1
|
Liu L, Wang A, Hu J, Hou H, Liang S, Yang J. Peroxymonosulfate activated by natural porphyrin derivatives for rapid degradation of organic pollutants via singlet oxygen and high-valent iron-oxo species. CHEMOSPHERE 2023; 331:138783. [PMID: 37119928 DOI: 10.1016/j.chemosphere.2023.138783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The activation of peroxymonosulfate (PMS) by sodium ferric chlorophyllin (SFC), a natural porphyrin derivative extracted from chlorophyll-rich substances, was systematically investigated for facile degradation of bisphenol A (BPA). SFC/PMS is capable of degrading 97.5% of BPA in the first 10 min with the initial BPA concentration of 20 mg/L and pH = 3, whereas conventional Fe2+/PMS could only remove 22.6% of BPA under identical conditions. It demonstrates a prominent flexibility to a broad pH range of 3-11 with complete pollutant degradation. A remarkable tolerance toward concomitant high concentration of inorganic anions (100 mM) was also observed, among which (bi)carbonates can even accelerate the degradation. The nonradical oxidation species, including high-valent iron-oxo porphyrin species and 1O2, are identified as dominant species. Particularly, the generation and participation of 1O2 in the reaction is evidenced by experimental and theoretical methods, which is vastly different from the previous study. The specific activation mechanism is unveiled by density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. The results shed light on effective PMS activation by iron (III) porphyrin and the proposed natural porphyrin derivative would be a promising candidate for efficient abatement of recalcitrant pollutants toward complicated aqueous media in wastewater treatment.
Collapse
Affiliation(s)
- Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Anqi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
2
|
Chen S, Li Z, Wu L, Liu L, Hu J, Hou H, Liang S, Yang J. Generation of high-valent iron-oxo porphyrin cation radicals on hemin loaded carbon nanotubes for efficient degradation of sulfathiazole. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130402. [PMID: 36403452 DOI: 10.1016/j.jhazmat.2022.130402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Hemin has attracted considerable interest as an efficient catalyst recently, however, its direct application is inefficient due to severe molecular aggregation. Immobilizing hemin on various supports is a feasible approach to address this issue. In this work, a CNTs-hemin catalyst was prepared by loading hemin onto multiwalled carbon nanotubes (CNTs) through ball milling. Compared with hemin, CNTs-hemin demonstrates remarkably enhanced performance in the peroxymonosulfate system, with a 650-fold improvement of apparent rate constant, reaching 97.8% degradation of sulfathiazole in 5 min. High-valent iron-oxo porphyrin cation ((Porp)+•FeIV=O) radicals are proposed as the dominant reactive species in the CNTs-hemin/peroxymonosulfate system instead of sulfate radicals (SO4•-), hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2). More in-depth mechanisms reveal that the strong electron transfer between CNTs and hemin promotes the generation of (Porp)+•FeIV=O radicals through a heterolysis pathway. This research enriches the understanding of the catalytic mechanism of supported biomimetic catalysts for PMS activation and provides a perspective on the role of support materials for catalytic activity.
Collapse
Affiliation(s)
- Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Yang X, Hu J, Wu L, Hou H, Liang S, Yang J. Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120097. [PMID: 36089136 DOI: 10.1016/j.envpol.2022.120097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The narrow acid pH range and the nonselectivity of the dominant •OH limit the Fenton systems to remediate the organic wastewater. Inspired by the role of heme in physiological processes, we employed iron porphyrin as a novel homogeneous catalyst to address this issue. Multiple active species are identified during the activation of H2O2, including high-valent iron porphyrin ((por)Fe(IV)) species ((por)Fe(IV)-OH, (por)+•Fe(IV)=O) and oxygen-centered radicals (•OH, HO2•/•O2-), as well as atomic hydrogen (*H) and carbon-centered radicals. With the cooperation of these active species, the degradation of pollutants could be resistant to the interference of concomitant ions and proceed over a wide pH range. This cooperative behavior is further verified by intermediates identified from bisphenol A degradation. Specifically, the presence of *H could facilitate the cleavage of the C-C bond and the addition of unsaturated or aromatic molecules. (Por)+•Fe(IV)=O could hydroxylate substrates with an oxygen rebound mechanism. Hydrogen atom abstraction of contaminants could be performed by (por)Fe(IV)-OH to form desaturated products by attacking oxygen-centered radicals. The ecotoxicity of bisphenol A could be significantly decreased through degradation. This study would provide a new approach to wastewater treatment and shed light on the interaction between metalloporphyrin and peroxide in an aqueous solution.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
4
|
Martin DJ, Mercado BQ, Mayer JM. All Four Atropisomers of Iron Tetra(o-N,N,N-trimethylanilinium)porphyrin in Both the Ferric and Ferrous States. Inorg Chem 2021; 60:5240-5251. [DOI: 10.1021/acs.inorgchem.1c00236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel J. Martin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
5
|
