1
|
Pass M, Dorosti N, Krautscheid H. New lanthanum (III) complexes containing azaphosphor β-diketon and diimine ligands: Synthesis, crystallography, morphology properties, DNA binding, DNA cleavage, and DFT calculation. Int J Biol Macromol 2024; 290:138998. [PMID: 39708856 DOI: 10.1016/j.ijbiomac.2024.138998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Two octa-coordinated lanthanum (III) complexes of deprotonated azaphosphor β-diketon and diimine ligands, [LnL3Q] (L = [Cl2CHC(O)NP(O)(NC6H12)2], Q = Phen (C1) and Bipy (C2)), were synthesized and characterized by elemental analysis, IR, and NMR spectra. X-ray crystallography revealed a distorted tetragonal antiprism LaO6N2 coordination geometry around the lanthanum atom in both compounds. Nano-sized complexes (Ć1 and Ć2) were synthesized via a sonochemical process and analyzed using SEM and XRPD. TGA-DTA analysis were performed on complexes in both bulk and nano scales. Redox behavior was also examined by cyclic voltammetry. The interaction between the complexes and calf thymus DNA (ct-DNA) was investigated using UV-Vis spectroscopy, fluorescence titration, viscosity measurements, and gel electrophoresis. C2 and Ć2 likely intercalate between DNA base pairs through van der Waals forces and hydrogen bonding, whereas C1 and Ć1 interact with DNA via groove binding. Further, result indicated the apparent association constant (Kapp) in the range of 4.53 × 104 M-1-26.86 × 104 M-1 with the highest value for nanocomplex Ć2. Fluorescence studies revealed dynamic and static quenching for C1, while the other compounds followed a static quenching process. Hirshfeld surface analysis and the NCI method were employed to demonstrate how non-covalent interactions influence the crystal packing through intermolecular interactions.
Collapse
Affiliation(s)
- Maryam Pass
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Niloufar Dorosti
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| | - Harald Krautscheid
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
2
|
Mandal B, Pramanik A, Sarkar D, Haldar A, Das D, Saha R, Mandal D, Bhattacharyya S. Novel Octahedral Nickel (II) Complex with Flexible Piperazinyl Moiety Exhibits Potent Cytotoxic Effect Along with Anti-Migratory and Anti-Metastatic Effect on Human Cancer Cells. ChemMedChem 2024; 19:e202300728. [PMID: 38757641 DOI: 10.1002/cmdc.202300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Synthesis of non-platinum transition metal complexes with N,O donor chelating ligand for application against pathogenesis of cancer with higher efficacy and selectivity is currently an important field of research. We assessed the anti-cancer effect of a mixed ligand Ni(II) complex on human breast and lung cancer cell lines in this investigation. Mononuclear mixed ligand octahedral Ni(II) complex [NiIIL(NO3)(MeOH)] complex (1), with tri-dentate phenol-based ligand 2,4-dichloro-6-((4-methylpiperazin-1-yl) methyl) phenol (HL) along with methanol and nitrate as ancillary ligand was prepared. Piperazine moiety of the ligand exists as boat conformation in this complex as revealed from single crystal X-ray study. UV-visible spectrum of complex (1) exhibits three distinct d-d bands due to spin-allowed 3 A2 g→3T1 g (P), 3 A2 g→3T1 g(F) and 3 A2 g→3T2 g(F) transitions as expected in an octahedral d8 system. Our study revealed that Complex (1) induces apoptotic cell death in mouse and human cancer cells such as mcf-7, A549 and MDA-MB-231 through transactivation of p53 and its pro-apoptotic downstream targets in a dose dependent manner. Furthermore, complex (1) was able to slow the migratory rate of MDA-MB-231 cells' in vitro as well as epithelia -mesenchymal transition (EMT), the key step for metastatic transition and malignancy. Over all our results suggest complex (1) as a potential agent in anti-tumor treatment regimen showing both cytotoxic and anti-metastatic activity against malignant neoplasia.
Collapse
Affiliation(s)
- Bikramaditya Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, -140306, India
| | - Anik Pramanik
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Debanjan Sarkar
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Anwesha Haldar
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Dona Das
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, Paschim Bardhaman, -713340, West Bengal, India
| | - Debdas Mandal
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Sankar Bhattacharyya
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| |
Collapse
|
3
|
Deka B, Sarkar T, Bhattacharyya A, Butcher RJ, Banerjee S, Deka S, Saikia KK, Hussain A. Synthesis, characterization, and cancer cell-selective cytotoxicity of mixed-ligand cobalt(III) complexes of 8-hydroxyquinolines and phenanthroline bases. Dalton Trans 2024; 53:4952-4961. [PMID: 38275106 DOI: 10.1039/d3dt04045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 μM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 μM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street, NW 20059, USA.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Sasanka Deka
- Department of Chemistry, University of Delhi, New Delhi 110024, India.
| | - Kandarpa K Saikia
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati 781014, Assam, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| |
Collapse
|
4
|
Behrsing T, Blair VL, Jaroschik F, Deacon GB, Junk PC. Rare Earths-The Answer to Everything. Molecules 2024; 29:688. [PMID: 38338432 PMCID: PMC10856286 DOI: 10.3390/molecules29030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Rare earths, scandium, yttrium, and the fifteen lanthanoids from lanthanum to lutetium, are classified as critical metals because of their ubiquity in daily life. They are present in magnets in cars, especially electric cars; green electricity generating systems and computers; in steel manufacturing; in glass and light emission materials especially for safety lighting and lasers; in exhaust emission catalysts and supports; catalysts in artificial rubber production; in agriculture and animal husbandry; in health and especially cancer diagnosis and treatment; and in a variety of materials and electronic products essential to modern living. They have the potential to replace toxic chromates for corrosion inhibition, in magnetic refrigeration, a variety of new materials, and their role in agriculture may expand. This review examines their role in sustainability, the environment, recycling, corrosion inhibition, crop production, animal feedstocks, catalysis, health, and materials, as well as considering future uses.
