1
|
Jyoti Panda S, Kumar Agrawalla S, Shekhar Purohit C. Structural Effect of N-7 Alkylation in 6-Chloropurine on Cu (II) Binding: Effect of Anions and Magnetic Studies. Chem Asian J 2024:e202400985. [PMID: 39351815 DOI: 10.1002/asia.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Indexed: 11/09/2024]
Abstract
This study investigates the anion-directed assembly of discrete copper (II) complexes. The ligands of choice are two N7-alkyl-purine-based neutral ligands. These ligands facilitate the exclusive coordination through the N3 and N9 positions, preventing polymeric chain formation. Perchlorate ions promoted the formation of discrete paddlewheel-like complexes with the general formula [Cu2(μ-Pur)4(CH3CN)2]4+, while chloride ions yielded chloride-bridged dimers of the form [Cu2(Pur)2(μ-Cl)2Cl2]. Copper-copper bond distances within these complexes ranged from 2.92 to 2.98 Å. Magnetic susceptibility measurement of chloride-bridged complexes exhibited antiferromagnetic coupling, whereas paddlewheel complexes displayed more complex alternating ferromagnetic and antiferromagnetic interactions. Chloride-bridged compounds exhibited strong near-infrared absorption.
Collapse
Affiliation(s)
- Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Suraj Kumar Agrawalla
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| |
Collapse
|
2
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Zhao HK, Yang HW, Ding B, Wang XG, Meng XC, Yang EC. Two temperature-dependent Cd(II)-based coordination polymers with mixed adenine nucleobase and benzene-1,4-dicarboxylic acid: synthesis, structures and fluorescence properties. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1779929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hong-Kun Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Han-Wen Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Xiu-Guang Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Xian-Chen Meng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - En-Cui Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| |
Collapse
|
4
|
Anion–Cation Recognition Pattern, Thermal Stability and DFT-Calculations in the Crystal Structure of H2dap[Cd(HEDTA)(H2O)] Salt (H2dap = H2(N3,N7)-2,6-Diaminopurinium Cation). CRYSTALS 2020. [DOI: 10.3390/cryst10040304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proton transfer between equimolar amounts of [Cd(H2EDTA)(H2O)] and 2,6-diaminopurine (Hdap) yielded crystals of the out-of-sphere metal complex H2(N3,N7)dap[Cd(HEDTA)(H2O)]·H2O (1) that was studied by single-crystal X-ray diffraction, thermogravimetry, FT-IR spectroscopy, density functional theory (DFT) and quantum theory of “atoms-in-molecules” (QTAIM) methods. The crystal was mainly dominated by H-bonds, favored by the observed tautomer of the 2,6-diaminopurinium(1+) cation. Each chelate anion was H-bonded to three neighboring cations; two of them were also connected by a symmetry-related anti-parallel π,π-staking interaction. Our results are in clear contrast with that previously reported for H2(N1,N9)ade [Cu(HEDTA)(H2O)]·2H2O (EGOWIG in Cambridge Structural Database (CSD), Hade = adenine), in which H-bonds and π,π-stacking played relevant roles in the anion–cation interaction and the recognition between two pairs of ions, respectively. Factors contributing in such remarkable differences are discussed on the basis of the additional presence of the exocyclic 2-amino group in 2,6-diaminopurinium(1+) ion.
Collapse
|
5
|
Zhao HK, Yang HW, Wang XG, Ding B, Liu ZY, Zhao XJ, Yang EC. An unusual 2D polymeric Co(II) complex with 2,6-diaminopurine: Synthesis, crystal structure, and magnetic behavior. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Pons R, Ibáñez C, Buades AB, Franconetti A, Garcia‐Raso A, Fiol JJ, Terrón A, Molins E, Frontera A. Synthesis, X‐ray characterization and density functional theory studies of N
6
‐benzyl‐N
6
‐methyladenine–M(II) complexes (M = Zn, Cd): The prominent role of π–π, C–H···π and anion–π interactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roser Pons
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Cristina Ibáñez
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Ana B. Buades
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Antonio Franconetti
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Angel Garcia‐Raso
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Juan J. Fiol
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Angel Terrón
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus Universitat Autònoma de Barcelona 08193 Cerdanyola Spain
| | - Antonio Frontera
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| |
Collapse
|
7
|
Cu(II)–N6-Alkyladenine Complexes: Synthesis, X-ray Characterization and Magnetic Properties. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4020024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Gładysiak A, Nguyen TN, Anderson SL, Boyd PG, Palgrave RG, Bacsa J, Smit B, Rosseinsky MJ, Stylianou KC. Shedding Light on the Protonation States and Location of Protonated N Atoms of Adenine in Metal-Organic Frameworks. Inorg Chem 2018; 57:1888-1900. [PMID: 29389124 PMCID: PMC6194650 DOI: 10.1021/acs.inorgchem.7b02761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the syntheses
and structures of five metal–organic frameworks (MOFs) based
on transition metals (NiII, CuII, and ZnII), adenine, and di-, tri-, and tetra-carboxylate ligands.
