1
|
Maximova O, Ezhov R, Jensen S, Sun C, Pushkar Y. Spectroscopic Signature of Metal-hydroxo and Peroxo Species in K-edge X-ray Absorption Spectra. J Phys Chem Lett 2024; 15:11077-11086. [PMID: 39471334 DOI: 10.1021/acs.jpclett.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Metal-dioxygen species are important intermediates formed during dioxygen activations by metalloenzymes in various biological processes, by catalysts in fuel cells, and prior to O2 evolution by photosystem II. In this work, we focus on manganese-porphyrin complexes using tetramesitylporphyrin ligand (TMP) to explore changes in Mn K-edge X-ray absorption spectroscopy (XAS) associated with the formation of Mn-hydroxide and Mn-O2 peroxide species. With limited spectroscopic characterization of these compounds, Mn Kβ X-ray emission spectroscopy (XES), XAS, density functional theory (DFT), and time-dependent DFT (TD-DFT) analysis will enhance our understanding of their complex electronic structure. We show that the shape of the pre-edge in the K-edge Mn X-ray absorption near-edge structure (XANES) can serve as a spectroscopic signature of the MnIII-peroxo formation and thus can be used to track the presence of the side-on peroxide as an intermediate in time-resolved or in situ experiments. Our results will help to further summarize the spectroscopic fingerprints for peroxo and hydroxo species, addressing the challenge of identifying the reactive metal species in catalytic reactions.
Collapse
Affiliation(s)
- Olga Maximova
- Purdue University, Physics and Astronomy Department, West Lafayette, Indiana 47907, United States
| | - Roman Ezhov
- Purdue University, Physics and Astronomy Department, West Lafayette, Indiana 47907, United States
| | - Scott Jensen
- Purdue University, Physics and Astronomy Department, West Lafayette, Indiana 47907, United States
| | - Chengjun Sun
- Argonne Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Yulia Pushkar
- Purdue University, Physics and Astronomy Department, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Zhang Y, Wei Z, Han H, Chang J, Stegman S, Chang T, Chen YS, Berry JF, Dikarev EV. Heterometallic Molecular and Ionic Isomers. Inorg Chem 2024; 63:19499-19508. [PMID: 39363602 PMCID: PMC11483736 DOI: 10.1021/acs.inorgchem.4c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Numerous descriptions of structural isomerism in metal complexes do not list any molecular vs ionic isomers. At the same time, one of the most striking examples of structural isomerism in organic chemistry is molecular urea, which has the same atomic composition as the chemically distinct ionic ammonium cyanate. This iconic organic couple now meets its inorganic heterometallic counterpart. We introduce a new class of structural isomers, molecular vs ionic, that can be consummated in complex and coordinatively unsaturated polynuclear/heterometallic compounds. We report inorganic molecular and ionic isomers of the composition [NaCrFe (acac)3(hfac)3] (acac = acetylacetonate; hfac = hexafluoroacetylacetonate). Heterometallic molecular [CrIII(acac)3-Na-FeII(hfac)3] (1m) and ionic {[CrIII(acac)3-Na-CrIII(acac)3]+[FeII(hfac)3-Na-FeII(hfac)3]-} (1i) isomers have been isolated in pure form and characterized. While both ions are heterobimetallic trinuclear entities, the neutral counterpart is a heterotrimetallic trinuclear molecule. The two isomers exhibit distinctly different characteristics in terms of solubility, volatility, mass spectrometry ionization, and thermal behavior. Unambiguous assignment of the positions and oxidation/spin states of the Periodic Table neighbors, Fe and Cr, in both isomers have been made by a combination of characterization techniques that include synchrotron X-ray resonant diffraction, synchrotron X-ray fluorescence spectroscopy, Mössbauer spectroscopy, and DART mass spectrometry. The transformation between the two isomers that does take place in solutions of noncoordinating solvents has also been tested.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department
of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Zheng Wei
- Department
of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Haixiang Han
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| | - Joyce Chang
- Department
of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Samantha Stegman
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Tieyan Chang
- NSF’s
ChemMatCars, Center for Advanced Radiation Source, The University of Chicago, Argonne, Chicago, Illinois 60439, United States
| | - Yu-Sheng Chen
- NSF’s
ChemMatCars, Center for Advanced Radiation Source, The University of Chicago, Argonne, Chicago, Illinois 60439, United States
| | - John F. Berry
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Evgeny V. Dikarev
- Department
of Chemistry, University at Albany, Albany, New York 12222, United States
| |
Collapse
|
3
|
Castillo R, Van Kuiken BE, Weyhermüller T, DeBeer S. Experimentally Assessing the Electronic Structure and Spin-State Energetics in MnFe Dimers Using 1s3p Resonant Inelastic X-ray Scattering. Inorg Chem 2024; 63:18468-18483. [PMID: 39282749 PMCID: PMC11445731 DOI: 10.1021/acs.inorgchem.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.
Collapse
Affiliation(s)
- Rebeca
G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | | | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
4
|
Dean JW, Thompson SN, Chantler CT. Ab Initio Manganese K α and K β Energy Eigenvalues, Shake-Off Probabilities, Auger Rates, with Convergence Tests. Molecules 2024; 29:4199. [PMID: 39275047 PMCID: PMC11487437 DOI: 10.3390/molecules29174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
This work presents ab initio calculations for the Kα spectrum of manganese (Z = 25, [Ar]3d54s2), a highly complex system due to the five open orbitals in the 3d shell. The spectrum is composed of the canonical diagram line [1s]→[2p] and shake-off satellite lines [1snl]→[2pnl] (nl∈{2s,2p,3s,3p,3d,4s}), where square brackets denote a hole state. The multiconfiguration Dirac-Hartree-Fock method with the active set approach provides the initial and final atomic wavefunctions. Results are presented as energy eigenvalue spectra for the diagram and satellite transitions. The calculated wavefunctions include over one hundred million configuration state functions and over 280,000 independent transition energies for the seven sets of spectra considered. Shake-off probabilities and Auger transition rates determine satellite intensities. The number of configuration state functions ensures highly-converged wavefunctions. Several measures of convergence demonstrate convergence in the calculated parameters. We obtain convergence of the transition energies in all eight transitions to within 0.06 eV and shake-off probabilities to within 4.5%.
Collapse
|
5
|
Ansari M, Bhattacharjee S, Pantazis DA. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J Am Chem Soc 2024; 146:9640-9656. [PMID: 38530124 PMCID: PMC11009960 DOI: 10.1021/jacs.3c13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
6
|
Krishnan A, Lee DC, Slagle I, Ahsan S, Mitra S, Read E, Alamgir FM. Monitoring Redox Processes in Lithium-Ion Batteries by Laboratory-Scale Operando X-ray Emission Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16096-16105. [PMID: 38502716 PMCID: PMC10995943 DOI: 10.1021/acsami.3c18424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Tracking changes in the chemical state of transition metals in alkali-ion batteries is crucial to understanding the redox chemistry during operation. X-ray absorption spectroscopy (XAS) is often used to follow the chemistry through observed changes in the chemical state and local atomic structure as a function of the state-of-charge (SoC) in batteries. In this study, we utilize an operando X-ray emission spectroscopy (XES) method to observe changes in the chemical state of active elements in batteries during operation. Operando XES and XAS were compared by using a laboratory-scale setup for four different battery systems: LiCoO2 (LCO), Li[Ni1/3Co1/3Mn1/3]O2 (NMC111), Li[Ni0.8Co0.1Mn0.1]O2 (NMC811), and LiFePO4 (LFP) under a constant current charging the battery in 10 h (C/10 charge rate). We show that XES, despite narrower chemical shifts in comparison to XAS, allows us to fingerprint the battery SOC in real time. We further demonstrate that XES can be used to track the change in net spin of the probed atoms by analyzing changes in the emission peak shape. As a test case, the connection between net spin and the local chemical and structural environment was investigated by using XES and XAS in the case of electrochemically delithiated LCO in the range of 2-10% lithium removal.