Xu S, Draksharapu A, Rasheed W, Que L. Acid pKa Dependence in O–O Bond Heterolysis of a Nonheme FeIII–OOH Intermediate To Form a Potent FeV═O Oxidant with Heme Compound I-Like Reactivity. J Am Chem Soc 2019; 141:16093-16107. [DOI: 10.1021/jacs.9b08442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangning Xu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Franke A, Scheitler A, Kenkel I, Lippert R, Zahl A, Balbinot D, Jux N, Ivanović-Burmazović I. Positive Charge on Porphyrin Ligand and Nature of Metal Center Define Basic Physicochemical Properties of Cationic Manganese and Iron Porphyrins in Aqueous Solution. Inorg Chem 2019; 58:9618-9630. [DOI: 10.1021/acs.inorgchem.8b03381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alicja Franke
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | - Isabell Kenkel
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | - Rainer Lippert
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | - Domenico Balbinot
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | - Norbert Jux
- Department of Chemistry and Pharmacy, University Erlangen−Nuremberg, 91058 Erlangen, Germany
| | | |
Collapse
|
7
|
Jana S, Thomas J, Sen Gupta S. Catalytic oxidation of alcohols using Fe-bTAML and NaClO: Comparing the reactivity of Fe(V)O and Fe(IV)O intermediates. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Liberato A, Fernández-Trujillo MJ, Máñez Á, Maneiro M, Rodríguez-Silva L, Basallote MG. Pitfalls in the ABTS Peroxidase Activity Test: Interference of Photochemical Processes. Inorg Chem 2018; 57:14471-14475. [DOI: 10.1021/acs.inorgchem.8b02525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea Liberato
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Avda. República Saharahui s/n, Puerto Real, 11510 Cádiz, Spain
| | - M. Jesús Fernández-Trujillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Avda. República Saharahui s/n, Puerto Real, 11510 Cádiz, Spain
| | - Ángeles Máñez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Avda. República Saharahui s/n, Puerto Real, 11510 Cádiz, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus de Lugo, Universidade de Santiago de Compostela, Avda. Alfonso X s/n, Lugo 27002, Spain
| | - Laura Rodríguez-Silva
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus de Lugo, Universidade de Santiago de Compostela, Avda. Alfonso X s/n, Lugo 27002, Spain
| | - Manuel G. Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Avda. República Saharahui s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
9
|
Dare NA, Egan TJ. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractEncapsulated metalloporphyrins have been widely studied for their use as efficient heterogeneous catalysts, inspired by the known catalytic activity of porphyrins in haemoproteins. The oxidation of organic substrates by haemoproteins is one of the well-known roles of these proteins, in which the haem (ferriprotoporphyrin IX = FePPIX) cofactor is the centre of reactivity. While these porphyrins are highly efficient catalysts in the protein environment, once removed, they quickly lose their reactivity. It is for this reason that they have garnered much interest in the field of heterogeneous catalysis of oxidation reactions. This review details current research in the field, focusing on the application of encapsulated haem, and other synthetic metalloporphyrins, applied to oxidation reactions.
Collapse
Affiliation(s)
- Nicola A. Dare
- Department of Chemistry, University of Cape Town, Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
10
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 616] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Dare NA, Brammer L, Bourne SA, Egan TJ. Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorg Chem 2018; 57:1171-1183. [DOI: 10.1021/acs.inorgchem.7b02612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola A. Dare
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Lee Brammer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Susan A. Bourne
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
12
|
Trace Oxygen Sensitive Material Based on Two Porphyrin Derivatives in a Heterodimeric Complex. Molecules 2017; 22:molecules22101787. [PMID: 29065493 PMCID: PMC6151409 DOI: 10.3390/molecules22101787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
The successful preparation of a novel dimer complex formed between 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)-porphyrin Fe(III) chloride and (5,10,15,20-tetraphenylporphinato) dichlorophosphorus(V) chloride using the well-known reactivity of the P-X bond is reported. The obtained complex was characterized by UV-vis, Fourier transform infrared spectroscopy (FT-IR), fluorescence, ¹H-NMR, 13C-NMR, and 31P-NMR spectroscopic techniques and also by additional Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear Multiple Bond Correlation (HMBC) experiments in order to correctly assign the NMR signals. Scanning electron microscopy (SEM) and EDX quantifications completed the characterizations. This novel porphyrin dimer complex demonstrated fluorescence sensing of H₂O₂ in water for low oxygen concentrations in the range of 40-90 µM proving medical relevance for early diagnosis of diseases such as Alzheimer's, Parkinson's, Huntington's, and even cancer because higher concentrations of H₂O₂ than 50 μM are consideredcytotoxic for life. Due to its optical properties, this novel metalloporphyrin-porphyrin based complex is expected to show PDT and bactericidal activity under visible-light irradiation.
