1
|
Gil-Gavilán D, Amaro-Gahete J, Cosano D, Castillo-Rodríguez M, de Miguel G, Esquivel D, Ruiz JR, Romero-Salguero FJ. Visible-Light-Driven Photocatalytic H 2 Production Using Composites of Co-Al Layered Double Hydroxides and Graphene Derivatives. Inorg Chem 2024; 63:10500-10510. [PMID: 38805658 PMCID: PMC11167638 DOI: 10.1021/acs.inorgchem.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
The direct conversion of solar energy into chemical energy represents an enormous challenge for current science. One of the commonly proposed photocatalytic systems is composed of a photosensitizer (PS) and a catalyst, together with a sacrificial electron donor (ED) when only the reduction of protons to H2 is addressed. Layered double hydroxides (LDH) have emerged as effective catalysts. Herein, two Co-Al LDH and their composites with graphene oxide (GO) or graphene quantum dots (GQD) have been prepared by coprecipitation and urea hydrolysis, which determined their structure and so their catalytic performance, giving H2 productions between 1409 and 8643 μmol g-1 using a ruthenium complex as PS and triethanolamine as ED at 450 nm. The influence of different factors, including the integration of both components, on their catalytic behavior, has been studied. The proper arrangement between the particles of both components seems to be the determining factor for achieving a synergistic interaction between LDH and GO or GQD. The novel Co-Al LDH composite with intercalated GQD achieved an outstanding catalytic efficiency (8643 μmol H2 g-1) and exhibited excellent reusability after 3 reaction cycles, thus representing an optimal integration between graphene materials and Co-Al LDH for visible light driven H2 photocatalytic production.
Collapse
Affiliation(s)
- Dolores
G. Gil-Gavilán
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Juan Amaro-Gahete
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
- UGR-Carbon
− Materiales Polifuncionales Basados en Carbono, Departamento
de Química Inorgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente, Universidad de Granada, 18071 Granada, Spain
| | - Daniel Cosano
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Miguel Castillo-Rodríguez
- Departamento
de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Gustavo de Miguel
- Departamento
de Química Física y Termodinámica Aplicada, Instituto
Químico para la Energía y el Medioambiente (IQUEMA),
Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Dolores Esquivel
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - José R. Ruiz
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Francisco J. Romero-Salguero
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| |
Collapse
|
2
|
30 Years of Vicente Rives’ Contribution to Hydrotalcites, Synthesis, Characterization, Applications, and Innovation. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrotalcite is the name of a mineral discovered in Sweden in 1842 whose formula is Mg6Al2(OH)16CO3·4H2O and presents a layered crystal structure that consists of positively charged hydroxide layers neutralized by interlayer anions as carbonate, also containing water molecules. The ease of their synthesis and the possibility of incorporating other layer cations and interlayer anions have made this type of layered double hydroxides (LDH) a group of very interesting materials for industry. In addition to LDH and due to the name of the most representative mineral, this group of compounds is commonly called hydrotalcite-like materials, or simply hydrotalcites. Another way of referring to them is as anionic clays because of their layered structure but, unlike classical clays, their layers are positive and their interlayers are anionic. The main fields of application of these solids comprise catalysis, catalyst support, anion scavengers, polymer stabilizers, drug carriers, or adsorbents. This paper briefly summarizes some of the work carried out by Professor Rives over more than thirty years, focused, among other topics, on the study of the synthesis, characterization, and applications of hydrotalcites. This research has led him to train many researchers, to collaborate with research groups around the world and to publish reference papers and books in this field. This contribution, written to be included in the Special Issue “A Themed Issue in Honor of Prof. Dr. Vicente Rives”, edited on the occasion of his retirement, only shows a small part of his scientific research and intends to value and recognize his cleverness and his enormous scientific and human quality.