Adenine, with multiple N donor sites, was found to coordinate to the
metal centers in different binding modes including bidentate (through
N7 and N9, or N3 and N9) and tridentate (through N3, N7, and N9).
Systematic investigations of the protonation states of adenine in
each MOF structure via X-ray photoelectron spectroscopy revealed that
adenine can be selectively protonated through N1, N3, or N7. The positions
of H atoms connected to the N atoms were found from the electron density
maps, and further supported by the study of C–N–C bond
angles compared to the literature reports. DFT calculations were performed
to geometrically optimize and energetically assess the structures
simulated with different protonation modes. The present study highlights
the rich coordination chemistry of adenine and provides a method for
the determination of its protonation states and the location of protonated
N atoms of adenine within MOFs, a task that would be challenging in
complicated adenine-based MOF structures. The protonation states and positions of hydrogen atoms in five adenine-based
metal−organic frameworks were revealed using geometrical studies
based on single-crystal XRD data supported by XPS spectra and DFT
calculations.
Collapse
Affiliation(s)
- Andrzej Gładysiak
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Tu N Nguyen
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Samantha L Anderson
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Peter G Boyd
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Robert G Palgrave
- University College London , Department of Chemistry, 20 Gordon St., London WC1H 0AJ, U.K
| | - John Bacsa
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Matthew J Rosseinsky
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool, L69 7ZD, U.K
| | - Kyriakos C Stylianou
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
9
|
Mohapatra B, Pratibha, Verma S. Directed adenine functionalization for creating complex architectures for material and biological applications. Chem Commun (Camb) 2017; 53:4748-4758. [PMID: 28393940 DOI: 10.1039/c7cc00222j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Chemistry Indian Institute of Technology Kanpur, Kanpur, India.
| | | | | |
Collapse
|
10
|
Sushrutha SR, Hota R, Natarajan S. Adenine‐Based Coordination Polymers: Synthesis, Structure, and Properties. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. R. Sushrutha
- Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
| | - Raghunandan Hota
- Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
| | - Srinivasan Natarajan
- Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
11
|
Ferreira BJML, Brandão P, Meireles M, Martel F, Correia-Branco A, Fernandes DM, Santos TM, Félix V. Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper(II) complex. J Inorg Biochem 2016; 161:9-17. [PMID: 27157979 DOI: 10.1016/j.jinorgbio.2016.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
Abstract
In this study a novel dinuclear copper(II) complex with adenine and phenanthroline has been synthesized and its structure determined by single crystal X-ray diffraction. In the dinuclear complex [Cu₂(μ-adenine)₂(phen)₂(H2O)2](NO3)4·0.5H2O (phen=1,10-phenanthroline) (1) the two Cu(II) centres exhibit a distorted square pyramidal coordination geometry linked by two nitrogen donors from adenine bridges leading to a Cu-Cu distance of 3.242(3)Å. Intramolecular and intermolecular π⋯π interactions as well as an H-bonding network were observed. The antitumor capacity of the complex has been tested in vitro against human cancer cell lines, cervical carcinoma (HeLa) and colorectal adenocarcinoma (Caco-2), by metabolic tests, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide as reagent. The complex 1 has remarkable low IC50 values of 0.87±0.06μM (HeLa) and 0.44±0.06μM (Caco-2), when compared with values for cisplatin against the same cell lines. The interaction of complex 1 with calf thymus DNA (CT DNA) was further investigated by absorption and fluorescence spectroscopic methods. A binding constant of 5.09×10(5)M(-1) was obtained from UV-vis absorption studies.
Collapse
Affiliation(s)
- B J M Leite Ferreira
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - P Brandão
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - M Meireles
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Fátima Martel
- Departamento de Bioquímica, Faculdade de Medicina do Porto e I3S, Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana Correia-Branco
- Departamento de Bioquímica, Faculdade de Medicina do Porto e I3S, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diana M Fernandes
- Departamento de Química e Bioquímica, REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - T M Santos
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - V Félix
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química, IBIMED and CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Liu ZY, Zhang HY, Yang EC, Liu ZY, Zhao XJ. A (3,6)-connected layer with an unprecedented adeninate nucleobase-derived heptanuclear disc. Dalton Trans 2015; 44:5280-3. [DOI: 10.1039/c4dt04020a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A (3,6)-connected layer with an adeninate nucleobase-derived CuII7 disc was reported, in which six spin-parallel CuII ions in the exterior of the disc are antiferromagnetically coupled with the central one to give an S = 5/2 ground-state.