Collapse
|
13
|
Saha A, Payra S, Dutta D, Banerjee S. Acid-Functionalised Magnetic Ionic Liquid [AcMIm]FeCl4
as Catalyst for Oxidative Hydroxylation of Arylboronic Acids and Regioselective Friedel-Crafts Acylation. Chempluschem 2017; 82:1129-1134. [DOI: 10.1002/cplu.201700221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Arijit Saha
- Department of Chemistry; Guru Ghasidas Vishwavidyalaya; Bilaspur Chhattisgarh 495009 India
| | - Soumen Payra
- Department of Chemistry; Guru Ghasidas Vishwavidyalaya; Bilaspur Chhattisgarh 495009 India
| | - Dipa Dutta
- Department of Metallurgical Engineering & Materials Science; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| | - Subhash Banerjee
- Department of Chemistry; Guru Ghasidas Vishwavidyalaya; Bilaspur Chhattisgarh 495009 India
| |
Collapse
|
14
|
Reappraising a Controversy: Formation and Role of the Azodication (ABTS2+) in the Laccase-ABTS Catalyzed Breakdown of Lignin. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Rayati S, Sheybanifard Z, Amini MM, Aliakbari A. Manganese porphines-NH2@SBA-15 as heterogeneous catalytic systems with homogeneous behavior: Effect of length of linker in immobilized manganese porphine catalysts in oxidation of olefins. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Oszajca M, Franke A, Brindell M, Stochel G, van Eldik R. Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. ‘Catching’ catalytic active intermediates. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Garcia-Leis A, Jancura D, Antalik M, Garcia-Ramos JV, Sanchez-Cortes S, Jurasekova Z. Catalytic effects of silver plasmonic nanoparticles on the redox reaction leading to ABTS˙+formation studied using UV-visible and Raman spectroscopy. Phys Chem Chem Phys 2016; 18:26562-26571. [DOI: 10.1039/c6cp04387a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The strong effect of silver plasmonic nanoparticles on ABTS leading to the formation of ABTS radical cation is investigated by UV-visible, Raman and SERS spectroscopy.
Collapse
Affiliation(s)
- A. Garcia-Leis
- Instituto de Estructura de la Materia
- IEM-CSIC
- 28006 Madrid
- Spain
| | - D. Jancura
- Department of Biophysics
- Faculty of Science
- P.J. Safarik University in Kosice
- 041 54 Kosice
- Slovak Republic
| | - M. Antalik
- Institute of Experimental Physics
- SAS
- 041 01 Kosice
- Slovak Republic
- Department of Biochemistry
| | | | | | - Z. Jurasekova
- Department of Biophysics
- Faculty of Science
- P.J. Safarik University in Kosice
- 041 54 Kosice
- Slovak Republic
| |
Collapse
|
18
|
Chen Z, Yin G. The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations. Chem Soc Rev 2015; 44:1083-100. [DOI: 10.1039/c4cs00244j] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relationships of active metal oxo and hydroxo moieties have been summarized with their implications for biological and chemical oxidations.
Collapse
Affiliation(s)
- Zhuqi Chen
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Guochuan Yin
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
19
|
Zucca P, Rescigno A, Rinaldi AC, Sanjust E. Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2013.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Oszajca M, Drzewiecka-Matuszek A, Franke A, Rutkowska-Zbik D, Brindell M, Witko M, Stochel G, van Eldik R. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation. Chemistry 2014; 20:2328-43. [PMID: 24443188 DOI: 10.1002/chem.201303694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Indexed: 11/07/2022]
Abstract
High-valent iron-oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)Fe(III)(OH) porphyrin ([meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)Fe(III)(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)Fe(IV)=O(OH) point to the overall associative nature of the process. A pH-dependence study on the formation of (TMPS)Fe(IV)=O(OH) revealed a very high reactivity of OOH(-) toward (TMPS)Fe(III)(OH) in comparison to H2O2. The influence of N-methylimidazole (N-MeIm) ligation on both the formation of iron(IV)-oxo species and their oxidising properties in the reactions with 4-methoxybenzyl alcohol or 4-methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)Fe(III)(H2O)(N-MeIm) is highly reactive toward H2O2 to form the iron(IV)-oxo species, (TMPS)Fe(IV)=O(N-MeIm). The latter species can also be formed in the reaction of (TMPS)Fe(III)(N-MeIm)2 with H2O2 or in the direct reaction of (TMPS)Fe(IV)=O(OH) with N-MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)Fe(IV)=O(OH) and (TMPS)Fe(IV)=O(N-MeIm) do not display a pronounced effect of the N-MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH(-) substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH(-) or N-MeIm) in the trans position to the oxo group in the iron(IV)-oxo species does not significantly affect the activation barriers calculated for C-H dehydrogenation of the selected organic substrates.