Collapse
Affiliation(s)
- Abiram Krishnan
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Ian Slagle
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sumaiyatul Ahsan
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Ethan Read
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Faisal M. Alamgir
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Wollweber T, Ayyer K. Nanoscale x-ray imaging with high spectral sensitivity using fluorescence intensity correlations. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024307. [PMID: 38638700 PMCID: PMC11026111 DOI: 10.1063/4.0000245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
This paper introduces spectral incoherent diffractive imaging (SIDI) as a novel method for achieving dark-field imaging of nanostructures with heterogeneous oxidation states. With SIDI, shifts in photoemission profiles can be spatially resolved, enabling the independent imaging of the underlying emitter distributions contributing to each spectral line. In the x-ray domain, this approach offers unique insights beyond the conventional combination of diffraction and x-ray emission spectroscopy. When applied at x-ray free-electron lasers, SIDI promises to be a versatile tool for investigating a broad range of systems, offering unprecedented opportunities for detailed characterization of heterogeneous nanostructures for catalysis and energy storage, including of their ultrafast dynamics.
Collapse
Affiliation(s)
| | - Kartik Ayyer
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Guo M, Braun A, Sokaras D, Kroll T. Iron Kβ X-ray Emission Spectroscopy: The Origin of Spectral Features from Atomic to Molecular Systems Using Multi-configurational Calculations. J Phys Chem A 2024; 128:1260-1273. [PMID: 38329897 DOI: 10.1021/acs.jpca.3c07949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Kβ X-ray emission spectroscopy (XES) is widely used to fingerprint the local spin of transition-metal ions, including in pump-probe experiments, to identify excited states or in chemical and biological reactions to characterize short-lived intermediates. In this study, the spectra of ferrous and ferric complexes for various spin states were measured experimentally and described theoretically through restricted active space (RAS) calculations including dynamic correlations. Through the RAS calculations from simple atomic models to complex molecular systems, spectral effects such as the exchange interactions, crystal-field strength, and covalent orbital mixing were evaluated and discussed. The calculations find that only the spectral features of low-spin cases show a dependence on the crystal-field strength, particularly for ferrous low spin. The effect of the covalent orbital mixing strength on the first moment of the Kβ1,3 main line and the Kβ1,3-Kβ' energy splitting is quantitatively described. Clear relationships are found within a given nominal spin but less between different spin states, which calls for careful selection of reference spectra in future experiments. This study further advances our understanding of the correlation between changes in experimental spectral features and their corresponding electronic structure information.
Collapse
Affiliation(s)
- Meiyuan Guo
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
9
|
He Y, Dreyer SL, Ting YY, Ma Y, Hu Y, Goonetilleke D, Tang Y, Diemant T, Zhou B, Kowalski PM, Fichtner M, Hahn H, Aghassi-Hagmann J, Brezesinski T, Breitung B, Ma Y. Entropy-Mediated Stable Structural Evolution of Prussian White Cathodes for Long-Life Na-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202315371. [PMID: 38014650 DOI: 10.1002/anie.202315371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The high-entropy approach is applied to monoclinic Prussian White (PW) Na-ion cathodes to address the issue of unfavorable multilevel phase transitions upon electrochemical cycling, leading to poor stability and capacity decay. A series of Mn-based samples with up to six metal species sharing the N-coordinated positions was synthesized. The material of composition Na1.65 Mn0.4 Fe0.12 Ni0.12 Cu0.12 Co0.12 Cd0.12 [Fe(CN)6 ]0.92 □0.08 ⋅ 1.09H2 O was found to exhibit superior cyclability over medium/low-entropy and conventional single-metal PWs. We also report, to our knowledge for the first time, that a high-symmetry crystal structure may be advantageous for high-entropy PWs during battery operation. Computational comparisons of the formation enthalpy demonstrate that the compositionally less complex materials are prone to phase transitions, which negatively affect cycling performance. Based on data from complementary characterization techniques, an intrinsic mechanism for the stability improvement of the disordered PW structure upon Na+ insertion/extraction is proposed, namely the dual effect of suppression of phase transitions and mitigation of gas evolution.
Collapse
Affiliation(s)
- Yueyue He
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sören L Dreyer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yin-Ying Ting
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Yuan Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yang Hu
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Damian Goonetilleke
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Current address: Corporate Research and Development, Umicore, Watertorenstraat 33, 2250, Olen, Belgium
| | - Yushu Tang
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Thomas Diemant
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Bei Zhou
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Piotr M Kowalski
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
- Jülich Aachen Research Alliance, JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Maximilian Fichtner
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Torsten Brezesinski
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yanjiao Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Current address: School of Energy and Mechanical Engineering, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
10
|
Maximova O, Allen W, Yee G, Israel C, Leshchev D, Stavitski E, Ding Y, Davis K, Wessells C, Friebel D, Pushkar Y. Spectroscopic Characterization of Mn 1+ Low Oxidation State in Prussian Blue-Based Battery Anodes. J Phys Chem Lett 2024; 15:1521-1528. [PMID: 38299494 DOI: 10.1021/acs.jpclett.3c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Stabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn1+ was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kβ nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). The latter allowed us to obtain site-selective XANES information about two distinct Mn centers. The obtained spectroscopic data represent the first electronic structure characterization of low-spin Mn1+ using hard X-ray RIXS and XES and allowed us to confirm its role in anode reduction. Our experimental approach can be expanded to analysis of analogues with other 3d transition metals broadening the application of exotic ionic states in materials engineering.
Collapse
Affiliation(s)
- Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Grace Yee
- Natron Energy, 3542 Bassett St., Santa Clara, California 95054, United States
| | - Charlotte Israel
- Natron Energy, 3542 Bassett St., Santa Clara, California 95054, United States
| | - Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11793, United States
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11793, United States
| | - Yujia Ding
- Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Katherine Davis
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Colin Wessells
- Natron Energy, 3542 Bassett St., Santa Clara, California 95054, United States
| | - Daniel Friebel
- Natron Energy, 3542 Bassett St., Santa Clara, California 95054, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Barman PD, Maurya AK, Madaan M, Kumar B, Roy A, Ghosh S. Determination and speciation of arsenic in drinking water samples by X-ray spectrometry technique. ANAL SCI 2024; 40:309-317. [PMID: 37980326 DOI: 10.1007/s44211-023-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Arsenic is ranked as the first compound in the Substance Priority List 2023 by the Agency for Toxic Substances and Disease Registry (ATSDR). The most prominent entrance to the human body is through drinking water wherein the predominant species are arsenite and arsenate. The more toxic As(III) has rigorously threatened human health worldwide; hence, speciation and separation are the need of the hour. In this article, we have reported a simple method of arsenic speciation by wavelength dispersive X-ray fluorescence (WD-XRF) spectrometer. Valence to core (VtC) electronic transitions, i.e., AsKβ2,5 fluorescence lines were used for arsenic speciation. This speciation study by WD-XRF entails direct measurement of activated alumina pellets containing arsenate and arsenite species adsorbed from water sample without separation of the trivalent and pentavalent species. This is the first report wherein the X-ray technique has been explored for speciation analysis of arsenic and the biggest advantage of the method lies in its applicability to direct analysis of synthesized nanotubes or other solid-phase extraction sorbents entrapping both the arsenic species. For determination of total arsenic using activated alumina as adsorbent, the most intense AsKα1,2 analytical lines were used and the instrumental limit of detection and the lower limit of quantification were 0.23 μg/L and 0.89 μg/L, respectively. For speciation, these limits were calculated to be 50 μg/L and 200 μg/L, respectively.