Collapse
Affiliation(s)
- Thomas Behrsing
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Victoria L. Blair
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | | | - Glen B. Deacon
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Sarkar T, Sahoo S, Neekhra S, Paul M, Biswas S, Babu BN, Srivastava R, Hussain A. A dipyridophenazine Ni(II) dithiolene complex as a dual-acting cancer phototherapy agent activatable within the phototherapeutic window. Eur J Med Chem 2023; 261:115816. [PMID: 37717381 DOI: 10.1016/j.ejmech.2023.115816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
A combination of photodynamic therapy (PDT) and photothermal therapy (PTT) within the phototherapeutic window (600-900 nm) can lead to significantly enhanced therapeutic outcomes, surpassing the efficacy observed with PDT or PTT alone in cancer phototherapy. Herein, we report a novel small-molecule mixed-ligand Ni(II)-dithiolene complex (Ni-TDD) with a dipyridophenazine ligand, demonstrating potent red-light PDT and significant near-infrared (NIR) light mild-temperature PTT activity against cancer cells and 3D multicellular tumour spheroids (MCTSs). The four-coordinate square planar complex exhibited a moderately intense absorption band (ε ∼ 3700 M-1cm-1) centered around 900 nm and demonstrated excellent dark and photostability in an aqueous phase. Ni-TDD induced a potent red-light (600-720 nm) PDT effect on HeLa cancer cells (IC50 = 1.8 μM, photo irritation factor = 44), triggering apoptotic cell death through efficient singlet oxygen generation. Ni-TDD showed a significant intercalative binding affinity towards double-helical calf thymus DNA, resulting in a binding constant (Kb) ∼ 106 M-1. The complex induced mild hyperthermia and exerted a significant mild-temperature PTT effect on MDA-MB-231 cancer cells upon irradiation with 808 nm NIR light. Simultaneous irradiation of Ni-TDD-treated HeLa MCTSs with red and NIR light led to a remarkable synergistic inhibition of growth, exceeding the effects of individual irradiation, through the generation of singlet oxygen and mild hyperthermia. Ni-TDD displayed minimal toxicity towards non-cancerous HPL1D and L929 cells, even at high micromolar concentrations. This is the first report of a Ni(II) complex demonstrating red-light PDT activity and the first example of a first-row transition metal complex exhibiting combined PDT and PTT effects within the clinically relevant phototherapeutic window. Our findings pave the way for designing and developing metal-dithiolene complexes as dual-acting cancer phototherapy agents using long wavelength light for treating solid tumors.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India.
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India.
| |
Collapse
|
6
|
Brito-Santos G, Hernández-Rodríguez C, Gil-Hernández B, Sanchiz J, Martín IR, González-Díaz B, Guerrero-Lemus R. Exploring Ln(III)-Ion-Based Luminescent Species as Down-Shifters for Photovoltaic Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5068. [PMID: 37512344 PMCID: PMC10383640 DOI: 10.3390/ma16145068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
In this work, we have compiled our research on lanthanide-based luminescent materials for use as down-shifter layers in photovoltaic (PV) mini-modules. The complexes we have prepared (C1-17), with formulas [Eu2(phen)2(bz)6] (C1), [Eu2(bphen)2(bz)6] (C2), [Eu(tta)3bphen] (C3), [Eu(bta)3pyz-phen] (C4), [Eu(tta)3pyz-phen] (C5), [Eu(bta)3me-phen] (C6), [Er(bta)3me-phen] (C7), [Yb(bta)3me-phen] (C8), [Gd(bta)3me-phen] (C9), [Yb(bta)3pyz-phen] (C10), [Er(tta)3pyz-phen] (C11), [Eu2(bz)4(tta)2(phen)2] (C12), [Gd2(bz)4(tta)2(phen)2] (C13), [EuTb(bz)4(tta)2(phen)2] (C14), [EuGd(bz)4(tta)2(phen)2] (C15), [Eu1.2Gd0.8(bz)4(tta)2(phen)2] (C16), and [Eu1.6Gd0.4(bz)4(tta)2(phen)2] (C17), can be grouped into three families based on their composition: Complexes C1-6 were synthesized using Eu3+ ions and phenanthroline derivatives as the neutral ligands and fluorinated β-diketonates as the anionic ligands. Complexes C7-11 were prepared with ligands similar to those of complexes C1-6 but were synthesized with Er3+, Yb3+, or Gd3+ ions. Complexes C12-17 have the general formula [M1M2(bz)4(tta)2(phen)2], where M1 and M2 can be Eu3+, Gd3+, or Tb3+ ions, and the ligands were benzoate (bz-), 2-thenoyltrifluoroacetone (tta-), and 1,10-phenanthroline (phen). Most of the complexes were characterized using X-ray techniques, and their photoluminescent properties were studied. We then assessed the impact of complexes in the C1-6 and C12-17 series on the EQE of PV mini-modules and examined the durability of one of the complexes (C6) in a climate chamber when embedded in PMMA and EVA films. This study emphasizes the methodology employed and the key findings, including enhanced mini-module efficiency. Additionally, we present promising results on the application of complex C6 in a bifacial solar cell.
