1
|
Pal S, Gavhane UA, S K A. Biocompatible PVAc- g-PLLA Acrylate Polymers for DLP 3D Printing with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62594-62605. [PMID: 39472155 DOI: 10.1021/acsami.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The technological advancement of Additive Manufacturing has enabled the fabrication of various customized artifacts and devices, which has prompted a huge demand for multimaterials that can cater to stringent mechanical, chemical, and other functional property requirements. Photocurable formulations that are widely used for Digital Light Processing (DLP)/Stereolithography (SLA) 3D printing applications are now expected to meet these new challenges of hard and soft or stretchable structural requirements in addition to good resolution in multiple scales. Here we present a biocompatible photocurable resin formulation with tunable mechanical properties that can produce hard or stretchable elastomeric 3D printed materials in a graded manner. Acrylate poly(lactic acid) (PLA) grafted polyvinyl acetate (PVAc) polymer was mixed with hydroxyl ethyl methacrylate (HEMA) and hydroxyl ethyl acrylate (HEA) as reactive diluents (50-70 wt %) in various compositions to form a series of photocurable resin formulations. Depending on the nature of the reactive diluent (HEMA or HEA) and their weight percentage, the mechanical properties of the 3D printed parts could be fine-tuned from hard (Tensile strength 20.6 ± 2 MPa, elongation 2 ± 1%) to soft (Tensile strength 1.1 ± 0.2 MPa, elongation 62 ± 8%) materials. The printed materials displayed remarkable dye absorption (95%), showing stimuli-responsive behavior for dye release (with respect to both pH and enzyme), while also demonstrating high cell viability (>90%) for mouse embryonic (WT-MEF) cells and degradability in PBS solution. These biobased 3D printing resins have the potential for a variety of applications, including tissue engineering, soft robotics, dye absorption, and elastomeric actuators.
Collapse
Affiliation(s)
- Shibam Pal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Asha S K
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Ren Y, Hu X, Chen Y, Liu L, Qu R, Xu H, Song X. A drug-loaded amphiphilic polymer/poly(l-lactide) shape-memory system. Int J Biol Macromol 2022; 217:1037-1043. [PMID: 35905767 DOI: 10.1016/j.ijbiomac.2022.07.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
Biodegradable shape-memory polymers (SMPs) which are functional materials with applicability for medicine devices are designed to acquire their therapeutically relevant shape and drug release after implantation. In the work, an amphiphilic polymer (PVAD) is synthesized by using polytetrahydrofuran (PTMG), vinyl acetate (VAc), acrylic acid (AA), tetramethyltetravinylcyclotetrasiloxane (D4vi) as raw materials. PVAD encapsulating hydrophilic drug as switching phase and poly(l-lactide) (PLLA) as fixing matrix construct an SM system with the characteristic of "reservoir-matrix" drug release. The shape recovery ratio (Rr) of medicated PVAD/PLLA reaches 99 % by heat-water stimulation. The effects of release temperature and SM on drug release are investigated. With the release temperature increasing, the medicated PVAD/PLLA accelerates drug release and shows burst release initially, while the drug release for the medicated PLLA changes slightly. The drug release rate goes up after 3 rounds of SM. The mechanism of SM system controlling drug release is put forward based on structural changes. The yield strength and elongation at break of medicated PVAD/PLLA are 29.8 MPa and 44.6 %, respectively. It opens up new perspectives for drug carrier matrices in Pharmaceutical Sciences.
Collapse
Affiliation(s)
- Yajun Ren
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaohong Hu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, China
| | - Lei Liu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Rui Qu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Huidi Xu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, China.