Collapse
Affiliation(s)
- Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu YL, Zhao XJ, Yang XX, Li YF. A nanosized metal-organic framework of Fe-MIL-88NH₂ as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 2013; 138:4526-31. [PMID: 23775015 DOI: 10.1039/c3an00560g] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper, a nanosized porous metal-organic framework, Fe-MIL-88NH₂, was facilely prepared with a uniform octahedral shape by the addition of acetic acid, and for the first time was demonstrated to possess intrinsic peroxidase-like activity. Kinetic analysis and electron spin resonance measurements indicated that the catalytic behavior was consistent with typical Michaelis-Menten kinetics and follows a ping-pong mechanism. As a novel peroxidase mimic material, Fe-MIL-88NH₂ shows the advantages of high catalytic efficiency, ultrahigh stability and high biocompatibility in aqueous medium compared with natural enzymes and other peroxidase nanomimetics. Here, Fe-MIL-88NH₂ was used to quickly catalyze oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H₂O₂ to produce a colored product, which provided a simple, sensitive and selective method for the colorimetric detection of glucose. Glucose could be linearly detected in the range from 2.0 × 10⁻⁶ to 3.0 × 10⁻⁴ M with a detection limit of 4.8 × 10⁻⁷ M, and the color variation for glucose response was also obvious by visual observation at concentrations as low as 2.0 × 10⁻⁶ M. More importantly, the colorimetric method could be successfully applied to the determination of glucose in diluted serum samples.
Collapse
Affiliation(s)
- Ya Li Liu
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | | | | | |
Collapse
|
22
|
Nuzzo A, Piccolo A. Oxidative and Photoxidative Polymerization of Humic Suprastructures by Heterogeneous Biomimetic Catalysis. Biomacromolecules 2013; 14:1645-52. [DOI: 10.1021/bm400300m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Assunta Nuzzo
- Centro Interdipartimentale
di Ricerca sulla Risonanza
Magnetica Nucleare per l′Ambiente, l′Agroalimentare
ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055
Portici (NA), Italy
| | - Alessandro Piccolo
- Centro Interdipartimentale
di Ricerca sulla Risonanza
Magnetica Nucleare per l′Ambiente, l′Agroalimentare
ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055
Portici (NA), Italy
| |
Collapse
|
23
|
Ryabov AD. Green Challenges of Catalysis via Iron(IV)oxo and Iron(V)oxo Species. ADVANCES IN INORGANIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-404582-8.00004-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Hitomi Y, Hiramatsu K, Arakawa K, Takeyasu T, Hata M, Kodera M. An iron(iii) tetradentate monoamido complex as a nonheme iron-based peroxidase mimetic. Dalton Trans 2013; 42:12878-82. [DOI: 10.1039/c3dt51483h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Malvi B, Panda C, Dhar BB, Gupta SS. One pot glucose detection by [FeIII(biuret-amide)] immobilized on mesoporous silica nanoparticles: an efficient HRP mimic. Chem Commun (Camb) 2012; 48:5289-91. [DOI: 10.1039/c2cc30970j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Panda C, Ghosh M, Panda T, Banerjee R, Sen Gupta S. Fe(III) complex of biuret-amide based macrocyclic ligand as peroxidase enzyme mimic. Chem Commun (Camb) 2011; 47:8016-8. [PMID: 21674085 DOI: 10.1039/c1cc12686e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Fe(III) complex of a biuret-amide based macrocyclic ligand that exhibits both excellent reactivity for the activation of H(2)O(2) and high stability, especially at low pH and high ionic strength, is reported.
Collapse
Affiliation(s)
- Chakadola Panda
- CReST.Chemical Engineering Div., National Chemical laboratory, Dr Homi Bhabha Road, Pune, India 411008
| | | | | | | | | |
Collapse
|
27
|
Jin N, Lahaye DE, Groves JT. A “Push−Pull” Mechanism for Heterolytic O−O Bond Cleavage in Hydroperoxo Manganese Porphyrins. Inorg Chem 2010; 49:11516-24. [DOI: 10.1021/ic1015274] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ning Jin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Dorothée E. Lahaye
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|