Collapse
Affiliation(s)
- Gabriela Brito-Santos
- Departamento de Química, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain
| | - Cecilio Hernández-Rodríguez
- Departamento de Física, Facultad de Ciencias, Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain
| | - Beatriz Gil-Hernández
- Departamento de Química, Facultad de Ciencias, Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain
| | - Joaquín Sanchiz
- Departamento de Química, Facultad de Ciencias, Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain
| | - Inocencio R Martín
- Departamento de Física, Facultad de Ciencias, Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain
| | - Benjamín González-Díaz
- Departamento de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, Camino San Francisco de Paula S/N, 38206 La Laguna, Tenerife, Spain
| | - Ricardo Guerrero-Lemus
- Departamento de Física, Facultad de Ciencias, Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
7
|
Lu Z, Feng L, Jiang W, Wu P, Liu Y, Jiang J, Kuang S, Tang L, Li S, Zhong C, Zhou X. Mannan oligosaccharides alleviate oxidative injury in the head kidney and spleen in grass carp (Ctenopharyngodon idella) via the Nrf2 signaling pathway after Aeromonas hydrophila infection. J Anim Sci Biotechnol 2023; 14:58. [PMID: 37060042 PMCID: PMC10105433 DOI: 10.1186/s40104-023-00844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mannan oligosaccharides (MOS) are recommended as aquaculture additives owing to their excellent antioxidant properties. In the present study, we examined the effects of dietary MOS on the head kidney and spleen of grass carp (Ctenopharyngodon idella) with Aeromonas hydrophila infection. METHODS A total of 540 grass carp were used for the study. They were administered six gradient dosages of the MOS diet (0, 200, 400, 600, 800, and 1,000 mg/kg) for 60 d. Subsequently, we performed a 14-day Aeromonas hydrophila challenge experiment. The antioxidant capacity of the head kidney and spleen were examined using spectrophotometry, DNA fragmentation, qRT-PCR, and Western blotting. RESULTS After infection with Aeromonas hydrophila, 400-600 mg/kg MOS supplementation decreased the levels of reactive oxygen species, protein carbonyl, and malonaldehyde and increased the levels of anti-superoxide anion, anti-hydroxyl radical, and glutathione in the head kidney and spleen of grass carp. The activities of copper-zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase were also enhanced by supplementation with 400-600 mg/kg MOS. Furthermore, the expression of most antioxidant enzymes and their corresponding genes increased significantly with supplementation of 200-800 mg/kg MOS. mRNA and protein levels of nuclear factor erythroid 2-related factor 2 also increased following supplementation with 400-600 mg/kg MOS. In addition, supplementation with 400-600 mg/kg MOS reduced excessive apoptosis by inhibiting the death receptor pathway and mitochondrial pathway processes. CONCLUSIONS Based on the quadratic regression analysis of the above biomarkers (reactive oxygen species, malondialdehyde, and protein carbonyl) of oxidative damage in the head kidney and spleen of on-growing grass carp, the recommended MOS supplementation is 575.21, 557.58, 531.86, 597.35, 570.16, and 553.80 mg/kg, respectively. Collectively, MOS supplementation could alleviate oxidative injury in the head kidney and spleen of grass carp infected with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Shuwei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Chengbo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
8
|
Andiappan K, Sanmugam A, Deivanayagam E, Karuppasamy K, Kim HS, Vikraman D. Detailed investigations of rare earth (Yb, Er and Pr) based inorganic metal-ion complexes for antibacterial and anticancer applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Synthesis, characterization, in vitro biological evaluation and molecular docking studies of newly synthesized mononuclear lanthanum(III) complexes of N,N'-bis(2-aminoethyl)oxamide and phenanthroline bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Lu Z, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Li SW, Liu XA, Zhong CB, Zhou XQ. Mannan Oligosaccharides Application: Multipath Restriction From Aeromonas hydrophila Infection in the Skin Barrier of Grass Carp ( Ctenopharyngodon idella). Front Immunol 2021; 12:742107. [PMID: 34733280 PMCID: PMC8559429 DOI: 10.3389/fimmu.2021.742107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the efficacy of dietary Mannan oligosaccharides (MOS) supplementation on skin barrier function and the mechanism of on-growing grass carp (Ctenopharyngodon idella). Five hundred forty grass carp were fed for 60 days from the growing stage with six different levels of MOS diets (0, 200, 400, 600, 800, and 1,000 mg kg-1). At the end of the growth trial, the 14-day Aeromonas hydrophila challenge experiment has proceeded. The obtained data indicate that MOS could (1) decline skin lesion morbidity after being challenged by the pathogenic bacteria; (2) maintain physical barrier function via improving antioxidant ability, inhibiting excessive apoptosis, and strengthening the tight junction between the epithelial cell and the related signaling pathway (Nrf2/Keap1, p38MAPK, and MLCK); and (3) regulate immune barrier function by modulating the production of antimicrobial compound and expression of involved cytokines and the related signaling pathway (TOR and NFκB). Finally, we concluded that MOS supplementation reinforced the disease resistance and protected the fish skin barrier function from Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Sheng-Yao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Shu-Wei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiang-An Liu
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Kater L, Kater B, Jakupec MA, Keppler BK, Prokop A. KP772 overcomes multiple drug resistance in malignant lymphoma and leukemia cells in vitro by inducing Bcl-2-independent apoptosis and upregulation of Harakiri. J Biol Inorg Chem 2021; 26:897-907. [PMID: 34617137 PMCID: PMC8557194 DOI: 10.1007/s00775-021-01900-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Despite high cure rates in pediatric patients with acute leukemia, development of resistance limits the efficacy of antileukemic therapy. Tris(1,10-phenanthroline)tris(thiocyanato-κN)lanthanum(III) (KP772) is an experimental antineoplastic agent to which multidrug-resistant cell models have shown hypersensitivity. Antiproliferative and apoptotic activities of KP772 were tested in leukemia, lymphoma and solid tumor cell lines as well as primary leukemia cells (isolated from the bone marrow of a child with acute myeloid leukemia (AML). The ability to overcome drug resistances was investigated in doxorubicin- and vincristine-resistant cell lines. Real-time PCR was used to gain insight into the mechanism of apoptosis induction. KP772 inhibited proliferation and induced apoptosis in various leukemia and lymphoma cell lines in a concentration-dependent manner (LC50 = 1-2.5 µM). Primary AML cells were also sensitive to KP772, whereas daunorubicin showed no significant effect. KP772 induces apoptosis independently of Bcl-2, Smac, and the CD95 receptor and is also effective in caspase 3-deficient MCF7 cells, indicating that apoptosis is partly triggered independently of caspase 3. mRNA expression profiling revealed an upregulation of the BH3-only Bcl-2 protein Harakiri in the course of KP772-induced apoptosis. Remarkably, KP772 overcame drug resistance to doxorubicin and vincristine in vitro, and the apoptotic effect in resistant cells was even superior to that in non-resistant parental cells. In combination with vincristine, doxorubicin and cytarabine, synergistic effects were observed in BJAB cells. The cytotoxic potency in vitro/ex vivo and the remarkable ability to overcome multidrug resistance propose KP772 as a promising candidate drug for antileukemic therapy, especially of drug-refractory malignancies.Graphic abstract.
