• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643724)   Today's Articles (210)   Subscriber (50642)
For: Yuan X, Ge Z, Song Z. Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4041252] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Ndu H, Sheikh-Akbari A, Deng J, Mporas I. HyperVein: A Hyperspectral Image Dataset for Human Vein Detection. SENSORS (BASEL, SWITZERLAND) 2024;24:1118. [PMID: 38400276 PMCID: PMC10891899 DOI: 10.3390/s24041118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
2
Yang Z, Jia R, Wang P, Yao L, Shen B. Supervised Attention-Based Bidirectional Long Short-Term Memory Network for Nonlinear Dynamic Soft Sensor Application. ACS OMEGA 2023;8:4196-4208. [PMID: 36743036 PMCID: PMC9893754 DOI: 10.1021/acsomega.2c07400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 06/13/2023]
3
Xie C, Yao R, Zhu L, Gong H, Li H, Chen X. Soft-Sensor Development through Deep Learning with Spatial and Temporal Feature Extraction of Complex Processes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
4
Severino AGV, de Lima JMM, de Araújo FMU. Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach. SENSORS (BASEL, SWITZERLAND) 2022;22:s22186887. [PMID: 36146235 PMCID: PMC9505118 DOI: 10.3390/s22186887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/07/2023]
5
S. VV, Mohanta HK, Pani AK. Adaptive non-linear soft sensor for quality monitoring in refineries using Just-in-Time Learning—Generalized regression neural network approach. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
6
Ying Z, Wang Y, He Y, Wang J. Virtual sensing techniques for nonlinear dynamic processes using weighted probability dynamic dual-latent variable model and its industrial applications. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
7
Cui C. Nonlinear non‐ Gaussian and multimode probabilistic weighted copula regression model based deep neural network. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
8
He F, Zhao Y. Quality relevant fault detection of batch process via statistical pattern and regression coefficient. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
9
Deep learning with neighborhood preserving embedding regularization and its application for soft sensor in an industrial hydrocracking process. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Thien TF, Yeo WS. A comparative study between PCR, PLSR, and LW-PLS on the predictive performance at different data splitting ratios. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1957853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
11
Ma L, Dong J, Hu C, Peng K. A novel decentralized detection framework for quality-related faults in manufacturing industrial processes. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
12
Li LH, Dai YS. Adaptive Soft Sensor Modeling Method for Time-varying and Multi-Dimensional Chemical Processes. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.20we016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
13
Wang Y, Li L, Wang K. An online operating performance evaluation approach using probabilistic fuzzy theory for chemical processes with uncertainties. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
14
Yuan X, Gu Y, Wang Y, Yang C, Gui W. A Deep Supervised Learning Framework for Data-Driven Soft Sensor Modeling of Industrial Processes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:4737-4746. [PMID: 31880568 DOI: 10.1109/tnnls.2019.2957366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
15
Joshi T, Goyal V, Kodamana H. A Novel Dynamic Just-in-Time Learning Framework for Modeling of Batch Processes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Wang J, Qiu K, Guo Y, Wang R, Zhou X. Soft sensor development based on improved just‐in‐time learning and relevant vector machine for batch processes. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
17
Liu K, Shao W, Chen G. Autoencoder-based nonlinear Bayesian locally weighted regression for soft sensor development. ISA TRANSACTIONS 2020;103:143-155. [PMID: 32171594 DOI: 10.1016/j.isatra.2020.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
18
Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2018.11.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
19
Integrating adaptive moving window and just-in-time learning paradigms for soft-sensor design. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
20
Yuan X, Ou C, Wang Y, Yang C, Gui W. A novel semi-supervised pre-training strategy for deep networks and its application for quality variable prediction in industrial processes. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
21
Dai J, Chen N, Yuan X, Gui W, Luo L. Temperature prediction for roller kiln based on hybrid first-principle model and data-driven MW-DLWKPCR model. ISA TRANSACTIONS 2020;98:403-417. [PMID: 31472935 DOI: 10.1016/j.isatra.2019.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
22