Collapse
Affiliation(s)
- Zheng-Yu Liu
- College of Chemistry
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Hong-Yun Zhang
- College of Chemistry
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - En-Cui Yang
- College of Chemistry
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Zhong-Yi Liu
- College of Chemistry
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Xiao-Jun Zhao
- College of Chemistry
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| |
Collapse
|
13
|
Coordination polymers with nucleobases: From structural aspects to potential applications. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.05.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Nagapradeep N, Venkatesh V, Tripathi SK, Verma S. Guanine-copper coordination polymers: crystal analysis and application as thin film precursors. Dalton Trans 2014; 43:1744-52. [PMID: 24233581 DOI: 10.1039/c3dt52415a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three copper-N9-modified guanine complexes are reported with structures ranging from a discrete trinuclear motif to a mixed-valence coordination polymer. These complexes were used as precursors for the deposition and growth of copper oxide thin films on Si(100), at two different annealing temperatures, by using a CVD technique. Subsequent resistivity measurements suggest the formation of conductive thin films, raising the possibility of using nucleobase-metal complexes as versatile thin film precursors.
Collapse
Affiliation(s)
- N Nagapradeep
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | | | | | | |
Collapse
|
15
|
Liu ZY, Dong HM, Wang XG, Zhao XJ, Yang EC. Three purine-containing metal complexes with discrete binuclear and polymeric chain motifs: Synthesis, crystal structure and luminescence. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Song Y, Yin X, Tu B, Pang Q, Li H, Ren X, Wang B, Li Q. Metal–organic frameworks constructed from mixed infinite inorganic units and adenine. CrystEngComm 2014. [DOI: 10.1039/c3ce42556h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Shankar K, Das B, Baruah JB. Cation Exchange in Layered Copper(II) Coordination Polymers. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Wang JJ, Zhang DJ, Zhang RC, Jin HH, Gao XF. Co-crystals based on 1,2,4,5-Benzenetetracarboxylic Acid: Synthesis, Supramolecular Frameworks and Optical Properties. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Synthesis, structure and luminescence properties of metal-organic frameworks based on benzo-bis(imidazole). Sci China Chem 2013. [DOI: 10.1007/s11426-013-4985-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Amo-Ochoa P, Castillo O, Gómez-García CJ, Hassanein K, Verma S, Kumar J, Zamora F. Semiconductive and magnetic one-dimensional coordination polymers of Cu(II) with modified nucleobases. Inorg Chem 2013; 52:11428-37. [PMID: 24040754 DOI: 10.1021/ic401758w] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four new copper(II) coordination complexes, obtained by reaction of CuX2 (X = acetate or chloride) with thymine-1-acetic acid and uracil-1-propionic acid as ligands, of formulas [Cu(TAcO)2(H2O)4]·4H2O (1), [Cu(TAcO)2(H2O)2]n (2), [Cu3(TAcO)4(H2O)2(OH)2]n·4H2O (3), and [Cu3(UPrO)2Cl2(OH)2(H2O)2]n (4) (TAcOH = thymine-1-acetic acid, UPrOH = uracil-1-propionic acid) are described. While 1 is a discrete complex, 2-4 are one-dimensional coordination polymers. Complexes 2-4 present dc conductivity values between 10(-6) and 10(-9) S/cm(-1). The magnetic behavior of complex 2 is typical for almost isolated Cu(II) metal centers. Moderate-weak antiferromagnetic interactions have been found in complex 3, whereas a combination of strong and weak antiferromagnetic interactions have been found in complex 4. Quantum computational calculations have been done to estimate the individual "J" magnetic coupling constant for each superexchange pathway in complexes 3 and 4. Compounds 2-4 are the first known examples of semiconductor and magnetic coordination polymers containing nucleobases.