Collapse
Affiliation(s)
- Lisa Kater
- Department of Pediatric Oncology/Hematology, University Medical Center Charité, Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Naturopathy, Immanuel Hospital Berlin, Königstraße 63, 14109, Berlin, Germany
| | - Benjamin Kater
- Department of Pediatric Oncology/Hematology, University Medical Center Charité, Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany.,MVZ Nuclear Medicine, Vivantes Hospital "Am Urban", Dieffenbachstraße 1, 10967, Berlin, Germany
| | - Michael A Jakupec
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria. .,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.
| | - Bernhard K Keppler
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Aram Prokop
- Department of Pediatric Oncology/Hematology, University Medical Center Charité, Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19049, Schwerin, Germany.,Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamerstraße 59, 50735, Cologne, Germany.,Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
12
|
Shahedi A, Bolorizadeh MA, Karimi-Maleh H. A europium (III) complex tested for deoxyribonucleic acid-binding, bovine serum albumin binding, and antibacterial activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Sarkar T, Kumar A, Sahoo S, Hussain A. Mixed-Ligand Cobalt(III) Complexes of a Naturally Occurring Coumarin and Phenanthroline Bases as Mitochondria-Targeted Dual-Purpose Photochemotherapeutics. Inorg Chem 2021; 60:6649-6662. [PMID: 33855849 DOI: 10.1021/acs.inorgchem.1c00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bioessential nature of cobalt and the rich photochemistry of its coordination complexes can be exploited to develop potential next-generation photochemotherapeutics. A series of six novel mixed-ligand cobalt(III) complexes of the formulation [Co(B)2(L)]ClO4 (1-6), where B is an N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1 and 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2 and 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3 and 6), and L is an O,O-donor dianionic ligand derived from catechol (1,2-dihydroxybenzene, cat2-, in 1-3) or esculetin (6,7-dihydoxycoumarin, esc2-, in 4-6), have been prepared and characterized, and their light-triggered cytotoxicity has been studied in cancer cells. The single-crystal X-ray diffraction structures of complexes 1 (as PF6- salt, 1a) and 2 show distorted octahedral geometries around the cobalt(III) center formed by the set of N4O2 donor atoms. The low-spin and 1:1 electrolytic complexes 1-6 display a d-d transition around 700 nm. Complexes 4-6 with a coordinated esc2- ligand additionally display a π → π* intraligand transition centered at 403 nm. Complexes 4-6 possessing a naturally occurring and photoactive esc2- ligand show high visible-light-triggered cytotoxicity against HeLa and MCF-7 cancer cells, yielding remarkably low micromolar IC50 values while being much less toxic under dark conditions. Control complexes 1-3 possessing the photoinactive cat2- ligand show significantly less cytotoxicity either in the presence of light or in the dark. The complex-induced cell death is apoptotic in nature caused by the formation of reactive oxygen species via a type 1 photoredox pathway. Fluorescence microscopy of HeLa cells treated with complex 6 reveals mitochondrial localization of the complex. A significant decrease in the dark toxicity of free esculetin and dppz base is observed upon coordination to cobalt(III). Complexes bind to calf-thymus DNA with significant affinity, but 6 binds with the greatest affinity. Complex 6 efficiently photocleaves supercoiled DNA to its nicked circular form when irradiated with visible light via a photoredox type 1 pathway involving hydroxyl radicals (HO•). Thus, complex 6 showing remarkable visible-light-triggered cytotoxicity but negligible toxicity in the dark is a good candidate for cancer photochemotherapy applications.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India
| |
Collapse
|
14
|
DNA Intercalating Near-Infrared Luminescent Lanthanide Complexes Containing Dipyrido[3,2- a:2',3'- c]phenazine (dppz) Ligands: Synthesis, Crystal Structures, Stability, Luminescence Properties and CT-DNA Interaction. Molecules 2020; 25:molecules25225309. [PMID: 33203056 PMCID: PMC7697401 DOI: 10.3390/molecules25225309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022] Open
Abstract
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/2 → 4I9/2 (870.8 nm), 4F3/2 → 4I11/2 (1052.7 nm) and 4F3/2 → 4I13/2 (1334.5 nm); b) Er3+: 4I13/2 → 4I15/2 (1529.0 nm) c) Yb3+: 2F5/2 → 2F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.