Collapse
Affiliation(s)
- Piyali Deb Barman
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Ashok Kumar Maurya
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India.
- Geological Survey of India, Northern Region, Aliganj Sector-E, Lucknow, 226024, India.
| | - Mukul Madaan
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Brijendra Kumar
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Ankit Roy
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Subhendu Ghosh
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| |
Collapse
|
12
|
Wang J, Hsu CS, Wu TS, Chan TS, Suen NT, Lee JF, Chen HM. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun 2023; 14:6576. [PMID: 37852958 PMCID: PMC10584842 DOI: 10.1038/s41467-023-42370-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Realizing viable electrocatalytic processes for energy conversion/storage strongly relies on an atomic-level understanding of dynamic configurations on catalyst-electrolyte interface. X-ray absorption spectroscopy (XAS) has become an indispensable tool to in situ investigate dynamic natures of electrocatalysts but still suffers from limited energy resolution, leading to significant electronic transitions poorly resolved. Herein, we highlight advanced X-ray spectroscopies beyond conventional XAS, with emphasis on their unprecedented capabilities of deciphering key configurations of electrocatalysts. The profound complementarities of X-ray spectroscopies from various aspects are established in a probing energy-dependent "in situ spectroscopy map" for comprehensively understanding the solid-liquid interface. This perspective establishes an indispensable in situ research model for future studies and offers exciting research prospects for scientists and spectroscopists.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
13
|
Hwang IH, Kelly SD, Chan MKY, Stavitski E, Heald SM, Han SW, Schwarz N, Sun CJ. The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:923-933. [PMID: 37526993 PMCID: PMC10481262 DOI: 10.1107/s1600577523005684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kβ emission core-hole lifetime.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Maria K. Y. Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, NY 11973, USA
| | - Steve M. Heald
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nicholas Schwarz
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
14
|
Tamasaku K, Taguchi M, Inoue I, Osaka T, Inubushi Y, Yabashi M, Ishikawa T. Two-dimensional Kβ-Kα fluorescence spectrum by nonlinear resonant inelastic X-ray scattering. Nat Commun 2023; 14:4262. [PMID: 37460582 PMCID: PMC10352240 DOI: 10.1038/s41467-023-39967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
High sensitivity of the Kβ fluorescence spectrum to electronic state is widely used to investigate spin and oxidation state of first-row transition-metal compounds. However, the complex electronic structure results in overlapping spectral features, and the interpretation may be hampered by ambiguity in resolving the spectrum into components representing different electronic states. Here, we tackle this difficulty with a nonlinear resonant inelastic X-ray scattering (RIXS) scheme, where we leverage sequential two-photon absorption to realize an inverse process of the Kβ emission, and measure the successive Kα emission. The nonlinear RIXS reveals two-dimensional (2D) Kβ-Kα fluorescence spectrum of copper metal, leading to better understanding of the spectral feature. We isolate 3d-related satellite peaks in the 2D spectrum, and find good agreement with our multiplet ligand field calculation. Our work not only advances the fluorescence spectroscopy, but opens the door to extend RIXS into the nonlinear regime.
Collapse
Affiliation(s)
- Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Munetaka Taguchi
- Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa, 235-8522, Japan.
| | - Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
15
|
Sension RJ, McClain TP, Lamb RM, Alonso-Mori R, Lima FA, Ardana-Lamas F, Biednov M, Chollet M, Chung T, Deb A, Dewan PA, Gee LB, Huang Ze En J, Jiang Y, Khakhulin D, Li J, Michocki LB, Miller NA, Otte F, Uemura Y, van Driel TB, Penner-Hahn JE. Watching Excited State Dynamics with Optical and X-ray Probes: The Excited State Dynamics of Aquocobalamin and Hydroxocobalamin. J Am Chem Soc 2023. [PMID: 37327324 DOI: 10.1021/jacs.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kβ and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.
Collapse
Affiliation(s)
- Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Taylor P McClain
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fernando Ardana-Lamas
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Paul A Dewan
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Joel Huang Ze En
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Yifeng Jiang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jianhao Li
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yohei Uemura
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
16
|
Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Adv Colloid Interface Sci 2023; 314:102859. [PMID: 36934514 DOI: 10.1016/j.cis.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The science and interface chemistry between the arsenic (As) anions and the different adsorbent systems have been gaining interest in recent years in environmental remediation applications. Metal-oxides and the corresponding hybrid systems have shown promising performance as novel adsorbents in various treatment technologies. The abundance, surface chemistry, high surface area (active-centres), various synthesis and functionalization methodologies, and good recyclability make these metal oxide-based nanomaterials as potential remediating agents for As oxyanions. This work critically reviews eight different platforms focused on the arsenic contamination issue, where the first classification describes the origin of arsenic contamination and presents geographical and demo-graphical considerations. The following section briefs the state-of-the-art remediation techniques for arsenic treatment with a comparative evaluation. An emphasized discussion has been provided regarding the adsorption and classification of various metal oxide adsorbents. In the next classification, various multi-synergism abilities like Redox activity, Surface functional groups, Surface area/morphology, Heterogeneous catalysis, Reactive oxygen species, Photo-catalytic/electro-catalytic reactions, and Electrosorption are detailed. The classification of various characterization tools for accessing the arsenic remediation qualitatively and quantitatively are given in the fifth chapter. The first-of-its-kind dedicated analysis has been given on the surface complexation aspects of the arsenic speciation onto various metal adsorbent systems using synchrotron results, surface-complexation modeling, and molecular simulation (e.g., DFT) in the sixth chapter. The current sensing applications of these novel nano-material systems for arsenic determination using colorimetric and electrochemical-based analytical tools and a note about the economic parameters, i.e., regeneration aspects of various adsorbent systems/the sustainable applications of the treated sludge materials, are provided in the final sections. This work makes a critical analysis of 'Environmental Nanotechnology' towards 'Arsenic Treatment'.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| |
Collapse
|
17
|
Emamian S, Ireland KA, Purohit V, McWhorter KL, Maximova O, Allen W, Jensen S, Casa DM, Pushkar Y, Davis KM. X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. J Phys Chem Lett 2023; 14:41-48. [PMID: 36566390 PMCID: PMC9990082 DOI: 10.1021/acs.jpclett.2c03018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kβ emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.