Collapse
|
3
|
Shan YL, Sun HL, Zhao SL, Tang PL, Zhao WT, Ding JW, Yu WL, Li LN, Feng X, Chen D. Effects of Support and CO 2 on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Ling Shan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huai-Lu Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Lei Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Long Tang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Ting Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun-Wei Ding
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Long Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 201204, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
4
|
Abstract
Fe(II)-bearing minerals (magnetite, siderite, green rust, etc.) are common products of microbial Fe(III) reduction, and they provide a reservoir of reducing capacity in many subsurface environments that may contribute to the reduction of redox active elements such as vanadium; which can exist as V(V), V(IV), and V(III) under conditions typical of near-surface aquatic and terrestrial environments. To better understand the redox behavior of V under ferrugenic/sulfidogenic conditions, we examined the interactions of V(V) (1 mM) in aqueous suspensions containing 50 mM Fe(II) as magnetite, siderite, vivianite, green rust, or mackinawite, using X-ray absorption spectroscopy at the V K-edge to determine the valence state of V. Two additional systems of increased complexity were also examined, containing either 60 mM Fe(II) as biogenic green rust (BioGR) or 40 mM Fe(II) as a mixture of biogenic siderite, mackinawite, and magnetite (BioSMM). Within 48 h, total solution-phase V concentrations decreased to <20 µM in all but the vivianite and the biogenic BiSMM systems; however, >99.5% of V was removed from solution in the BioSMM and vivianite systems within 7 and 20 months, respectively. The most rapid reduction was observed in the mackinawite system, where V(V) was reduced to V(III) within 48 h. Complete reduction of V(V) to V(III) occurred within 4 months in the green rust system, 7 months in the siderite system, and 20 months in the BioGR system. Vanadium(V) was only partially reduced in the magnetite, vivianite, and BioSMM systems, where within 7 months the average V valence state stabilized at 3.7, 3.7, and 3.4, respectively. The reduction of V(V) in soils and sediments has been largely attributed to microbial activity, presumably involving direct enzymatic reduction of V(V); however the reduction of V(V) by Fe(II)-bearing minerals suggests that abiotic or coupled biotic–abiotic processes may also play a critical role in V redox chemistry, and thus need to be considered in modeling the global biogeochemical cycling of V.
Collapse
|
5
|
Pearce CI, Moore RC, Morad JW, Asmussen RM, Chatterjee S, Lawter AR, Levitskaia TG, Neeway JJ, Qafoku NP, Rigali MJ, Saslow SA, Szecsody JE, Thallapally PK, Wang G, Freedman VL. Technetium immobilization by materials through sorption and redox-driven processes: A literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:132849. [PMID: 32057506 DOI: 10.1016/j.scitotenv.2019.06.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
The objective of this review is to evaluate materials for use as a barrier or other deployed technology to treat technetium-99 (Tc) in the subsurface. To achieve this, Tc interactions with different materials are considered within the context of remediation strategies. Several naturally occurring materials are considered for Tc immobilization, including iron oxides and low solubility sulfide phases. Synthetic materials are also considered, and include tin-based materials, sorbents (resins, activated carbon, modified clays), layered double hydroxides, metal organic frameworks, cationic polymeric networks and aerogels. All of the materials were evaluated for their potential in-situ and ex-situ performance with respect to long-term Tc uptake and immobilization, environmental impacts and deployability. Other factors such as the technology maturity, cost and availability were also considered. Given the difficulty of evaluating materials under different experimental conditions (e.g., solution chemistry, redox conditions, solution to solid ratio, Tc concentration etc.), a subset of these materials will be selected, on the basis of this review, for subsequent standardized batch loading tests.
Collapse
Affiliation(s)
- Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, WA, United States of America.
| | - Robert C Moore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Joseph W Morad
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - R Matthew Asmussen
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Sayandev Chatterjee
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Amanda R Lawter
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - James J Neeway
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Nikolla P Qafoku
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Mark J Rigali
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Sarah A Saslow
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Jim E Szecsody
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Guohui Wang
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Vicky L Freedman
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| |
Collapse
|
6
|
Chatterjee S, Fujimoto MS, Du Y, Hall GB, Lahiri N, Walter ED, Kovarik L. Redox-Based Electrochemical Affinity Sensor for Detection of Aqueous Pertechnetate Anion. ACS Sens 2020; 5:674-685. [PMID: 32028765 DOI: 10.1021/acssensors.9b01531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rapid, selective, and in situ detection of pertechnetate (TcO4-) in multicomponent matrices consisting of interfering anions such as the ubiquitous NO3- and Cl- or the isostructural CrO42- is challenging. Present sensors lack the selectivities to exclude these interferences or the sensitivities to meet detection limits that are lower than the drinking water standards across the globe. This work presents an affinity-based electrochemical sensor for TcO4- detection that relies on selective reductive precipitation of aqueous TcO4- induced by a 1,4-benzenedimethanethiol capture probe immobilized on an electrode platform. This results in a direct decrease in the electron transfer current, the magnitude of the decrease being proportional to the amount of TcO4- added. Using this approach, a detection limit of 1 × 10-10 M was achieved, which is lower than the drinking water standard of 5.2 × 10-10 M set by United States Environmental Protection Agency. The proposed approach shows selectivity to the TcO4- anion, allowing detection of TcO4- from a multicomponent groundwater sample obtained from a well at the Hanford site in Washington (well 299-W19-36) that also contained NO3-, Cl-, and CrO42-, without discernably affecting the detection limits.