Collapse
|
15
|
Yang QY, Cao QQ, Zhang YL, Xu XF, Deng CX, Kumar R, Zhu XM, Wang XJ, Liang H, Chen ZF. Synthesis, structural characterization and antitumor activity of six rare earth metal complexes with 8-hydroxyquinoline derivatives. J Inorg Biochem 2020; 211:111175. [DOI: 10.1016/j.jinorgbio.2020.111175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
|
16
|
Yang P, Chen H, Wang ZZ, Zhang LL, Zhang DD, Shi QS, Xie XB. Crystal structures and biological properties of aroylhydrazone Ni(II) complexes. J Inorg Biochem 2020; 213:111248. [PMID: 33011623 DOI: 10.1016/j.jinorgbio.2020.111248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 11/16/2022]
Abstract
Three aroylhydrazone ligands ((Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-2-hydroxybenzohydrazide, HL1; (Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-3-hydroxybenzohydrazide, HL2; and (Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-4-hydroxybenzohydrazide, HL3) and their complexes with nickel (Ni(L1)2, 1; Ni(L2)2, 2; Ni(L3)2∙DMF, 3) were synthesized and characterized by ESI-MS, NMR, IR, UV-vis and elemental analysis techniques. The molecular structure of ligand (HL2) and complexes 1-3 was confirmed by single crystal X-ray crystallography. The single crystal X-ray structure of complexes 1-3 showed a distorted square planar geometry around the metal center, and the ligands adopt a bidentate chelating mode. The interaction of calf thymus (ctDNA) with nickel(II) complexes was explored using absorption, emission spectrum, viscosity, and circular dichroism methods. These complexes exhibited moderate affinity for ctDNA through groove binding modes. The most efficient DNA binder was complex 2. The interaction of the complexes with DNA has also been supported by molecular docking study and molecular dynamics simulation. An in vitro cytotoxicity study of the complexes found low activity against human cervical (Hela) and breast (MCF-7) cancer cell lines, with the best results for complex 2, where IC50 values are 86 μM and 92 μM respectively.
Collapse
Affiliation(s)
- Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Zi-Zhou Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Li-Lei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
| | - Dan-Dan Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
17
|
Brito-Santos G, Gil-Hernández B, Martín IR, Guerrero-Lemus R, Sanchiz J. Visible and NIR emitting Yb(iii) and Er(iii) complexes sensitized by β-diketonates and phenanthroline derivatives. RSC Adv 2020; 10:27815-27823. [PMID: 35516967 PMCID: PMC9055610 DOI: 10.1039/d0ra05539e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022] Open
Abstract
Long lifetimes and high quantum yields are obtained in the reported complexes.
Collapse
Affiliation(s)
| | - Beatriz Gil-Hernández
- Departamento de Química
- Facultad de Ciencias
- Universidad de La Laguna
- Spain
- Instituto Universitario de Materiales y Nanotecnología
| | - Inocencio R. Martín
- Instituto Universitario de Materiales y Nanotecnología
- Universidad de La Laguna
- Spain
- Departamento de Física
- Facultad de Ciencias
| | - Ricardo Guerrero-Lemus
- Instituto Universitario de Materiales y Nanotecnología
- Universidad de La Laguna
- Spain
- Departamento de Física
- Facultad de Ciencias
| | - Joaquín Sanchiz
- Departamento de Química
- Facultad de Ciencias
- Universidad de La Laguna
- Spain
- Instituto Universitario de Materiales y Nanotecnología
| |
Collapse
|
18
|
Musib D, Pal M, Raza MK, Roy M. Photo-physical, theoretical and photo-cytotoxic evaluation of a new class of lanthanide(iii)–curcumin/diketone complexes for PDT application. Dalton Trans 2020; 49:10786-10798. [DOI: 10.1039/d0dt02082f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Improved ISC in La(iii) complex of curcumin, on activation with visible light, has resulted in high yield of 1O2 in HeLa/MCF-7 cells, leading to the oxidative stress which was responsible for remarkable caspase 3/7-dependent apoptotic photocytotoxicity.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Mrityunjoy Pal
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Mithun Roy
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| |
Collapse
|
19
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Beltrán-Leiva MJ, Fuenzalida-Valdivia I, Cantero-López P, Bulhões-Figueira A, Alzate-Morales J, Páez-Hernández D, Arratia-Pérez R. Classical and Quantum Mechanical Calculations of the Stacking Interaction of NdIII Complexes with Regular and Mismatched DNA Sequences. J Phys Chem B 2019; 123:3219-3231. [DOI: 10.1021/acs.jpcb.9b00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- María J. Beltrán-Leiva
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
| | - Isabel Fuenzalida-Valdivia
- Facultad de Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago 8370146, Chile
| | - Plinio Cantero-López
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
- Center for Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, 8370146, Chile
| | - Ana Bulhões-Figueira
- Centro Universitário Estácio de Ribeirão Preto, Rua Abrahão Issa Halach 980, Ribeirãnia, Ribeirão Preto, Sao Paulo 14096-160, Brazil
| | - Jans Alzate-Morales
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
- Center for Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, 8370146, Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
- Center for Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, 8370146, Chile
| |
Collapse
|
21
|
|
22
|
Sheikh AH, Khalid A, Khan F, Begum A. Fluorescent Gadolinium(III)-Oligopeptide Complexes and Carbon Nanotube Composite as Dual Modality Anticancer Agents. ChemistrySelect 2019. [DOI: 10.1002/slct.201802810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Aasif Hassan Sheikh
- Department of Chemistry; Jamia Hamdard University, New; Delhi - 110062 India
| | - Anam Khalid
- Department of Chemistry; Jamia Hamdard University, New; Delhi - 110062 India
| | - Farah Khan
- Department of Biochemistry; Jamia Hamdard University; New Delhi - 110062 India
| | - Ameerunisha Begum
- Department of Chemistry; Jamia Hamdard University, New; Delhi - 110062 India
| |
Collapse
|
23
|
Nandi M, Bej S, Ghosh TK, Ghosh P. A multifunctional catenated host for the efficient binding of Eu3+ and Gd3+. Chem Commun (Camb) 2019; 55:3085-3088. [DOI: 10.1039/c9cc00090a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[2]Catenane consists of various functional groups and shows efficient binding towards Eu3+ and Gd3+. A cavity-bound catenated structure is also demonstrated by single crystal X-ray analysis.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Somnath Bej
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tamal Kanti Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Pradyut Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
24
|
In vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes. Sci Rep 2018; 8:3054. [PMID: 29445233 PMCID: PMC5812993 DOI: 10.1038/s41598-018-21366-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
A Schiff base ligand (SBL), N2, N3-bis (anthracen-9-ylmethylene) pyridine-2, 3-diamine, was synthesized through the condensation of 2,6-diaminopyridine and anthracene-9-carbaldehyde using a 1:2 ratio. 1H NMR spectra confirmed the observation of non-involvement aromatic carboxylic proton in SBL. A novel series of lanthanide (i.e., praseodymium (Pr), erbium (Er), and ytterbium (Yb))-based SBL metal complexes was successfully synthesized, and their functional groups were elaborately demonstrated using UV–visible, Fourier transform infrared (FT-IR), and fluorescence spectroscopy analyses. FT-IR spectral studies revealed that SBL behaved as a bidentate ligand and it was structured with metal ions by the two azomethine nitrogens. The synthesized SBL-based metal complexes were elaborately performed for cytotoxicity activity versus Vero, human breast cancer (MCF7), and cervical (HeLa) anticancer cell lines.