Collapse
Affiliation(s)
- Sahand Emamian
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Diego M. Casa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
18
|
Cutsail GE, Banerjee R, Rice DB, McCubbin Stepanic O, Lipscomb JD, DeBeer S. Determination of the iron(IV) local spin states of the Q intermediate of soluble methane monooxygenase by Kβ X-ray emission spectroscopy. J Biol Inorg Chem 2022; 27:573-582. [PMID: 35988092 PMCID: PMC9470658 DOI: 10.1007/s00775-022-01953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Soluble methane monooxygenase (sMMO) facilitates the conversion of methane to methanol at a non-heme FeIV2 intermediate MMOHQ, which is formed in the active site of the sMMO hydroxylase component (MMOH) during the catalytic cycle. Other biological systems also employ high-valent FeIV sites in catalysis; however, MMOHQ is unique as Nature’s only identified FeIV2 intermediate. Previous 57Fe Mössbauer spectroscopic studies have shown that MMOHQ employs antiferromagnetic coupling of the two FeIV sites to yield a diamagnetic cluster. Unfortunately, this lack of net spin prevents the determination of the local spin state (Sloc) of each of the irons by most spectroscopic techniques. Here, we use Fe Kβ X-ray emission spectroscopy (XES) to characterize the local spin states of the key intermediates of the sMMO catalytic cycle, including MMOHQ trapped by rapid-freeze-quench techniques. A pure XES spectrum of MMOHQ is obtained by subtraction of the contributions from other reaction cycle intermediates with the aid of Mössbauer quantification. Comparisons of the MMOHQ spectrum with those of known Sloc = 1 and Sloc = 2 FeIV sites in chemical and biological models reveal that MMOHQ possesses Sloc = 2 iron sites. This experimental determination of the local spin state will help guide future computational and mechanistic studies of sMMO catalysis.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany.
| | - Rahul Banerjee
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Derek B Rice
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Olivia McCubbin Stepanic
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - John D Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
19
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Celorrio V, Leach AS, Huang H, Hayama S, Freeman A, Inwood DW, Fermin DJ, Russell AE. Relationship between Mn Oxidation State Changes and Oxygen Reduction Activity in (La,Ca)MnO 3 as Probed by In Situ XAS and XES. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Veronica Celorrio
- Diamond Light Source Ltd, Diamond House. Harwell Campus, Didcot OX11 0DE, U.K
| | - Andrew S. Leach
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Haoliang Huang
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Shusaku Hayama
- Diamond Light Source Ltd, Diamond House. Harwell Campus, Didcot OX11 0DE, U.K
| | - Adam Freeman
- Diamond Light Source Ltd, Diamond House. Harwell Campus, Didcot OX11 0DE, U.K
| | - David W. Inwood
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - David J. Fermin
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - Andrea E. Russell
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
21
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X-ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021; 60:10112-10121. [PMID: 33497500 PMCID: PMC8252016 DOI: 10.1002/anie.202015669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/07/2022]
Abstract
The ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kβ XES with resonant excitation in the XAS pre-edge region, resonant Kβ XES (or 1s3p RXES) data are obtained, which probe the 3dn+1 final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made. The present study spans iron tetrachlorides, iron sulfur clusters, and the MoFe protein of nitrogenase. While 1s3p RXES studies have previously been reported, to our knowledge, 1s3p RXES has not been previously utilized to resolve questions of metal valency in highly covalent systems. As such, the approach presented herein provides chemists with means to more rigorously and quantitatively address challenging electronic-structure questions.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Anselm W. Hahn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | | | - Justin T. Henthorn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Jeremy McGale
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
22
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X‐ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Anselm W. Hahn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | | | - Justin T. Henthorn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Jeremy McGale
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
23
|
Hayashi H, Takaishi M. Highly Resolved Mn Kβ Emission: A Potential Probe in Laboratory for Analysis of Ligand Coordination around Mn Atoms in Gels and Solutions. ANAL SCI 2020; 36:1197-1201. [PMID: 32389903 DOI: 10.2116/analsci.20p088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 08/09/2023]
Abstract
Mn Kβ spectra of Mn, MnO, MnSO4·H2O, KMnO4, 0.50 M MnSO4 aqueous solution, and the precipitation bands of Mn-Fe-based Prussian blue analogs formed in 2.4 wt.% agarose gel ("Gel") were measured using a laboratory-use X-ray setup with ∼2.6 eV instrumental resolution, which comprises a cylindrically bent Si (400) crystal monochromator and a spherically bent Ge (440) crystal analyzer. The oxidation-state dependent shift of the Mn Kβ1,3 peak (∼1 eV) was clearly observed for Mn, MnO, and KMnO4, confirming that the employed setup can acquire the key features of Mn Kβ spectra. The Mn Kβ spectra of MnSO4·H2O, the 0.50 M solution, and Gel exhibited small but distinguishable differences, whereas the spectra acquired at two positions in Gel were almost the same. These results suggest that highly resolved Mn Kβ spectra can be helpful for assessing ligand coordination around Mn atoms in gels and solutions.
Collapse
Affiliation(s)
- Hisashi Hayashi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo, 112-8681, Japan.
| | - Mao Takaishi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| |
Collapse
|
24
|
Lafuerza S, Carlantuono A, Retegan M, Glatzel P. Chemical Sensitivity of Kβ and Kα X-ray Emission from a Systematic Investigation of Iron Compounds. Inorg Chem 2020; 59:12518-12535. [PMID: 32830953 DOI: 10.1021/acs.inorgchem.0c01620] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
K-fluorescence X-ray emission spectroscopy (XES) is receiving growing interest in all fields of natural sciences to investigate the local spin. The spin sensitivity in Kβ (Kα) XES stems from the exchange interaction between the unpaired 3p (2p) and the 3d electrons, which is greater for Kβ than for Kα. We present a thorough investigation of a large number of iron-bearing compounds. The experimental spectra were analyzed in terms of commonly used quantitative parameters (Kβ1,3-first moment, Kα1-full width at half-maximum, and integrated absolute difference -IAD-), and we carefully examined the difference spectra. Multiplet calculations were also performed to elucidate the underlying mechanisms that lead to the chemical sensitivity. Our results confirm a strong influence of covalency on both Kβ and Kα lines. We establish a reliable spin sensitivity of Kβ XES as it is dominated by the exchange interaction, whose variations can be quantified by either Kβ1,3-first moment or Kβ-IAD and result in a systematic difference signal line shape. We find an exception in the Kβ XES of Fe3+ and Fe2+ in water solution, where a new difference spectrum is identified that cannot be reproduced by scaling the exchange integrals. We explain this by strong differences in orbital mixing between the valence orbitals. This result calls for caution in the interpretation of Kβ XES spectral changes as due to spin variations without a careful analysis of the line shape. For Kα XES, the smaller exchange interaction and the influence of other electron-electron interactions make it difficult to extract a quantity that directly relates to the spin.
Collapse
Affiliation(s)
- Sara Lafuerza
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Andrea Carlantuono
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marius Retegan
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Pieter Glatzel
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| |
Collapse
|
25
|
Vacher M, Kunnus K, Delcey MG, Gaffney KJ, Lundberg M. Origin of core-to-core x-ray emission spectroscopy sensitivity to structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:044102. [PMID: 32665965 PMCID: PMC7340509 DOI: 10.1063/4.0000022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Recently, coherent structural dynamics in the excited state of an iron photosensitizer was observed through oscillations in the intensity of Kα x-ray emission spectroscopy (XES). Understanding the origin of the unexpected sensitivity of core-to-core transitions to structural dynamics is important for further development of femtosecond time-resolved XES methods and, we believe, generally necessary for interpretation of XES signals from highly non-equilibrium structures that are ubiquitous in photophysics and photochemistry. Here, we use multiconfigurational wavefunction calculations combined with atomic theory to analyze the emission process in detail. The sensitivity of core-to-core transitions to structural dynamics is due to a shift of the minimum energy metal-ligand bond distance between 1s and 2p core-hole states. A key effect is the additional contraction of the non-bonding 3s and 3p orbitals in 1s core-hole states, which decreases electron-electron repulsion and increases overlap in the metal-ligand bonds. The effect is believed to be general and especially pronounced for systems with strong bonds. The important role of 3s and 3p orbitals is consistent with the analysis of radial charge and spin densities and can be connected to the negative chemical shift observed for many transition metal complexes. The XES sensitivity to structural dynamics can be optimized by tuning the emission energy spectrometer, with oscillations up to ±4% of the maximum intensity for the current system. The theoretical predictions can be used to design experiments that separate electronic and nuclear degrees of freedom in ultrafast excited state dynamics.