Huang H, Peng X, Jiang C, Li Z, Zhong W. Variable-Scale Probabilistic Just-in-Time Learning for Soft Sensor Development with Missing Data. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Ni J, Zhou Y, Li S. Hamiltonian Monte Carlo-Based D-Vine Copula Regression Model for Soft Sensor Modeling of Complex Chemical Processes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Wang Y, Pan Z, Yuan X, Yang C, Gui W. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network. ISA TRANSACTIONS 2020;96:457-467. [PMID: 31324340 DOI: 10.1016/j.isatra.2019.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 05/12/2023]
25
Mickel VM, Yeo WS, Saptoro A. Evaluating the Performance of Newly Integrated Model in Nonlinear Chemical Process Against Missing Measurements. CHEMICAL PRODUCT AND PROCESS MODELING 2019. [DOI: 10.1515/cppm-2018-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
26
Yuan X, Li L, Wang Y, Yang C, Gui W. Deep learning for quality prediction of nonlinear dynamic processes with variable attention‐based long short‐term memory network. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23665] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
27
Fei H, Chaojun W, Shu-Kai S F. Fault Detection and Root Cause Analysis of a Batch Process via Novel Nonlinear Dissimilarity and Comparative Granger Causality Analysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
28
A weighted auto regressive LSTM based approach for chemical processes modeling. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
29
Pan B, Jin H, Yang B, Qian B, Zhao Z. Soft Sensor Development for Nonlinear Industrial Processes Based on Ensemble Just-in-Time Extreme Learning Machine through Triple-Modal Perturbation and Evolutionary Multiobjective Optimization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
30
Jiang C, Zhong W, Li Z, Peng X, Yang M. Real-Time Semisupervised Predictive Modeling Strategy for Industrial Continuous Catalytic Reforming Process with Incomplete Data Using Slow Feature Analysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Cang W, Yang H. Adaptive soft sensor method based on online selective ensemble of partial least squares for quality prediction of chemical process. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
32
Wang K, Shang C, Liu L, Jiang Y, Huang D, Yang F. Dynamic Soft Sensor Development Based on Convolutional Neural Networks. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02513] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Jiang Q, Yan X. Locally Weighted Canonical Correlation Analysis for Nonlinear Process Monitoring. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Yeo WS, Saptoro A, Kumar P. Development of Adaptive Soft Sensor Using Locally Weighted Kernel Partial Least Square Model. CHEMICAL PRODUCT AND PROCESS MODELING 2017. [DOI: 10.1515/cppm-2017-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
35
Zheng J, Song Z. Linear Subspace Principal Component Regression Model for Quality Estimation of Nonlinear and Multimode Industrial Processes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
36
Liu Y, Wu QY, Chen J. Active Selection of Informative Data for Sequential Quality Enhancement of Soft Sensor Models with Latent Variables. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04620] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Ye Y, Ren J, Wu X, Ou G, Jin H. Data-driven soft-sensor modelling for air cooler system pH values based on a fast search pruned-extreme learning machine. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
38
Miao A, Li P, Ye L. Locality preserving based data regression and its application for soft sensor modelling. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
39
Mears L, Stocks SM, Albaek MO, Sin G, Gernaey KV. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects. Biotechnol Bioeng 2016;114:589-599. [DOI: 10.1002/bit.26187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022]
40
Wang L, Jin H, Chen X, Dai J, Yang K, Zhang D. Soft Sensor Development Based on the Hierarchical Ensemble of Gaussian Process Regression Models for Nonlinear and Non-Gaussian Chemical Processes. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
41
Yuan X, Ge Z, Song Z. Spatio-temporal adaptive soft sensor for nonlinear time-varying and variable drifting processes based on moving window LWPLS and time difference model. ASIA-PAC J CHEM ENG 2015. [DOI: 10.1002/apj.1957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
42
Kaneko H, Funatsu K. Ensemble locally weighted partial least squares as a just‐in‐time modeling method. AIChE J 2015. [DOI: 10.1002/aic.15090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
43
Jin H, Chen X, Wang L, Yang K, Wu L. Adaptive Soft Sensor Development Based on Online Ensemble Gaussian Process Regression for Nonlinear Time-Varying Batch Processes. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01495] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
44
Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
45
Fan M, Ge Z, Song Z. Adaptive Gaussian Mixture Model-Based Relevant Sample Selection for JITL Soft Sensor Development. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5029864] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA