis AC, Krämer T, Astashkin AV, Neese F, Schwarz G, Enemark JH. Pulsed electron paramagnetic resonance spectroscopy of (33)S-labeled molybdenum cofactor in catalytically active bioengineered sulfite oxidase. Inorg Chem 2014; 53:961-71. [PMID: 24387640 PMCID: PMC3927148 DOI: 10.1021/ic4023954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ≠ 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme. However, it has not been possible to use EPR to probe the dithiolene sulfurs directly since naturally abundant (32)S has no nuclear spin (I = 0). Here we describe direct incorporation of (33)S (I = 3/2), the only stable magnetic sulfur isotope, into MPT using controlled in vitro synthesis with purified proteins. The electron spin echo envelope modulation (ESEEM) spectra from (33)S-labeled MPT in this catalytically active SO variant are dominated by the "interdoublet" transition arising from the strong nuclear quadrupole interaction, as also occurs for the (33)S-labeled exchangeable equatorial sulfite ligand [ Klein, E. L., et al. Inorg. Chem. 2012 , 51 , 1408 - 1418 ]. The estimated experimental hfi and nqi parameters for (33)S (aiso = 3 MHz and e(2)Qq/h = 25 MHz) are in good agreement with those predicted by DFT. In addition, the DFT calculations show that the two (33)S atoms are indistinguishable by EPR and reveal a strong intermixing between their out-of-plane pz orbitals and the dxy orbital of Mo(V).
Collapse
Affiliation(s)
- Eric L. Klein
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Abdel Ali Belaidi
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Arnold M. Raitsimring
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Amanda C. Davis
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Tobias Krämer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Andrei V. Astashkin
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Günter Schwarz
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - John H. Enemark
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| |
Collapse
|
14
|
Abstract
A perspective is provided of recent advances in our understanding of molybdenum-containing enzymes other than nitrogenase, a large and diverse group of enzymes that usually (but not always) catalyze oxygen atom transfer to or from a substrate, utilizing a Mo=O group as donor or acceptor. An emphasis is placed on the diversity of protein structure and reaction catalyzed by each of the three major families of these enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, 1643 Boyce Hall, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Klein EL, Astashkin AV, Raitsimring AM, Enemark JH. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes(). Coord Chem Rev 2013; 257:110-118. [PMID: 23440026 DOI: 10.1016/j.ccr.2012.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO(3) (2-)) to sulfate (SO(4) (2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH(-), H(2)O, SO(3) (2-), or SO(4) (2-) group, because the primary O and S isotopes ((16)O and (32)S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.
Collapse
Affiliation(s)
- Eric L Klein
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0041, USA
| | | | | | | |
Collapse
|
16
|
Argirević T, Riplinger C, Stubbe J, Neese F, Bennati M. ENDOR spectroscopy and DFT calculations: evidence for the hydrogen-bond network within α2 in the PCET of E. coli ribonucleotide reductase. J Am Chem Soc 2012; 134:17661-70. [PMID: 23072506 PMCID: PMC4516058 DOI: 10.1021/ja3071682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y(122)(•)) cofactor required to generate a thiyl radical (C(439)(•)) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y(122) ⇆ W(48)[?] ⇆ Y(356) in β2, across the subunit interface to Y(731) ⇆ Y(730) ⇆ C(439) in α2. Within α2 a colinear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH(2)Y) replaced Y(730) in α2, and this mutant was incubated with β2, cytidine 5'-diphosphate, and adenosine 5'-triphosphate to generate a NH(2)Y(730)(•) in D(2)O. [(2)H]-Electron-nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained, and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C(439) and Y(731). A third proton was assigned to a water molecule in close proximity (2.2 Å O-H···O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH(2)Y(730)(•) are consistent with the combined effect of the hydrogen bonds to Cys(439) and Tyr(731), both nearly perpendicular to the ring plane of NH(2)Y(730.) The results provide the first experimental evidence for the hydrogen-bond network between the pathway residues in α2 of the active RNR complex, for which no structural data are available.