Collapse
Affiliation(s)
| | | | - Mickaël G. Delcey
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Marcus Lundberg
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
26
|
Kunnus K, Vacher M, Harlang TCB, Kjær KS, Haldrup K, Biasin E, van Driel TB, Pápai M, Chabera P, Liu Y, Tatsuno H, Timm C, Källman E, Delcey M, Hartsock RW, Reinhard ME, Koroidov S, Laursen MG, Hansen FB, Vester P, Christensen M, Sandberg L, Németh Z, Szemes DS, Bajnóczi É, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Lemke HT, Canton SE, Møller KB, Nielsen MM, Vankó G, Wärnmark K, Sundström V, Persson P, Lundberg M, Uhlig J, Gaffney KJ. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat Commun 2020; 11:634. [PMID: 32005815 PMCID: PMC6994595 DOI: 10.1038/s41467-020-14468-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
Collapse
Affiliation(s)
- Kristjan Kunnus
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Morgane Vacher
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Tobias C B Harlang
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kasper S Kjær
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Elisa Biasin
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Tim B van Driel
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Yizhu Liu
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Cornelia Timm
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Erik Källman
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Mickaël Delcey
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Robert W Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Marco E Reinhard
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Sergey Koroidov
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Mads G Laursen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Frederik B Hansen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Peter Vester
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Lise Sandberg
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
- University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Dorottya Sárosiné Szemes
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | | | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marcin Sikorski
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sophie E Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
27
|
Wansleben M, Vinson J, Wählisch A, Bzheumikhova K, Hönicke P, Beckhoff B, Kayser Y. Speciation of iron sulfide compounds by means of X-ray Emission Spectroscopy using a compact full-cylinder von Hamos spectrometer. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2020; 35:10.1039/d0ja00244e. [PMID: 34092880 PMCID: PMC8176736 DOI: 10.1039/d0ja00244e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present experimental and theoretical X-ray emission spectroscopy (XES) data of the Fe Kβ line for Iron(II)sulfide (FeS) and Iron(II)disulfide (FeS2). In comparison to X-ray absorption spectroscopy (XAS), XES offers different discrimination capabilities for chemical speciation, depending on the valence states of the compounds probed and, more importantly in view of a a broader, laboratory-based use, a larger flexibility with respect to the excitation source used. The experimental Fe Kβ XES data was measured using polychromatic X-ray radiation and a compact full-cylinder von Hamos spectrometer while the calculations were realized using the OCEAN code. The von Hamos spectrometer used is characterized by an energy window of up to 700 eV and a spectral resolving power of E/ΔE = 800. The large energy window at a single position of the spectrometer components is made profit of to circumvent the instrumental sensitivity of wavelength-dispersive spectrometers to sample positioning. This results in a robust energy scale which is used to compare experimental data with ab initio valence-to-core calculations, which are carried out using the ocean package. To validate the reliability of the ocean package for the two sample systems, near edge X-ray absorption fine structure measurements of the Fe K absorption edge are compared to theory using the same input parameters as in the case of the X-ray emission calculations. Based on the example of iron sulfide compounds, the combination of XES experiments and ocean calculations allows unravelling the electronic structure of different transition metal sulfides and qualifying XES investigations for the speciation of different compounds.
Collapse
Affiliation(s)
- Malte Wansleben
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - John Vinson
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - André Wählisch
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Karina Bzheumikhova
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Burkhard Beckhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
28
|
Zhang K, Ash R, Girolami GS, Vura-Weis J. Tracking the Metal-Centered Triplet in Photoinduced Spin Crossover of Fe(phen) 32+ with Tabletop Femtosecond M-Edge X-ray Absorption Near-Edge Structure Spectroscopy. J Am Chem Soc 2019; 141:17180-17188. [PMID: 31587557 DOI: 10.1021/jacs.9b07332] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fe(II) coordination complexes are promising alternatives to Ru(II) and Ir(III) chromophores for photoredox chemistry and solar energy conversion, but rapid deactivation of the initial metal-to-ligand charge transfer (MLCT) state to low-lying (d,d) states limits their performance. Relaxation to a long-lived quintet state is postulated to occur via a metal-centered triplet state, but this mechanism remains controversial. We use femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to measure the excited-state relaxation of Fe(phen)32+ and conclusively identify a 3T intermediate that forms in 170 fs and decays to a vibrationally hot 5T2g state in 39 fs. A coherent vibrational wavepacket with a period of 249 fs and damping time of 0.63 ps is observed on the 5T2g surface, and the spectrum of this oscillation serves as a fingerprint for the Fe-N symmetric stretch. The results show that the shape of the M2,3-edge X-ray absorption near-edge structure (XANES) spectrum is sensitive to the electronic structure of the metal center, and the high-spin sensitivity, fast time resolution, and tabletop convenience of XUV transient absorption make it a powerful tool for studying the complex photophysics of transition metal complexes.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ryan Ash
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Gregory S Girolami
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Josh Vura-Weis
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
29
|
Terauchi M. Information of valence charge of 3d transition metal elements observed in L-emission spectra. Microscopy (Oxf) 2019; 68:330-337. [PMID: 31087058 DOI: 10.1093/jmicro/dfz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/26/2019] [Accepted: 04/25/2019] [Indexed: 11/12/2022] Open
Abstract
L-emission spectra of 3d transition metal elements from Sc to Zn and some oxides were measured to examine the relation between L-emission intensities of Lα, Lβ, Lℓ, and Lη and valences of those elements by using a soft X-ray emission spectrometer attached to a scanning electron microscope. Lα,β emission intensity due to transitions from valence bands to core 2p levels compared with Lℓ,η emission intensity due to transitions from core 3 s to deeper 2p levels, Lα,β/Lℓ,η was found to be a key parameter. A linear relation was found between the number of 3d electrons and the intensity ratio of Lα,β/(Lα,β+ Lℓ,η) from Sc to Ni, except for Cr. It takes into account not only a change in N3d but also a change of transition probability due to a change in N3d In the case of 3d metal oxides, the evaluation based on the equation showed an overestimation of the calculated number of 3d electrons, which could be due to a charge transfer from ligand oxygen atoms to the transition metal element, resulting from a core-hole effect in the intermediate state.