Collapse
|
25
|
Tabrizi L, Chiniforoshan H. New Ru II pincer complexes: synthesis, characterization and biological evaluation for photodynamic therapy. Dalton Trans 2018; 45:18333-18345. [PMID: 27805201 DOI: 10.1039/c6dt03502g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three new ruthenium(ii) complexes of NCN pincer and phenylcyanamide derivative ligands of the formula [Ru(L)(Ph2phen)(3,5-(NO2)2pcyd)], 1, [Ru(L)(Me2phen)(3,5-(NO2)2pcyd)], 2, and [Ru(L)(Cl2phen)(3,5-(NO2)2pcyd)], 3 (HL: 5-methoxy-1,3-bis(1-methyl-1H-benzo[d]imidazol-2-yl)benzene, 3,5-(NO2)2pcyd: 3,5-(NO2)2pcyd, Ph2phen: 4,7-diphenyl-1,10-phenanthroline, Me2phen: 4,7-dimethyl-1,10-phenanthroline, Cl2phen: 4,7-dichloro-1,10-phenanthroline) have been synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). The complexes exhibited promising 1O2 production quantum yields comparable with PSs available on the market. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. All complexes cleave SC-DNA efficiently on photoactivation at 350 nm with the formation of singlet oxygen (1O2) and hydroxyl radicals (˙OH) in type-II and photoredox pathways. Complexes 1-3 showed very good uptake in cervical cancer cells (HeLa). The compounds studied were found to exhibit low toxicity against HeLa cells (IC50 > 300 μM) and, remarkably, on non-cancerous MRC-5 cells (IC50 > 100 μM) in the dark. However, 1 showed very promising behavior with an increment of about 90 times, in its cytotoxicity upon light illumination at 420 nm in addition to very good human plasma stability.
Collapse
Affiliation(s)
- Leila Tabrizi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Chiniforoshan
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
26
|
Li S, Ma Z, Liu X, Tian J, Yan S. Synthesis, crystal structures, DNA/bovine serum albumin binding, DNA cleavage and cytotoxicity of five mononuclear zinc(II) complexes. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Si‐Tong Li
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Zhong‐Ying Ma
- School of Pharmaceutical SciencesTianjin Medical University Tianjin 300070 People's Republic of China
| | - Xin Liu
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Jin‐Lei Tian
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Shi‐Ping Yan
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
27
|
Asadi Z, Mosallaei H, Sedaghat M, Yousefi R. Competitive binding affinity of two lanthanum(III) macrocycle complexes toward DNA and bovine serum albumin in water. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1172-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Beltrán-Leiva MJ, Cantero-López P, Zúñiga C, Bulhões-Figueira A, Páez-Hernández D, Arratia-Pérez R. Theoretical Method for an Accurate Elucidation of Energy Transfer Pathways in Europium(III) Complexes with Dipyridophenazine (dppz) Ligand: One More Step in the Study of the Molecular Antenna Effect. Inorg Chem 2017; 56:9200-9208. [DOI: 10.1021/acs.inorgchem.7b01221] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- María J. Beltrán-Leiva
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular
Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Plinio Cantero-López
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular
Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - César Zúñiga
- Centro de Nanociencias
Aplicadas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Ana Bulhões-Figueira
- Centro Universitário Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 Ribeirânia, Ribeirão Preto, Sao Paulo 14096-160, Brazil
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular
Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Centro de Nanociencias
Aplicadas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular
Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Centro de Nanociencias
Aplicadas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| |
Collapse
|
29
|
Ung P, Clerc M, Huang H, Qiu K, Chao H, Seitz M, Boyd B, Graham B, Gasser G. Extending the Excitation Wavelength of Potential Photosensitizers via Appendage of a Kinetically Stable Terbium(III) Macrocyclic Complex for Applications in Photodynamic Therapy. Inorg Chem 2017; 56:7960-7974. [DOI: 10.1021/acs.inorgchem.7b00677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Phuc Ung
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michèle Clerc
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Huaiyi Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Kangqiang Qiu
- School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | | - Gilles Gasser
- Laboratory
for Inorganic Chemical Biology, Chimie ParisTech, PSL Research University, F-75005 Paris, France
| |
Collapse
|
30
|
Niroomand S, Khorasani-Motlagh M, Noroozifar M, Jahani S, Moodi A. Photochemical and DFT studies on DNA-binding ability and antibacterial activity of lanthanum(III)-phenanthroline complex. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Abbas Z, Dasari S, Patra AK. Ternary Eu(iii) and Tb(iii) β-diketonate complexes containing chalcones: photophysical studies and biological outlook. RSC Adv 2017. [DOI: 10.1039/c7ra08543e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ternary Eu(iii) and Tb(iii) β-diketonate complexes containing chalcones were studied for their structures, photophysical properties, interactions with DNA and serum protein, and photo-induced DNA cleavage activity.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
32
|
Singh K, Srivastava P, Patra AK. Binding interactions with biological targets and DNA photocleavage activity of Pr(III) and Nd(III) complexes of dipyridoquinoxaline. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Dasari S, Abbas Z, Kumar P, Patra AK. Photosensitized samarium(iii) and erbium(iii) complexes of planar N,N-donor heterocyclic bases: crystal structures and evaluation of biological activity. CrystEngComm 2016. [DOI: 10.1039/c5ce02387d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of Sm(iii) and Er(iii) complexes of N,N-donor heterocyclic bases were studied for their crystal structures, luminescence properties, binding with biomolecules and photo-induced DNA damage activity.