Collapse
Affiliation(s)
- Tomislav Argirević
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christoph Riplinger
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - JoAnne Stubbe
- Dept. of Chemistry and Biology, MIT, Cambridge, MA 02139, USA
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Dept. of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Klein EL, Raitsimring AM, Astashkin AV, Rajapakshe A, Johnson-Winters K, Arnold AR, Potapov A, Goldfarb D, Enemark JH. Identity of the exchangeable sulfur-containing ligand at the Mo(V) center of R160Q human sulfite oxidase. Inorg Chem 2012; 51:1408-18. [PMID: 22225516 DOI: 10.1021/ic201643t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our previous study of the fatal R160Q mutant of human sulfite oxidase (hSO) at low pH (Astashkin et al. J. Am. Chem. Soc.2008, 130, 8471-8480), a new Mo(V) species, denoted "species 1", was observed at low pH values. Species 1 was ascribed to a six-coordinate Mo(V) center with an exchangeable terminal oxo ligand and an equatorial sulfate group on the basis of pulsed EPR spectroscopy and (33)S and (17)O labeling. Here we report new results for species 1 of R160Q, based on substitution of the sulfur-containing ligand by a phosphate group, pulsed EPR spectroscopy in K(a)- and W-bands, and extensive density functional theory (DFT) calculations applied to large, more realistic molecular models of the enzyme active site. The combined results unambiguously show that species 1 has an equatorial sulfite as the only exchangeable ligand. The two types of (17)O signals that are observed arise from the coordinated and remote oxygen atoms of the sulfite ligand. A typical five-coordinate Mo(V) site is compatible with the observed and calculated EPR parameters.
Collapse
Affiliation(s)
- Eric L Klein
- Department of Chemistry and Biochemistry, 1306 East University Boulevard, University of Arizona, Tucson, Arizona 85721-0041, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Intramolecular electron transfer in sulfite-oxidizing enzymes: probing the role of aromatic amino acids. J Biol Inorg Chem 2011; 17:345-52. [DOI: 10.1007/s00775-011-0856-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
|
19
|
Rajapakshe A, Astashkin AV, Klein EL, Reichmann D, Mendel RR, Bittner F, Enemark JH. Structural studies of the molybdenum center of mitochondrial amidoxime reducing component (mARC) by pulsed EPR spectroscopy and 17O-labeling. Biochemistry 2011; 50:8813-22. [PMID: 21916412 DOI: 10.1021/bi2005762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial amidoxime reducing components (mARC-1 and mARC-2) represent a novel group of Mo-containing enzymes in eukaryotes. These proteins form the catalytic part of a three-component enzyme complex known to be responsible for the reductive activation of several N-hydroxylated prodrugs. No X-ray crystal structures are available for these enzymes as yet. A previous biochemical investigation [Wahl, B., et al. (2010) J. Biol. Chem., 285, 37847-37859 ] has revealed that two of the Mo coordination positions are occupied by sulfur atoms from a pyranopterindithiolate (molybdopterin, MPT) cofactor. In this work, we have used continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy and density functional theoretical (DFT) calculations to determine the nature of remaining ligands in the Mo(V) state of the active site of mARC-2. Experiments with samples in D(2)O have identified the exchangeable equatorial ligand as a hydroxyl group. Experiments on samples in H(2)(17)O-enriched buffer have shown the presence of a slowly exchangeable axial oxo ligand. Comparison of the experimental (1)H and (17)O hyperfine interactions with those calculated using DFT has shown that the remaining nonexchangeable equatorial ligand is, most likely, protein-derived and that the possibility of an equatorial oxo ligand can be excluded.