Collapse
Affiliation(s)
- Masami Terauchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
30
|
Wernet P. Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170464. [PMID: 30929622 PMCID: PMC6452048 DOI: 10.1098/rsta.2017.0464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
X-ray free-electron lasers with intense, tuneable and short-pulse X-ray radiation are transformative tools for the investigation of transition-metal complexes and metalloproteins. This becomes apparent in particular when combining the experimental observables from X-ray spectroscopy with modern theoretical tools for calculations of electronic structures and X-ray spectra from first principles. The combination gives new insights into how charge and spin densities change in chemical reactions and how they determine reactivity. This is demonstrated for the investigations of structural dynamics with metal K-edge absorption spectroscopy, spin states in excited-state dynamics with metal 3p-3d exchange interactions, the frontier-orbital interactions in dissociation and substitution reactions with metal-specific X-ray spectroscopy, and studies of metal oxidation states with femtosecond pulses for 'probe-before-destroy' spectroscopy. The role of X-ray free-electron lasers is addressed with thoughts about how they enable 'bringing back together' different aspects of the same problem and this is thought to go beyond a conventional review paper where these aspects are formulated in italic font type in a prequel, an interlude and in a sequel. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|
31
|
Jensen SC, Sullivan B, Hartzler D, Aguilar JM, Awel S, Bajt S, Basu S, Bean R, Chapman H, Conrad C, Frank M, Fromme R, Martin-Garcia JM, Grant TD, Heymann M, Hunter MS, Ketawala G, Kirian RA, Knoska J, Kupitz C, Li X, Liang M, Lisova S, Mariani V, Mazalova V, Messerschmidt M, Moran M, Nelson G, Oberthür D, Schaffer A, Sierra RG, Vaughn N, Weierstall U, Wiedorn MO, Xavier L, Yang JH, Yefanov O, Zatsepin NA, Aquila A, Fromme P, Boutet S, Seidler GT, Pushkar Y. X-ray Emission Spectroscopy at X-ray Free Electron Lasers: Limits to Observation of the Classical Spectroscopic Response for Electronic Structure Analysis. J Phys Chem Lett 2019; 10:441-446. [PMID: 30566358 PMCID: PMC7047744 DOI: 10.1021/acs.jpclett.8b03595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
X-ray free electron lasers (XFELs) provide ultrashort intense X-ray pulses suitable to probe electron dynamics but can also induce a multitude of nonlinear excitation processes. These affect spectroscopic measurements and interpretation, particularly for upcoming brighter XFELs. Here we identify and discuss the limits to observing classical spectroscopy, where only one photon is absorbed per atom for a Mn2+ in a light element (O, C, H) environment. X-ray emission spectroscopy (XES) with different incident photon energies, pulse intensities, and pulse durations is presented. A rate equation model based on sequential ionization and relaxation events is used to calculate populations of multiply ionized states during a single pulse and to explain the observed X-ray induced spectral lines shifts. This model provides easy estimation of spectral shifts, which is essential for experimental designs at XFELs and illustrates that shorter X-ray pulses will not overcome sequential ionization but can reduce electron cascade effects.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel Hartzler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jose Meza Aguilar
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Saša Bajt
- Photon Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Shibom Basu
- Paul Sherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Chelsie Conrad
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Raimund Fromme
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | | | - Thomas D Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY 14203
- BioXFEL Science and Technology Center, Buffalo, NY 14203, USA
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
- Max Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Mark S. Hunter
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gihan Ketawala
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Richard A Kirian
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Christopher Kupitz
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Xuanxuan Li
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Mengning Liang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stella Lisova
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | | | - Michael Moran
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Alex Schaffer
- Department of Biochemistry, University of California Davis, Davis, CA 95616, USA
| | - Raymond G Sierra
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Natalie Vaughn
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Uwe Weierstall
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jay-How Yang
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Nadia A Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Petra Fromme
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ85287-1604
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gerald T Seidler
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Wolny JA, Schünemann V, Németh Z, Vankó G. Spectroscopic techniques to characterize the spin state: Vibrational, optical, Mössbauer, NMR, and X-ray spectroscopy. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Martinie RJ, Blaesi EJ, Bollinger JM, Krebs C, Finkelstein KD, Pollock CJ. Two-Color Valence-to-Core X-ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angew Chem Int Ed Engl 2018; 57:12754-12758. [PMID: 30075052 PMCID: PMC6579043 DOI: 10.1002/anie.201807366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Indexed: 12/20/2022]
Abstract
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two-color valence-to-core X-ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2 -activating, radical-initiating manganese-iron heterodinuclear cofactor in a class I-c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two-color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIV FeIV and MnIV FeIII states of the enzyme to be assigned as MnIV (μ-O)2 FeIV and MnIV (μ-O)(μ-OH)FeIII , respectively.
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Elizabeth J Blaesi
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - J Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Kenneth D Finkelstein
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher J Pollock
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
- Present address: Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Martinie RJ, Blaesi EJ, Bollinger JM, Krebs C, Finkelstein KD, Pollock CJ. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryan J. Martinie
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Elizabeth J. Blaesi
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - J. Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Kenneth D. Finkelstein
- Cornell High Energy Synchrotron Source, Wilson Laboratory Cornell University Ithaca NY 14853 USA
| | - Christopher J. Pollock
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
- Present address: Cornell High Energy Synchrotron Source Wilson Laboratory Cornell University Ithaca NY 14853 USA
| |
Collapse
|
35
|
Wang H, Friedrich S, Li L, Mao Z, Ge P, Balasubramanian M, Patil DS. L-edge sum rule analysis on 3d transition metal sites: from d 10 to d 0 and towards application to extremely dilute metallo-enzymes. Phys Chem Chem Phys 2018; 20:8166-8176. [PMID: 29521394 PMCID: PMC5895852 DOI: 10.1039/c7cp06624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d10→ 3d0. In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noise ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d0 to a closed shell 3d10; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L3 and post-L2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. This study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA. and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephan Friedrich
- Lawrence Livermore National Laboratory, Advanced Detectors Group, 7000 East Avenue, Livermore, CA 94550, USA
| | - Lei Li
- Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2 Kouto, Shingu-cho, Tatsuno, Hyogo 679-5165, Japan
| | - Ziliang Mao
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Pinghua Ge
- Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801, USA
| | | | - Daulat S Patil
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Kucheryavy P, Lahanas N, Lockard JV. Spectroscopic Evidence of Pore Geometry Effect on Axial Coordination of Guest Molecules in Metalloporphyrin-Based Metal Organic Frameworks. Inorg Chem 2018; 57:3339-3347. [PMID: 29493232 DOI: 10.1021/acs.inorgchem.8b00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systematic comparison of host-guest interactions in two iron porphyrin-based metal-organic frameworks (MOFs), FeCl-PCN222 and FeCl-PCN224, with drastically different pore sizes and geometries is reported in this fundamental spectroscopy study. Guest molecules (acetone, imidazole, and piperidine) of different sizes, axial binding strengths, and reactivity with the iron porphyrin centers are employed to demonstrate the range of possible interactions that occur at the porphyrin sites inside the pores of the MOF. Binding patterns of these guest species under the constraints of the pore geometries in the two frameworks are established using multiple spectroscopy methods, including UV-vis diffuse reflectance, Raman, X-ray absorption, and X-ray emission spectroscopy. Line shape analysis applied to the latter method provides quantitative information on axial ligation through its spin state sensitivity. The observed coordination behaviors derived from the spectroscopic analyses of the two MOF systems are compared to those predicted using space-filling models and relevant iron porphyrin molecular analogues. While the space-filling models show the ideal axial coordination behavior associated with these systems, the spectroscopic results provide powerful insight into the actual binding interactions that occur in practice. Evidence for potential side reactions occurring within the pores that may be responsible for the observed deviation from model coordination behavior in one of the MOF/guest molecule combinations is presented and discussed in the context of literature precedent.
Collapse
Affiliation(s)
- Pavel Kucheryavy
- Department of Chemistry , Rutgers University - Newark , Newark , New Jersey 07102 , United States
| | - Nicole Lahanas
- Department of Chemistry , Rutgers University - Newark , Newark , New Jersey 07102 , United States
| | - Jenny V Lockard
- Department of Chemistry , Rutgers University - Newark , Newark , New Jersey 07102 , United States
| |
Collapse
|
37
|
Petrie S, Stranger R, Pace RJ. What Mn K β spectroscopy reveals concerning the oxidation states of the Mn cluster in photosystem II. Phys Chem Chem Phys 2018; 19:27682-27693. [PMID: 28983541 DOI: 10.1039/c7cp04797e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The oxygen evolving complex, (OEC) in Photosystem II contains a Mn4Ca cluster and catalyses oxidation of water to molecular oxygen and protons, the most energetically demanding reaction in nature. The catalytic mechanism remains unresolved and the precise Mn oxidation levels through which the cluster cycles during functional turnover are controversial. Two proposals for these redox levels exist; the 'high' and 'low' oxidation state paradigms, which differ systematically by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S0…S3). Presently the 'high' paradigm is more favored. For S1 the assumed mean redox levels of Mn are 3.5 (high) and 3.0 (low) respectively. Mn K region X-ray spectroscopy has been extensively used to examine the OEC Mn oxidation levels, with Kβ emission spectroscopy increasingly the method of choice. Here we review the results from application of this and closely related techniques to PS II, building on our earlier examination of these and other data on the OEC oxidation states (Pace et al., Dalton Trans., 2012, 41, 11145). We compare the most recent results with a range of earlier Mn Kβ experiments on the photosystem and related model Mn systems. New analyses of these data are given, highlighting certain key spectral considerations which appear not to have been sufficiently appreciated earlier. These show that the recent and earlier PS II Kβ results have a natural internal consistency, leading to the strong conclusion that the low paradigm oxidation state assignment for the functional OEC is favoured.