Collapse
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Priyaranjan Kumar
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| |
Collapse
|
34
|
Sarkar T, Banerjee S, Mukherjee S, Hussain A. Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymium(iii) complex of terpyridine and curcumin in cancer cells. Dalton Trans 2016; 45:6424-38. [DOI: 10.1039/c5dt04775g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A mixed-ligand neodymium(iii) complex of ferrocene appended terpyridine and curcumin targets the mitochondria and shows remarkable visible-light induced cytotoxicity in HeLa and MCF-7 cancer cells while being much less toxic in dark and to MCF-10A normal cells.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Sanjoy Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| |
Collapse
|
35
|
Pyrazolone incorporating bipyridyl metallointercalators as effective DNA, protein and lung cancer targets: Synthesis, characterization and in vitro biocidal evaluation. Chem Biol Interact 2015; 240:250-66. [PMID: 26341650 DOI: 10.1016/j.cbi.2015.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/10/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022]
|
36
|
A mononuclear Cu(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: Synthesis, crystal structure, DNA- and BSA-binding, molecular modeling, and anticancer activity against MCF-7, A-549, and HT-29 cell lines. Eur J Med Chem 2015; 96:66-82. [DOI: 10.1016/j.ejmech.2015.04.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
37
|
Liu J, Duan Q, Wang J, Song Z, Qiao X, Wang H. Photocontrolled nitric oxide release from two nitrosylruthenium isomer complexes and their potential biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:015004. [PMID: 25621873 DOI: 10.1117/1.jbo.20.1.015004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Nitric oxide (NO) has key regulatory roles in various biological and medical processes. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO donors. Release of NO from metal-nitrosyl complexes upon exposure to light is a strategy that could allow for the site-specific delivery of the reactive species NO to physiological targets. The photodissociation of NO from two nitrosylruthenium(II) isomer complexes {cis- and trans-[Ru(OAc)(2mqn)(2)NO]} was demonstrated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry spectra, and electron paramagnetic resonance spectra further prove the photoinduced NO release by spin trapping of NO free radicals upon photoirradiation. Real-time NO release was quantitatively measured by electrochemistry with an NO-specific electrode. The quantitative control of NO release from [Ru(OAc)(2mqn)(2)NO] in aqueous solutions was done by photoirradiation at different wavelengths. Both isomers show photoinduced damage on plasmid DNA, but the trans isomer has higher cytotoxicity and photocytotoxicity activity against the HeLa tumor cell line than that of the cis isomer. Nitrosylruthenium(II) complex, with 8-quinolinol derivatives as ligands, has a great potential as a photoactivated NO donor reagent for biomedical applications.
Collapse
Affiliation(s)
- Jiao Liu
- Shanxi University, Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, 92 Wucheng Road, Taiyuan 030006, China
| | - Qingqing Duan
- Shanxi University, Institute of Opto-Electronics, State Key Lab of Quantum Optics and Quantum Optics Devices, 92 Wucheng Road, Taiyuan 030006, China
| | - Jianru Wang
- Shanxi University, Institute of Opto-Electronics, State Key Lab of Quantum Optics and Quantum Optics Devices, 92 Wucheng Road, Taiyuan 030006, ChinacShanxi Medical University, Institute of Basic Medicine, 56 Xinjiannan Road, Taiyuan 030012, China
| | - Zhen Song
- Shanxi University, Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, 92 Wucheng Road, Taiyuan 030006, China
| | - Xiaoyan Qiao
- Shanxi University, College of Physics & Electronics Engineering, 92 Wucheng Road, Taiyuan 030006, China
| | - Hongfei Wang
- Shanxi University, Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, 92 Wucheng Road, Taiyuan 030006, ChinabShanxi University, Institute of Opto-Electronics, State Key Lab of Quantum Op
| |
Collapse
|
38
|
Sarkar T, Banerjee S, Hussain A. Remarkable visible light-triggered cytotoxicity of mitochondria targeting mixed-ligand cobalt(iii) complexes of curcumin and phenanthroline bases binding to human serum albumin. RSC Adv 2015. [DOI: 10.1039/c4ra17314g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Co(iii) complexes of curcumin and phenanthroline bases show remarkable visible-light induced cytotoxicity in HeLa cells but are much less toxic in dark and to normal cells. The complexes bind to HSA with significant affinity.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| |
Collapse
|
39
|
Dasari S, Patra AK. Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antennae: structures and biological perspectives. Dalton Trans 2015; 44:19844-55. [DOI: 10.1039/c5dt02852c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent europium and terbium complexes of quinoxaline and phenazine ligands were studied for their structures, luminescence properties, interaction with DNA, and photo-induced DNA cleavage activity.
Collapse
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
40
|
Singh K, Banerjee S, Patra AK. Photocytotoxic luminescent lanthanide complexes of DTPA–bisamide using quinoline as photosensitizer. RSC Adv 2015. [DOI: 10.1039/c5ra24329g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Luminescent lanthanide(iii) complexes of DTPA–bisamide quinoline as photosensitizer were studied for their structures, luminescent properties, binding with DNA and protein, photo-induced DNA cleavage, photocytotoxicity and cellular uptake studies.
Collapse
Affiliation(s)
- Khushbu Singh
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
41
|
Sun Q, Yan P, Niu W, Chu W, Yao X, An G, Li G. NIR luminescence of a series of benzoyltrifluoroacetone erbium complexes. RSC Adv 2015. [DOI: 10.1039/c5ra12954k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of five benzoyltrifluoroacetone Er(iii) complexes with various azacyclo-auxiliary ligands exhibit unique NIR luminescence and may be potential materials in optical amplifiers.