Collapse
Affiliation(s)
- Asha Rajapakshe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pushie MJ, Doonan CJ, Wilson HL, Rajagopalan KV, George GN. Nature of Halide Binding to the Molybdenum Site of Sulfite Oxidase. Inorg Chem 2011; 50:9406-13. [DOI: 10.1021/ic201030u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Jake Pushie
- Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Christian J. Doonan
- Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Heather L. Wilson
- School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - K. V. Rajagopalan
- School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Graham. N. George
- Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
21
|
|
22
|
Abstract
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan and Department of Biochemistry, University of California, Riverside, CA 92521
| | - Florian Bittner
- Department of Plant Biology, Technical University of Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
23
|
Astashkin AV. Integrated refocused virtual ESEEM: detection of nuclear transition spectra without dead time and blind spots. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:69-74. [PMID: 21273102 DOI: 10.1016/j.jmr.2011.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
General expressions describing the refocused stimulated (RS) and refocused virtual (RV) electron spin echo envelope modulations (ESEEM) generated with the same basic four-pulse sequence are derived. It is shown that integration of the 3D time domain trace over the two "low-resolution" time intervals (those between the first and second and between the third and fourth microwave pulses) results in a dead time-free 1D ESEEM trace in the "high-resolution" dimension (i.e., the time interval between the second and third microwave pulses) that only contains harmonics with the fundamental frequencies of nuclear transitions. The practical implementation of the integrated RS ESEEM requires pulse swapping, which leads to unrecoverable distortions in the ESEEM traces and the resulting spectra. The integrated RV ESEEM is free from such distortions and represents a robust practical technique for obtaining dead time- and blind spots-free spectra of nuclear transitions, without homonuclear combination lines. As an application example, the integrated RV ESEEM was used to obtain the spectrum of a strongly-coupled proton of the OH ligand of the Mo(V) active center of the low-pH form of the molybdoenzyme sulfite oxidase.
Collapse
Affiliation(s)
- Andrei V Astashkin
- University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721, USA.
| |
Collapse
|
24
|
Drew SC, Reijerse E, Quentmeier A, Rother D, Friedrich CG, Lubitz W. Spectroscopic Characterization of the Molybdenum Cofactor of the Sulfane Dehydrogenase SoxCD from Paracoccus pantotrophus. Inorg Chem 2011; 50:409-11. [DOI: 10.1021/ic102201f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon C. Drew
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany,
| | - Eduard Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany,
| | - Armin Quentmeier
- Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Dagmar Rother
- Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Cornelius G. Friedrich
- Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany,
| |
Collapse
|
25
|
Enemark JH, Raitsimring AM, Astashkin AV, Klein EL. Implications for the mechanism of sulfite oxidizing enzymes from pulsed EPR spectroscopy and DFT calculations for "difficult" nuclei. Faraday Discuss 2011; 148:249-67; discussion 299-314. [PMID: 21322488 PMCID: PMC3079391 DOI: 10.1039/c004404k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic mechanisms of sulfite oxidizing enzymes (SOEs) have been investigated by multi-frequency pulsed EPR measurements of "difficult" magnetic nuclei (35.37Cl, 33S, 17O) associated with the Mo(v) center. Extensive DFT calculations have been used to relate the experimental magnetic resonance parameters of these nuclei to specific active site structures. This combined spectroscopic and computational approach has provided new insights concerning the structure/function relationships of the active sites of SOEs, including: (i) the exchange of oxo ligands; (ii) the nature of the blocked forms; and (iii) the role of Cl- in low pH forms.