| |
Collapse
|
3
|
Zhang Y, Cao X, Gao Y, Xie Y, Huang Z, Zhang Z, Zhu X. Bridging from the Sequence to Architecture: Graft Copolymers Engineering
via
Successive Latent Monomer and Grafting‐from Strategies
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yajie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaohuan Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Yujie Xie
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University Suzhou Jiangsu 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
- Global Institute of Software Technology, No. 5 Qingshan Road, Suzhou National Hi‐Tech District Suzhou Jiangsu 215163 China
| |
Collapse
|
4
|
Zahir L, Kida T, Tanaka R, Nakayama Y, Shiono T, Kawasaki N, Yamano N, Nakayama A. Synthesis and properties of biodegradable thermoplastic elastomers using 2-Methyl-1,3-propanediol, succinic acid and lactide. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Zhang Y, Pon N, Awaji A, Rowan SJ. Squid Beak Inspired Cross-Linked Cellulose Nanocrystal Composites. Biomacromolecules 2020; 22:201-212. [PMID: 32969223 DOI: 10.1021/acs.biomac.0c01051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioinspired cross-linked polymer nanocomposites that mimic the water-enhanced mechanical gradient properties of the squid beak have been prepared by embedding either carboxylic acid- or allyl-functionalized cellulose nanocrystals (CNC) into an alkene-containing polymer matrix (poly(vinyl acetate-co-vinyl pentenoate), P(VAc-co-VP)). Cross-linking is achieved by imbibing the composite with a tetrathiol cross-linker and carrying out a photoinduced thiol-ene reaction. Central to this study was an investigation on how the placement of cross-links (i.e., within matrix only or between the matrix and filler) impacts the wet mechanical properties of these materials. Through cross-linking both the CNCs and matrix, it is possible to access larger wet mechanical contrasts (E'stiff/E'soft = ca. 20) than can be obtained by just cross-linking the matrix alone (where contrast E'stiff/E'soft of up 11 are observed). For example, in nanocomposites fabricated with 15 wt % of allyl-functionalized tunicate CNCs and P(VAc-co-VP) with about 30 mol % of the alkene-containing VP units, an increase in the modulus of the wet composite from about 14 MPa to about 289 MPa at physiological temperature (37 °C) can be observed after UV irradiation. The water swelling of the nanocomposites is greatly reduced in the cross-linked materials as a result of the thiol-ene cross-linking network, which also contributes to the wet modulus increase. Given the mechanical turnability and the relatively simple approach that also allows photopatterning the material properties, these water-activated bioinspired nanocomposites have potential uses in a broad range of biomedical applications, such as mechanically compliant intracortical microelectrodes.
Collapse
Affiliation(s)
- Yefei Zhang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Nanetta Pon
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Ahmed Awaji
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States.,Chemical and Engineering Sciences, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
6
|
Dopamine-induced functionalization of cellulose nanocrystals with polyethylene glycol towards poly(L-lactic acid) bionanocomposites for green packaging. Carbohydr Polym 2019; 203:275-284. [DOI: 10.1016/j.carbpol.2018.09.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
|
7
|
Cao H, Chang X, Mao H, Zhou J, Wu ZL, Shan G, Bao Y, Pan P. Stereocomplexed physical hydrogels with high strength and tunable crystallizability. SOFT MATTER 2017; 13:8502-8510. [PMID: 29091097 DOI: 10.1039/c7sm01491k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Physical hydrogels crosslinked by non-covalent interactions have attained increasing attention due to their good mechanical properties and processability. However, the use of feasible and controllable non-covalent interactions is highly essential for preparing such hydrogels. In this article, we report on stereocomplexed physical hydrogels prepared by simple casting and swelling of amphiphilic graft copolymers bearing a poly(acrylic acid) (PAA) backbone and poly(l-lactic acid) (PLLA) or poly(d-lactic acid) (PDLA) stereocomplexable side chains. The microstructure, swelling behavior, and mechanical and shape memory properties of the obtained hydrogels can be tuned by varying the copolymer composition and stereocomplex (SC) crystallization of PLLA/PDLA enantiomeric chains. The long PLLA or PDLA chains segregate to form hydrophobic, crystallized domains in water, serving as physical crosslinking junctions for hydrogels. SC crystallization between PLLA and PDLA further enhances the number density of physical crosslinkers of enantiomerically mixed hydrogels. The SC content increases as the PLLA/PDLA ratio approaches 1/1 in enantiomerically mixed hydrogels. The average distance between crosslinking junctions declines for the hydrogels with a high PLLA (or PDLA) mass fraction (MPLA) and SC content, due to the increased number density of physical crosslinkers. Accordingly, the tensile strength and the Young's modulus increase but the swelling ratio and the elongation-at-break of the hydrogels decrease with an increase in MPLA and SC content. The hydrogels exhibit shape memory behavior; the shape fixing ability is enhanced by the SC crystallization of PLLA/PDLA side chains in the hydrogels.