Collapse
Affiliation(s)
- Qingyan Sun
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| | - Wanying Niu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| | - Wenyi Chu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| | - Xu Yao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- P. R. China
| |
Collapse
|
42
|
Chen M, Tang XY, Yang SP, Li HH, Zhao HQ, Jiang ZH, Chen JX, Chen WH. Five water-soluble zwitterionic copper(ii)-carboxylate polymers: role of dipyridyl coligands in enhancing the DNA-binding, cleaving and anticancer activities. Dalton Trans 2015; 44:13369-77. [DOI: 10.1039/c5dt01648g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Five water-soluble zwitterionic copper-carboxylate polymers were prepared and their DNA-binding, cleaving and anticancer activities were studied.
Collapse
Affiliation(s)
- Ming Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xiao-Yan Tang
- Department of Chemistry and Materials Engineering
- Jiangsu Key Laboratory of Advanced Functional Materials
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Shui-Ping Yang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Huan-Huan Li
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Hai-Qing Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Zhi-Hong Jiang
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- Macau
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
43
|
Chen M, Tang XY, Chen MZ, Chen JX, Chen WH. Lanthanide-Based Polymers with Charged Ligand Backbones: Triple-Stranded Chain Structures and their DNA Cleavage Studies. Aust J Chem 2015. [DOI: 10.1071/ch14025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four rare-earth metal complexes, [Ln(Ccbp)3(H2O)3]n (Ln = La (1), Ce (2), Pr (3) and Nd (4)) are synthesised from the ligand H2CcbpBr (H2CcbpBr = 4-carboxy-1-(4-carboxybenzyl)pyridinium bromide) and the respective lanthanide metal ions. Complexes 1–4 are isostructural in that every three Ccbp– ligands juxtapose two Ln3+ ions in a monodentate coordination mode to form triple-stranded one-dimensional chain structures. Each central Ln3+ atom further associates with three H2O molecules, furnishing a monocapped square-antiprism geometry. Agarose gel electrophoresis studies indicate that 1–4 are capable of cleaving DNA in the presence of H2O2, most probably via an oxidative cleavage mechanism. Complexes 1 and 2 exhibited catalytic efficiencies (kmax/KM) of 37.69 and 34.11 h–1 mM–1, and are approx. 15- and 20-fold more effective than those of complexes 3 (kmax/KM = 1.75 h–1 mM–1) and 4 (kmax/KM = 2.21 h–1 mM–1).
Collapse
|
44
|
Shao J, Ma ZY, Li A, Liu YH, Xie CZ, Qiang ZY, Xu JY. Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: Syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity. J Inorg Biochem 2014; 136:13-23. [DOI: 10.1016/j.jinorgbio.2014.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022]
|
45
|
Shao J, Bao WG, Tian H, Li B, Zhao XF, Qiao X, Xu JY. Nuclease activity and protein-binding properties of a novel tetranuclear thiosemicarbazide Pt(ii) complex. Dalton Trans 2014; 43:1663-71. [DOI: 10.1039/c3dt52044g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Chen GJ, Wang ZG, Qiao X, Xu JY, Tian JL, Yan SP. Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity studies of a family of heavy rare earth complexes. J Inorg Biochem 2013; 127:39-45. [DOI: 10.1016/j.jinorgbio.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 01/22/2023]
|
47
|
Hussain A, Somyajit K, Banik B, Banerjee S, Nagaraju G, Chakravarty AR. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III) complex formation. Dalton Trans 2013; 42:182-95. [PMID: 23108133 DOI: 10.1039/c2dt32042h] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lanthanide(III) complexes [Ln(R-tpy)(cur)(NO3)2] (Ln = La(III) in 1, 2; Gd(III) in 5, 6) and [Ln(R-tpy)(scur)(NO3)2] (Ln = La(III) in 3, 4; Gd(III) in 7, 8), where R-tpy is 4′-phenyl-2,2′:6′,2′′-terpyridine (ph-tpy in 1, 3, 5, 7), 4′-(1-pyrenyl)-2,2′:6′,2′′-terpyridine (py-tpy in 2, 4, 6, 8), Hcur is curcumin (in 1, 2, 5, 6) and Hscur is diglucosylcurcumin (in 3, 4, 7, 8), were prepared and their DNA photocleavage activity and photocytotoxicity studied. Complexes [La(ph-tpy)(cur)(NO3)2] (1) and [Gd(ph-tpy)(cur)(NO3)2] (5) were structurally characterized. The complexes in aqueous-DMF showed an absorption band near 430 nm and an emission band near 515 nm when excited at 420 nm. The complexes are moderate binders to calf-thymus DNA. They cleave plasmid supercoiled DNA to its nicked circular form in UV-A (365 nm) and visible light (454 nm) via (1)O2 and ˙OH pathways. The complexes are remarkably photocytotoxic in HeLa cells in visible light (λ = 400–700 nm) and are non-toxic in the dark. FACScan analysis of the HeLa cells treated with 2 and 4 showed cell death via an apoptotic pathway. Nuclear localization of 1–4 is evidenced from confocal imaging on HeLa cells. The hydrolytic instability of curcumin gets significantly reduced upon binding to the lanthanide ions while retaining its photocytotoxic potential.
Collapse
Affiliation(s)
- Akhtar Hussain
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | | | |
Collapse
|
48
|
Chen GJ, Wang ZG, Kou YY, Tian JL, Yan SP. Impact of metal on the DNA photo-induced cleavage activity of a family of Phterpy complexes. J Inorg Biochem 2013; 122:49-56. [DOI: 10.1016/j.jinorgbio.2013.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
49
|
Goswami TK, Gadadhar S, Karande AA, Chakravarty AR. Photocytotoxic ferrocene-appended (l-tyrosine)copper(II) complexes of phenanthroline bases. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
|