Collapse
Affiliation(s)
- John H Enemark
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, USA.
| | | | | | | |
Collapse
|
26
|
Pushie MJ, Doonan CJ, Moquin K, Weiner JH, Rothery R, George GN. Molybdenum Site Structure of Escherichia coli YedY, a Novel Bacterial Oxidoreductase. Inorg Chem 2010; 50:732-40. [DOI: 10.1021/ic101280m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Christian J. Doonan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Kamila Moquin
- School of Molecular and Systems Medicine, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joel H. Weiner
- School of Molecular and Systems Medicine, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard Rothery
- School of Molecular and Systems Medicine, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Graham N. George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
27
|
Johnson-Winters K, Nordstrom AR, Davis AC, Tollin G, Enemark JH. Effects of large-scale amino acid substitution in the polypeptide tether connecting the heme and molybdenum domains on catalysis in human sulfite oxidase. Metallomics 2010; 2:766-70. [PMID: 21072368 DOI: 10.1039/c0mt00021c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfite oxidase (SO) is a molybdenum-cofactor-dependent enzyme that catalyzes the oxidation of sulfite to sulfate, the final step in the catabolism of the sulfur-containing amino acids, cysteine and methionine. The catalytic mechanism of vertebrate SO involves intramolecular electron transfer (IET) from molybdenum to the integral b-type heme of SO and then to exogenous cytochrome c. However, the crystal structure of chicken sulfite oxidase (CSO) has shown that there is a 32 Å distance between the Fe and Mo atoms of the respective heme and molybdenum domains, which are connected by a flexible polypeptide tether. This distance is too long to be consistent with the measured IET rates. Previous studies have shown that IET is viscosity dependent (Feng et al., Biochemistry, 2002, 41, 5816) and also dependent upon the flexibility and length of the tether (Johnson-Winters et al., Biochemistry, 2010, 49, 1290). Since IET in CSO is more rapid than in human sulfite oxidase (HSO) (Feng et al., Biochemistry, 2003, 42, 12235) the tether sequence of HSO has been mutated into that of CSO, and the resultant chimeric HSO enzyme investigated by laser flash photolysis and steady-state kinetics in order to study the specificity of the tether sequence of SO on the kinetic properties. Surprisingly, the IET kinetics of the chimeric HSO protein with the CSO tether sequence are slower than wildtype HSO. This observation raises the possibility that the composition of the non-conserved tether sequence of animal SOs may be optimized for individual species.
Collapse
Affiliation(s)
- Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
28
|
Johnson-Winters K, Tollin G, Enemark JH. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Biochemistry 2010; 49:7242-54. [PMID: 20666399 DOI: 10.1021/bi1008485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfite oxidizing enzymes (SOEs) are molybdenum cofactor-dependent enzymes that are found in plants, animals, and bacteria. Sulfite oxidase (SO) is found in animals and plants, while sulfite dehydrogenase (SDH) is found in bacteria. In animals, SO catalyzes the oxidation of toxic sulfite to sulfate as the final step in the catabolism of the sulfur-containing amino acids, methionine and cysteine. In humans, sulfite oxidase deficiency is an inherited recessive disorder that produces severe neonatal neurological problems that lead to early death. Plant SO (PSO) also plays an important role in sulfite detoxification and in addition serves as an intermediate enzyme in the assimilatory reduction of sulfate. In vertebrates, the proposed catalytic mechanism of SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme. A similar mechanism is proposed for SDH, involving its molybdenum cofactor and c-type heme. However, PSO, which lacks an integral heme cofactor, uses molecular oxygen as its electron acceptor. Here we review recent results for SOEs from kinetic measurements, computational studies, electron paramagnetic resonance (EPR) spectroscopy, electrochemical measurements, and site-directed mutagenesis on active site residues of SOEs and of the flexible polypepetide tether that connects the heme and molybdenum domains of human SO. Rapid kinetic studies of PSO are also discussed.