Collapse
Affiliation(s)
- Sayandev Chatterjee
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Meghan S. Fujimoto
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yingge Du
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabriel B. Hall
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nabajit Lahiri
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D. Walter
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Wang X, Wu G, Wang F, Liu H, Jin T. Solvent-free selective oxidation of toluene with O2 catalysed by anion modified mesoporous mixed oxides with high thermal stability. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Elkhalifa EA, Friedrich HB. Effects of boron and barium dopants on VMgO catalysts employed in the oxidative dehydrogenation of n-octane. KINETICS AND CATALYSIS 2015. [DOI: 10.1134/s0023158415020020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Elkhalifa EA, Friedrich HB. Oxidative dehydrogenation and aromatization of n-octane over VMgO catalysts obtained by using different MgO precursors and different precursor treatments. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Jiang W, Niu X, Yuan F, Zhu Y, Fu H. Preparation of KF–La2O2CO3solid base catalysts and their excellent catalytic activities for transesterification of tributyrin with methanol. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00167b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Omwoma S, Chen W, Tsunashima R, Song YF. Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.08.039] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
Othman MR, Helwani Z, Martunus, Fernando WJN. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Appl Organomet Chem 2009. [DOI: 10.1002/aoc.1517] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides. J SOLID STATE CHEM 2009. [DOI: 10.1016/j.jssc.2009.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
de Castro FR, Lam YL, Herbst MH, Santos FM, Pereira MM. Thermal treatment study of vanadium-loaded hydrotalcites employing in situ DXAS. Catal Today 2008. [DOI: 10.1016/j.cattod.2007.12.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Węgrzyn A, Rafalska-Łasocha A, Dudek B, Dziembaj R. Nanostructured V-containing hydrotalcite-like materials obtained by non-stoichiometric anion exchange as precursors of catalysts for oxidative dehydrogenation of n-butane. Catal Today 2006. [DOI: 10.1016/j.cattod.2006.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Kandare E, Hossenlopp JM. Thermal Degradation of Acetate-Intercalated Hydroxy Double and Layered Hydroxy Salts. Inorg Chem 2006; 45:3766-73. [PMID: 16634612 DOI: 10.1021/ic060071k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two hydroxy double salts (HDSs), zinc copper hydroxy acetate (ZCA) and zinc nickel hydroxy acetate (ZNA), and an analogous layered compound, zinc hydroxy acetate (ZHA), have been prepared by a coprecipitation method. The thermal degradation of these materials was characterized via thermogravimetric analysis (TGA), differential thermal analysis (DTA), and TGA coupled with Fourier transform infrared spectroscopy of gas-phase products, TGA-FTIR. Loss of physisorbed and interlayer H2O was observed between 50 and 150 degrees C for all compounds. Acetic acid, acetone, water, and CO2 were released at high temperatures with relative acetone yields found to be dependent on precursor identity, with very little formed from ZCA compared with ZHA and ZNA. Combined FTIR and XRD analysis of solid residues extracted at different points in the heating profile suggests that ketonization occurs via dissociative adsorption of acetic acid on ZnO surfaces. Nanometer-sized ZnO particles were formed from ZHA, showing slight preferential growth in the ZnO (002) lattice direction, while the presence of a second metal, Ni or Cu, served to retard ZnO crystallite growth at temperatures below 600 degrees C and eliminate preferential growth. ZCA leads to the formation of reduced copper species (metallic copper and Cu2O) when heated to 250 degrees C.
Collapse
Affiliation(s)
- Everson Kandare
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA
| | | |
Collapse
|
18
|
|
19
|
Carja G. Mg–V–Al mixed oxides with mesoporous properties using layered double hydroxides as precursors: catalytic behavior for the process of ethylbenzene dehydrogenation to styrene under a carbon dioxide flow. J Catal 2003. [DOI: 10.1016/s0021-9517(03)00051-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Frost RL, Ding Z, Martens WN, Johnson TE, Kloprogge JT. Molecular assembly in synthesised hydrotalcites of formula Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O--a vibrational spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:321-328. [PMID: 12685906 DOI: 10.1016/s1386-1425(02)00174-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Infrared and Raman spectroscopy have been used to characterise synthetic hydrotalcites of formula Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O. The spectra have been used to assess the molecular assembly of the cations in the hydrotalcite structure. The spectra may be conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. The Raman spectra of the hydroxyl-stretching region enable bands to be assigned to the CuOH, ZnOH and AlOH units. It is proposed that in the hydrotalcites with minimal cationic replacement that the cations are arranged in a regular array. For the Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O hydrotalcites, spectroscopic evidence suggests that 'islands' of cations are formed in the structure. In a similar fashion, the bands assigned to the interlayer water suggest that the water molecules are also in a regular well-structured arrangement. Bands are assigned to the hydroxyl stretching vibrations of water. Three types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface and (c) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite as it is hydrogen bonded to both the carbonate anion and the hydroxyl surface.
Collapse
Affiliation(s)
- R L Frost
- Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia.
| | | | | | | | | |
Collapse
|
21
|
Parida K, Das J. Mg/Al hydrotalcites: preparation, characterisation and ketonisation of acetic acid. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1169(99)00240-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|