Collapse
Affiliation(s)
- Heqing Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Synthesis and characterization of bovine serum albumin-loaded microspheres based on star-shaped PLLA with a xylitol core and their drug release behaviors. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2197-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhang J, Schneiderman DK, Li T, Hillmyer MA, Bates FS. Design of Graft Block Polymer Thermoplastics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiuyang Zhang
- School
of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | | | | | | | | |
Collapse
|
10
|
Pal AK, Katiyar V. Nanoamphiphilic Chitosan Dispersed Poly(lactic acid) Bionanocomposite Films with Improved Thermal, Mechanical, and Gas Barrier Properties. Biomacromolecules 2016; 17:2603-18. [DOI: 10.1021/acs.biomac.6b00619] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akhilesh Kumar Pal
- Department
of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| | - Vimal Katiyar
- Department
of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
11
|
Leng X, Wei Z, Bian Y, Ren Y, Wang Y, Wang Q, Li Y. Rheological properties and crystallization behavior of comb-like graft poly(l-lactide): influences of graft length and graft density. RSC Adv 2016. [DOI: 10.1039/c6ra02697d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radius growth rate of spherulites (G) versus crystallization temperature (Tc) for graft PLLA with different graft density and graft length.
Collapse
Affiliation(s)
- Xuefei Leng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yufei Bian
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yingying Ren
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yurong Wang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qinyi Wang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
12
|
Instantaneous stereocomplex driven self-assembly of enantiomeric poly(vinyl alcohol)-graft-oligo(lactide) copolymers in DMSO and thin film formation thereof. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Han L, Shan G, Bao Y, Pan P. Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s. J Phys Chem B 2015; 119:14270-9. [DOI: 10.1021/acs.jpcb.5b06757] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili Han
- State Key Laboratory of Chemical
Engineering, College of Biological and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical
Engineering, College of Biological and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical
Engineering, College of Biological and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical
Engineering, College of Biological and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Bao J, Han L, Shan G, Bao Y, Pan P. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. J Phys Chem B 2015; 119:12689-98. [DOI: 10.1021/acs.jpcb.5b05398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianna Bao
- State Key Laboratory of Chemical
Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Lili Han
- State Key Laboratory of Chemical
Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical
Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical
Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical
Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
15
|
Controlled homoand copolymerization of ε-caprolactone and d,l-lactide in the presence of TiIV complexes. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0840-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK. Synthesis and characterization of poly(lactic acid) based graft copolymers. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Teng L, Xu X, Nie W, Zhou Y, Song L, Chen P. Synthesis and degradability of a star-shaped polylactide based on l-lactide and xylitol. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0719-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ni C, Lu R, Tao L, Shi G, Li X, Qin C. Synthesis of poly(vinyl alcohol-graft-lactic acid) copolymer and its application as medical anti-tissue adhesion thin film. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1353-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Abstract
Biobased and biodegradable polymers have become more and more interesting in view of waste management and crude oil depletion.
Collapse
Affiliation(s)
- Stijn Corneillie
- Polymer Chemistry and Materials
- Department of Chemistry
- KU Leuven
- Belgium
| | - Mario Smet
- Polymer Chemistry and Materials
- Department of Chemistry
- KU Leuven
- Belgium
| |
Collapse
|
20
|
Chang R, Huang Y, Shan G, Bao Y, Yun X, Dong T, Pan P. Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polym Chem 2015. [DOI: 10.1039/c5py00742a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLA/PEB SMPs with tunable shape memory and self-healing properties were prepared by end functionalization of PLA–PEB–PLA with UPy units.
Collapse
Affiliation(s)
- Ruoxing Chang
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongfeng Huang
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xueyan Yun
- College of Food Science and Engineering
- Inner Mongolia Agricultural University
- Inner Mongolia 010018
- China
| | - Tungalag Dong
- College of Food Science and Engineering
- Inner Mongolia Agricultural University
- Inner Mongolia 010018
- China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
21
|
Huang Y, Pan P, Shan G, Bao Y. Polylactide-b-poly(ethylene-co-butylene)-b-polylactide thermoplastic elastomers: role of polylactide crystallization and stereocomplexation on microphase separation, mechanical and shape memory properties. RSC Adv 2014. [DOI: 10.1039/c4ra08612k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PLA–PEB–PLA copolymers containing PLA segments with different stereo-regularities were prepared via the ROP of various lactides using PEB as the macromolecular initiator.
Collapse
Affiliation(s)
- Yongfeng Huang
- State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027, China
| |
Collapse
|
22
|
Ni'mah H, Woo EM. A novel hexagonal crystal with a hexagonal star-shaped central core in poly(l-lactide) (PLLA) induced by an ionic liquid. CrystEngComm 2014. [DOI: 10.1039/c4ce00449c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hexagonal crystal with a star-shaped core was found in LMw-PLLA blended with an ionic liquid and melt-crystallized at Tc = 110 °C.
Collapse
Affiliation(s)
- Hikmatun Ni'mah
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan, Taiwan
- Department of Chemical Engineering
- Sepuluh Nopember Institute of Technology
| | - Eamor M. Woo
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan, Taiwan
| |
Collapse
|