Collapse
Affiliation(s)
- Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
29
|
Rajapakshe A, Johnson-Winters K, Nordstrom AR, Meyers KT, Emesh S, Astashkin AV, Enemark JH. Characterization of chloride-depleted human sulfite oxidase by electron paramagnetic resonance spectroscopy: experimental evidence for the role of anions in product release. Biochemistry 2010; 49:5154-9. [PMID: 20491442 DOI: 10.1021/bi902172n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mo(V) state of the molybdoenzyme sulfite oxidase (SO) is paramagnetic and can be studied by electron paramagnetic resonance (EPR) spectroscopy. Vertebrate SO at pH <7 and >9 exhibits characteristic EPR spectra that correspond to two structurally different forms of the Mo(V) active center termed the low-pH (lpH) and high-pH (hpH) forms, respectively. Both EPR forms have an exchangeable equatorial OH ligand, but its orientation in the two forms is different. It has been hypothesized that the formation of the lpH species is dependent on the presence of chloride. In this work, we have prepared and purified samples of the wild type and various mutants of human SO that are depleted of chloride. These samples do not exhibit the typical lpH EPR spectrum at low pH but rather exhibit spectra that are characteristic of the blocked species that contains an exchangeable equatorial sulfate ligand. Addition of chloride to these samples results in the disappearance of the blocked species and the formation of the lpH species. Similarly, if chloride is added before sulfite, the lpH species is formed instead of the blocked one. Qualitatively similar results were observed for samples of sulfite-oxidizing enzymes from other organisms that were previously reported to form a blocked species at low pH. However, the depletion of chloride has no effect upon the formation of the hpH species.
Collapse
Affiliation(s)
- Asha Rajapakshe
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Johnson-Winters K, Nordstrom AR, Emesh S, Astashkin AV, Rajapakshe A, Berry RE, Tollin G, Enemark JH. Effects of interdomain tether length and flexibility on the kinetics of intramolecular electron transfer in human sulfite oxidase. Biochemistry 2010; 49:1290-6. [PMID: 20063894 DOI: 10.1021/bi9020296] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfite oxidase (SO) is a vitally important molybdenum enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic mechanism of vertebrate SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme and two intermolecular one-electron steps to exogenous cytochrome c. In the crystal structure of chicken SO [Kisker, C., et al. (1997) Cell 91, 973-983], which is highly homologous to human SO (HSO), the heme iron and molybdenum centers are separated by 32 A and the domains containing these centers are linked by a flexible polypeptide tether. Conformational changes that bring these two centers into greater proximity have been proposed [Feng, C., et al. (2003) Biochemistry 42, 5816-5821] to explain the relatively rapid IET kinetics, which are much faster than those theoretically predicted from the crystal structure. To explore the proposed role(s) of the tether in facilitating this conformational change, we altered both its length and flexibility in HSO by site-specific mutagenesis, and the reactivities of the resulting variants have been studied using laser flash photolysis and steady-state kinetics assays. Increasing the flexibility of the tether by mutating several conserved proline residues to alanines did not produce a discernible systematic trend in the kinetic parameters, although mutation of one residue (P105) to alanine produced a 3-fold decrease in the IET rate constant. Deletions of nonconserved amino acids in the 14-residue tether, thereby shortening its length, resulted in more drastically reduced IET rate constants. Thus, the deletion of five amino acid residues decreased IET by 70-fold, so that it was rate-limiting in the overall reaction. The steady-state kinetic parameters were also significantly affected by these mutations, with the P111A mutation causing a 5-fold increase in the sulfite K(m) value, perhaps reflecting a decrease in the ability to bind sulfite. The electron paramagnetic resonance spectra of these proline to alanine and deletion mutants are identical to those of wild-type HSO, indicating no significant change in the Mo active site geometry.