Collapse
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical & Mathematical Sciences, College of Science, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
38
|
Bhargava A, Chen CY, Finkelstein KD, Ward MJ, Robinson RD. X-ray emission spectroscopy: an effective route to extract site occupation of cations. Phys Chem Chem Phys 2018; 20:28990-29000. [DOI: 10.1039/c8cp04628j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cation site occupation is an important determinant of materials properties, especially in a complex system with multiple cations such as in ternary spinels. In this work, we show that XES provides not only the site occupation information as EXAFS, but also additional information on the oxidation states of the cations at each site. Additionally, we show that XES is a superior and a far more accurate method than EXAFS.
Collapse
Affiliation(s)
- Anuj Bhargava
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| | - Cindy Y. Chen
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| | | | - Matthew J. Ward
- Cornell High Energy Synchrotron Source (CHESS)
- Cornell University
- Ithaca
- USA
- CLS@APS
| | | |
Collapse
|
39
|
Fedorenko AD, Mazalov LN, Fursova EY, Ovcharenko VI, Kalinkin AV, Lavrukhina SA. X-ray photoelectron and X-ray emission study of the electronic structure of hexanuclear Mn(II,III) pivalate complexes. J STRUCT CHEM+ 2017. [DOI: 10.1134/s0022476617060142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Magnetic moment evolution and spin freezing in doped BaFe 2As 2. Sci Rep 2017; 7:8003. [PMID: 28808249 PMCID: PMC5556117 DOI: 10.1038/s41598-017-07286-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/27/2017] [Indexed: 12/02/2022] Open
Abstract
Fe-Kβ X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μbare in electron- and hole-doped BaFe2As2. At low temperature, μbare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μbare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe2As2, and the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.
Collapse
|
41
|
Jensen SC, Davis KM, Sullivan B, Hartzler DA, Seidler GT, Casa DM, Kasman E, Colmer HE, Massie AA, Jackson TA, Pushkar Y. X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes. J Phys Chem Lett 2017; 8:2584-2589. [PMID: 28524662 DOI: 10.1021/acs.jpclett.7b01209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [MnIV(OH)2(Me2EBC)]2+ and [MnIV(O)(OH)(Me2EBC)]+, the second of which contains a key MnIV═O structural fragment. Despite having the same formal oxidation state (MnIV) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from MnIV-OH conversion to MnIV═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S3 intermediate state of photosystem II containing a MnIV═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Katherine M Davis
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Daniel A Hartzler
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Gerald T Seidler
- Department of Physics, University of Washington , Seattle, Washington 98195, United States
| | - Diego M Casa
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Elina Kasman
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
42
|
March AM, Assefa TA, Boemer C, Bressler C, Britz A, Diez M, Doumy G, Galler A, Harder M, Khakhulin D, Németh Z, Pápai M, Schulz S, Southworth SH, Yavaş H, Young L, Gawelda W, Vankó G. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:2620-2626. [PMID: 28580048 PMCID: PMC5453616 DOI: 10.1021/acs.jpcc.6b12940] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 05/19/2023]
Abstract
We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete 1s X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.
Collapse
Affiliation(s)
- Anne Marie March
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Argonne, Illinois 60439, United States
- E-mail:
| | | | - Christina Boemer
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- The Hamburg Centre
for Ultrafast Imaging, Luruper Chaussee
149, 22761 Hamburg, Germany
| | - Christian Bressler
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- The Hamburg Centre
for Ultrafast Imaging, Luruper Chaussee
149, 22761 Hamburg, Germany
- Department
of Physics, Technical University of Denmark, Fysikvej 307, DK-2800, Kongens Lyngby, Denmark
| | - Alexander Britz
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- The Hamburg Centre
for Ultrafast Imaging, Luruper Chaussee
149, 22761 Hamburg, Germany
| | - Michael Diez
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- The Hamburg Centre
for Ultrafast Imaging, Luruper Chaussee
149, 22761 Hamburg, Germany
| | - Gilles Doumy
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Argonne, Illinois 60439, United States
| | - Andreas Galler
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
| | - Manuel Harder
- Deutsches
Elektronen-Synchrotron
(DESY), 22607 Hamburg, Germany
| | - Dmitry Khakhulin
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- The Hamburg Centre
for Ultrafast Imaging, Luruper Chaussee
149, 22761 Hamburg, Germany
| | - Zoltán Németh
- Wigner
Research Centre for Physics, Hungarian Academy
Sciences, H-1525 Budapest, Hungary
| | - Mátyás Pápai
- Wigner
Research Centre for Physics, Hungarian Academy
Sciences, H-1525 Budapest, Hungary
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Sebastian Schulz
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- The Hamburg Centre
for Ultrafast Imaging, Luruper Chaussee
149, 22761 Hamburg, Germany
| | - Stephen H. Southworth
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Argonne, Illinois 60439, United States
| | - Hasan Yavaş
- Deutsches
Elektronen-Synchrotron
(DESY), 22607 Hamburg, Germany
| | - Linda Young
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Argonne, Illinois 60439, United States
- Department
of Physics and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Wojciech Gawelda
- European XFEL, Holzkoppel
4, D-22869 Schenefeld, Germany
- Institute
of Physics, Jan Kochanowski University, 25-406 Kielce, Poland
- E-mail:
| | - György Vankó
- Wigner
Research Centre for Physics, Hungarian Academy
Sciences, H-1525 Budapest, Hungary
- E-mail:
| |
Collapse
|
43
|
Kositzki R, Mebs S, Marx J, Griese JJ, Schuth N, Högbom M, Schünemann V, Haumann M. Protonation State of MnFe and FeFe Cofactors in a Ligand-Binding Oxidase Revealed by X-ray Absorption, Emission, and Vibrational Spectroscopy and QM/MM Calculations. Inorg Chem 2016; 55:9869-9885. [PMID: 27610479 DOI: 10.1021/acs.inorgchem.6b01752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzymes with a dimetal-carboxylate cofactor catalyze reactions among the top challenges in chemistry such as methane and dioxygen (O2) activation. Recently described proteins bind a manganese-iron cofactor (MnFe) instead of the classical diiron cofactor (FeFe). Determination of atomic-level differences of homo- versus hetero-bimetallic cofactors is crucial to understand their diverse redox reactions. We studied a ligand-binding oxidase from the bacterium Geobacillus kaustophilus (R2lox) loaded with a FeFe or MnFe cofactor, which catalyzes O2 reduction and an unusual tyrosine-valine ether cross-link formation, as revealed by X-ray crystallography. Advanced X-ray absorption, emission, and vibrational spectroscopy methods and quantum chemical and molecular mechanics calculations provided relative Mn/Fe contents, X-ray photoreduction kinetics, metal-ligand bond lengths, metal-metal distances, metal oxidation states, spin configurations, valence-level degeneracy, molecular orbital composition, nuclear quadrupole splitting energies, and vibrational normal modes for both cofactors. A protonation state with an axial water (H2O) ligand at Mn or Fe in binding site 1 and a metal-bridging hydroxo group (μOH) in a hydrogen-bonded network is assigned. Our comprehensive picture of the molecular, electronic, and dynamic properties of the cofactors highlights reorientation of the unique axis along the Mn-OH2 bond for the Mn1(III) Jahn-Teller ion but along the Fe-μOH bond for the octahedral Fe1(III). This likely corresponds to a more positive redox potential of the Mn(III)Fe(III) cofactor and higher proton affinity of its μOH group. Refined model structures for the Mn(III)Fe(III) and Fe(III)Fe(III) cofactors are presented. Implications of our findings for the site-specific metalation of R2lox and performance of the O2 reduction and cross-link formation reactions are discussed.