Collapse
Affiliation(s)
- Pilar Amo-Ochoa
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Cui J, Zhao H, Zhao J. Unprecedented preparation of a unique 2D multinuclear copper metal-tetrazole polymer by in situ solvothermal reaction: Crystal structure and magnetic property. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Domínguez-Martín A, Choquesillo-Lazarte D, Dobado JA, Martínez-García H, Lezama L, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J. Structural consequences of the N7 and C8 translocation on the metal binding behavior of adenine. Inorg Chem 2013; 52:1916-25. [PMID: 23356582 DOI: 10.1021/ic302147u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7-Deaza-8-aza-adenine, namely 4-aminopyrazolo[3,4-d]pyrimidine (H4app), is a bioisoster of adenine (Hade) resulting from the translocation of N7 and C8 atoms on the purine moiety. With the aim of studying the influence of this translocation on the metal binding abilities of H4app, we have prepared and structurally characterized two ternary copper(II) complexes having H4app and one N-benzyl-iminodiacetate chelator (MEBIDA or FBIDA, with a methyl or fluoro group in para- of the benzyl aromatic ring): [Cu(2)(MEBIDA)(2)(μ(2)-N1,N8-H4app)(H(2)O)(2)]·4H(2)O (1) and [Cu(4)(FBIDA)(4)(μ(2)-N8,N9-H4app)(2)(H(2)O)]·3.5H(2)O (2). Furthermore, thermal, spectral, and magnetic properties have been also investigated. In 1, H(N9)4app is disordered over two equally pondered positions and the μ(2)-N1,N8 coordination mode is assisted by N6-H···O and N9-H···O intramolecular interactions, respectively. The acyclic nonlinear molecular topology of 2 is strongly influenced by two intramolecular H-bonding interactions (O-H···O-carboxylate) involving the apical aqua ligand of a terminal Cu(II) atom. Thus, both compounds have in common the Cu-N8 bond. In order to better understand our limited structural information, DFT calculations for the individual tautomers of H4app as well as mononuclear Cu(II) model systems have been carried out. According to previous results, we conclude that H(N9)4app is the most stable tautomer followed by H(N8)4app. When N9 and N8 are metalated, then the tautomer H(N1)4app can come into play as observed in compound 2. Likewise, the findings concerning compound 1 suggest that the formation of a Cu-N1 bond in H4app results was favored compared to neutral adenine, for which only one case has been reported with such coordination despite the large variety of related Cu(II)-Hade described in the literature.
Collapse
Affiliation(s)
- Alicia Domínguez-Martín
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang F, Kang Y. Unusual cadmium(II)–adenine paddle-wheel units for the construction of a metal-organic framework with mog topology. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Huang HX, Tian XZ, Song YM, Liao ZW, Sun GM, Luo MB, Liu SJ, Xu WY, Luo F. Three-Membered Metal-Nucleobase-Carboxylate System Showing Interesting 2D and 3D Architecture: Synthesis, Structure, Thermostability, and Magnetic Properties. Aust J Chem 2012. [DOI: 10.1071/ch11404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Via hydrothermal synthesis, we constructed four nucleobase metal-organic compounds, viz. Zn2(7H-ade)(oba)2·H2O (1), Zn(1H-hyp)(Hoba) (2), Ni(1H-ade)(ip) (3), and Cd(H2O)(9H-ade)(ip) (4), where ade, hyp, H2oba, and H2ip are adenine, hypoxanthine, 4,4′-oxybisbenzoic acid, and isophthalic acid, respectively. These polymers show novel 2D and 3D structures, such as 3-fold interpenetrating dmp net, supramolecular zeolite-type sra net, and exceptional 2D 44 net composed of three kinds of quadrangle, observed in polymers 1, 2, and 3, respectively. Moreover, thermogravimetric studies of polymers 1, 2, and 4, and the magnetic properties of 3 are also explored.
Collapse
|
25
|
Cui J, Huang L, Lu Z, Li Y, Guo Z, Zheng H. Synthesis and properties of five unexpected copper complexes with ring-cleavage of 3,6-di-2-pyridyl-1,2,4,5–tetrazine by one pot in situ hydrothermal reaction. CrystEngComm 2012. [DOI: 10.1039/c2ce05785a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Patel DK, Domínguez-Martín A, Brandi-Blanco MDP, Choquesillo-Lazarte D, Nurchi VM, Niclós-Gutiérrez J. Metal ion binding modes of hypoxanthine and xanthine versus the versatile behaviour of adenine. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Yang EC, Feng Y, Liu ZY, Liu TY, Zhao XJ. Diverse mixed-ligand metal complexes with in situ generated 5-(pyrazinyl)tetrazolate chelating-bridging ligand: in situ synthesis, crystal structures, magnetic and luminescent properties. CrystEngComm 2011. [DOI: 10.1039/c000586j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Thomas-Gipson J, Beobide G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Aguayo AT, Román P. Porous supramolecular compound based on paddle-wheel shaped copper(ii)–adenine dinuclear entities. CrystEngComm 2011. [DOI: 10.1039/c1ce05195d] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Choquesillo-Lazarte D, Domínguez-Martín A, Matilla-Hernández A, Sánchez de Medina-Revilla C, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J. Restricting the versatile metal-binding behaviour of adenine by using deaza-purine ligands in mixed-ligand copper(II) complexes. Polyhedron 2010. [DOI: 10.1016/j.poly.2009.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Yang EC, Liu ZY, Liu ZY, Zhao LN, Zhao XJ. Long-range ferromagnetic ordering in a 3D CuII-tetracarboxylate framework assisted by an unprecedented bidentate μ2-O1,N4 hypoxanthine nucleobase. Dalton Trans 2010; 39:8868-71. [PMID: 20820623 DOI: 10.1039/c0dt00717j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- En-Cui Yang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China
| | | | | | | | | |
Collapse
|
31
|
|