Collapse
Affiliation(s)
- Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hernandez-Marin E, Seth M, Ziegler T. Density Functional Theory Study of the Electron Paramagnetic Resonance Parameters and the Magnetic Circular Dichroism Spectrum for Model Compounds of Dimethyl Sulfoxide Reductase. Inorg Chem 2010; 49:1566-76. [DOI: 10.1021/ic901888q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth Hernandez-Marin
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael Seth
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
32
|
HIGH-RESOLUTION EPR SPECTROSCOPY OF MO ENZYMES. SULFITE OXIDASES: STRUCTURAL AND FUNCTIONAL IMPLICATIONS. BIOLOGICAL MAGNETIC RESONANCE 2010; 29:121-168. [PMID: 21283528 PMCID: PMC3030814 DOI: 10.1007/978-1-4419-1139-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Sulfite oxidases (SOs) are physiologically vital Mo-containing enzymes that occur in animals, plants, and bacteria and which catalyze the oxidation of sulfite to sulfate, the terminal reaction in the oxidative degradation of sulfur-containing compounds. X-ray structure determinations of SOs from several species show nearly identical coordination structures of the molybdenum active center, and a common catalytic mechanism has been proposed that involves the generation of a transient paramagnetic Mo(V) state through a series of coupled electron-proton transfer steps. This chapter describes the use of pulsed electron-nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopic techniques to obtain information about the structure of this Mo(V) species from the hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of nearby magnetic nuclei. Variable frequency instrumentation is essential to optimize the experimental conditions for measuring the couplings of different types of nuclei (e.g., (1)H, (2)H, (31)P, and (17)O). The theoretical background necessary for understanding the ESEEM and ENDOR spectra of the Mo(V) centers of SOs is outlined, and examples of the use of advanced pulsed EPR methods (RP-ESEEM, HYSCORE, integrated four-pulse ESEEM) for structure determination are presented. The analysis of variable-frequency pulsed EPR data from SOs is aided by parallel studies of model compounds that contain key functional groups or that are isotopically labeled and thus provide benchmark data for enzymes. Enormous progress has been made on the use of high-resolution variable-frequency pulsed EPR methods to investigate the structures and mechanisms of SOs during the past ~15 years, and the future is bright for the continued development and application of this technology to SOs, other molybdenum enzymes, and other problems in metallobiochemistry.
Collapse
|
33
|
Astashkin AV, Klein EL, Ganyushin D, Johnson-Winters K, Neese F, Kappler U, Enemark JH. Exchangeable oxygens in the vicinity of the molybdenum center of the high-pH form of sulfite oxidase and sulfite dehydrogenase. Phys Chem Chem Phys 2009; 11:6733-42. [PMID: 19639147 PMCID: PMC2789977 DOI: 10.1039/b907029j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electron spin echo envelope modulation (ESEEM) investigation of the high-pH (hpH) form of sulfite oxidase (SO) and sulfite dehydrogenase (SDH) prepared in buffer enriched with H(2)(17)O reveals the presence of three types of exchangeable oxygen atoms at the molybdenum center. Two of these oxygen atoms belong to the equatorial OH ligand and the axial oxo ligand, and are characterized by (17)O hyperfine interaction (hfi) constants of about 37 MHz and 6 MHz, respectively. The third oxygen has an isotropic hfi constant of 3-4 MHz and likely belongs to a hydroxyl moiety hydrogen-bonded to the equatorial OH ligand. This exchangeable oxygen atom is not observed in the ESEEM spectra of the Y236F mutant of SDH, where the active site tyrosine has been replaced by phenylalanine.
Collapse
Affiliation(s)
- Andrei V. Astashkin
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Fax: +1 (1)520 6218407; Tel: +1 (1)520 6219968
| | - Eric L. Klein
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Fax: +1 (1)520 6218407; Tel: +1 (1)520 6219968
| | - Dmitry Ganyushin
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany; Fax: +49 (0)228 739064; Tel: +49 28 732351
| | - Kayunta Johnson-Winters
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Fax: +1 (1)520 6218407; Tel: +1 (1)520 6219968
| | - Frank Neese
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany; Fax: +49 (0)228 739064; Tel: +49 28 732351
| | - Ulrike Kappler
- Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072, Australia; Fax: +61 (07)3365 4620; Tel: +61 (07)3365 2978
| | - John H. Enemark
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Fax: +1 (1)520 6218407; Tel: +1 (1)520 6219968
| |
Collapse
|