Collapse
Affiliation(s)
- Ramona Kositzki
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Jennifer Marx
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| | - Nils Schuth
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
44
|
Kucheryavy P, Lahanas N, Velasco E, Sun CJ, Lockard JV. Probing Framework-Restricted Metal Axial Ligation and Spin State Patterns in a Post-Synthetically Reduced Iron-Porphyrin-Based Metal-Organic Framework. J Phys Chem Lett 2016; 7:1109-1115. [PMID: 26950260 DOI: 10.1021/acs.jpclett.6b00302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An iron-porphyrin-based metal organic framework PCN-222(Fe) is investigated upon postsynthetic reduction with piperidine. Fe K-edge X-ray absorption and Kβ mainline emission spectroscopy measurements reveal the local coordination geometry, oxidation, and spin state changes experienced by the Fe sites upon reaction with this axially coordinating reducing agent. Analysis and fitting of these data confirm the binding pattern predicted by a space-filling model of the structurally constrained pore environments. These results are further supported by UV-vis diffuse reflectance, IR, and resonance Raman spectroscopy data.
Collapse
Affiliation(s)
- Pavel Kucheryavy
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Nicole Lahanas
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Ever Velasco
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jenny V Lockard
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| |
Collapse
|
45
|
Mebs S, Braun B, Kositzki R, Limberg C, Haumann M. Abrupt versus Gradual Spin-Crossover in Fe(II)(phen)2(NCS)2 and Fe(III)(dedtc)3 Compared by X-ray Absorption and Emission Spectroscopy and Quantum-Chemical Calculations. Inorg Chem 2015; 54:11606-24. [PMID: 26624918 DOI: 10.1021/acs.inorgchem.5b01822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular spin-crossover (SCO) compounds are attractive for information storage and photovoltaic technologies. We compared two prototypic SCO compounds with Fe(II)N6 (1, [Fe(phen)2(NCS)2], with phen = 1,10-phenanthroline) or Fe(III)S6 (2, [Fe(dedtc)3], with dedtc = N,N'-diethyldithiocarbamate) centers, which show abrupt (1) or gradual (2) thermally induced SCO, using K-edge X-ray absorption and Kβ emission spectroscopy (XAS/XES) in a 8-315 K temperature range, single-crystal X-ray diffraction (XRD), and density functional theory (DFT). Core-to-valence and valence-to-core electronic transitions in the XAS/XES spectra and bond lengths change from XRD provided benchmark data, verifying the adequacy of the TPSSh/TZVP DFT approach for the description of low-spin (LS) and high-spin (HS) species. Determination of the spin densities, charge distributions, bonding descriptors, and valence-level configurations, as well as similar experimental and calculated enthalpy changes (ΔH), suggested that the varying metal-ligand bonding properties and deviating electronic structures converge to similar enthalpic contributions to the free-energy change (ΔG) and thus presumably are not decisive for the differing SCO behavior of 1 and 2. Rather, SCO seems to be governed by vibrational contributions to the entropy changes (ΔS) in both complexes. Intra- and intermolecular interactions in crystals of 1 and 2 were identified by atoms-in-molecules analysis. Thermal excitation of individual dedtc ligand vibrations accompanies the gradual SCO in 2. In contrast, extensive inter- and intramolecular phen/NCS vibrational mode coupling may be an important factor in the cooperative SCO behavior of 1.
Collapse
Affiliation(s)
- Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Beatrice Braun
- Institut für Chemie, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
46
|
Abstract
The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.
Collapse
|
47
|
March AM, Assefa T, Bressler C, Doumy G, Galler A, Gawelda W, Kanter E, Németh Z, Pápai M, Southworth S, Young L, Vankó G. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:14571-14578. [PMID: 26568779 PMCID: PMC4634714 DOI: 10.1021/jp511838q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Indexed: 05/19/2023]
Abstract
X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pump-probe technique.
Collapse
Affiliation(s)
- Anne Marie March
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- E-mail:
| | | | - Christian Bressler
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Gilles Doumy
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andreas Galler
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | | | - Elliot
P. Kanter
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian
Academy Sciences, H-1525 Budapest, Hungary
| | - Mátyás Pápai
- Wigner Research Centre for Physics, Hungarian
Academy Sciences, H-1525 Budapest, Hungary
| | - Stephen
H. Southworth
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Linda Young
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian
Academy Sciences, H-1525 Budapest, Hungary
- E-mail:
| |
Collapse
|
48
|
Gul S, Ng JWD, Alonso-Mori R, Kern J, Sokaras D, Anzenberg E, Lassalle-Kaiser B, Gorlin Y, Weng TC, Zwart PH, Zhang JZ, Bergmann U, Yachandra VK, Jaramillo TF, Yano J. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Phys Chem Chem Phys 2015; 17:8901-12. [PMID: 25747045 DOI: 10.1039/c5cp01023c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.
Collapse
Affiliation(s)
- Sheraz Gul
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nat Commun 2015; 6:6359. [PMID: 25727920 PMCID: PMC4366532 DOI: 10.1038/ncomms7359] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/23/2015] [Indexed: 12/29/2022] Open
Abstract
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. Photoinduced electron transfer in solvated molecular assemblies occurs on the ultrafast timescale before full electronic and geometric relaxation take place. Here Canton et al. monitor this out-of-equilibrium process in a donor–acceptor bimetallic assembly using an X-ray free-electron laser.
Collapse
|
50
|
Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein KD, Wu W, Julian SR, Kim YJ, Mazin II, Boeri L. Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2As2 family of materials. PHYSICAL REVIEW LETTERS 2015; 114:047001. [PMID: 25679903 DOI: 10.1103/physrevlett.114.047001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 06/04/2023]
Abstract
We report a combination of Fe Kβ x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx)2. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx)2. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx)2 (x=0.055) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.
Collapse
Affiliation(s)
- L Ortenzi
- Institute for Complex Systems (ISC-CNR), c/o Dipartimento di Fisica, Università "La Sapienza", Piazzale Aldo Moro, n. 5, 00185 Rome, Italy and Max-Planck-Institut für Festkörperforschung, Heisenbergstraβe 1, D-70569 Stuttgart, Germany
| | - H Gretarsson
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraβe 1, D-70569 Stuttgart, Germany and Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - S Kasahara
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Y Matsuda
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - T Shibauchi
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan and Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan
| | - K D Finkelstein
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, USA
| | - W Wu
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - S R Julian
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Young-June Kim
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - I I Mazin
- Code 6390, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| | - L Boeri
- Institute for Theoretical and Computational Physics, TU Graz, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|