1
|
Bityukov OV, Serdyuchenko PY, Kirillov AS, Nikishin GI, Vil’ VA, Terent’ev AO. Advances in radical peroxidation with hydroperoxides. Beilstein J Org Chem 2024; 20:2959-3006. [PMID: 39600957 PMCID: PMC11590016 DOI: 10.3762/bjoc.20.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Organic peroxides have become sought-after functionalities, particularly following the multi-tone consumption in polymer production and success in medicinal chemistry. The selective introduction of a peroxide fragment at different positions on the target molecule is a priority in the modern reaction design. The pioneering Kharasch-Sosnovsky peroxidation became the basic universal platform for the development of peroxidation methods, with its great potential for rapid generation of complexity due to the ability to couple the resulting free radicals with a wide range of partners. This review discusses the recent advances in the radical Kharasch-type functionalization of organic molecules with OOR fragment including free-component radical couplings. The discussion has been structured by the type of the substrate of radical peroxidation: C(sp 3 )-H substrates; aromatic systems; compounds with unsaturated C-C or C-Het bonds.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Narra SR, Ariff PNAM, Saha D, Bacho MZ, Shibata N. TBHP Promotes Cross-Dehydrogenative Coupling of SF 4 Alkynes with Tetrahydroisoquinolines under Copper Catalysis. Org Lett 2024; 26:7370-7375. [PMID: 39178338 DOI: 10.1021/acs.orglett.4c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
We present a viable approach for the cross-dehydrogenative coupling of Het-SF4-alkynes with tetrahydroisoquinolines under oxidative conditions, using TBHP and copper catalysts. These newly developed conditions boast enhanced yields and a more extensive range of substrates, demonstrating tolerance to various functional groups and addressing the limitations of earlier reports. Consequently, this method should increase opportunities for the exploration of SF4-containing compounds and their potential applications in drug discovery, materials science, and as alternatives to PFAS.
Collapse
Affiliation(s)
- Srikanth Reddy Narra
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Debarshi Saha
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Muhamad Zulfaqar Bacho
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Chutia A, Arandhara PJ, Behera BK, Pradhan A, Saikia AK. Synthesis of Benzodioxepinones and Benzoxazepinones via Tandem Oxidation and Iodolactonization of 2- O/ N-tethered Alkenyl Benzaldehyde Mediated by CuI/TBHP. ACS OMEGA 2024; 9:14217-14232. [PMID: 38559946 PMCID: PMC10975639 DOI: 10.1021/acsomega.3c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
An efficient methodology for the synthesis of halogenated benzodioxepinones and benzoxazecinones has been developed via tandem oxidation and iodolactonization reaction of 2-O/N-tethered alkenyl benzaldehydes mediated by CuI and tertiarybutylhydro-peroxide in acetonitrile at 70 °C in moderate to good yields. The reaction involves initial oxidation of aldehyde to acid followed by iodolactonization. Terminal propargyl ether resulted in a mixture of mono- and diiodido-3-methylene-1,4-dioxepin-5-ones. The post-synthetic modification of the reaction products leads to the formation of corresponding thiocyanate, azide, thioether, and triazole derivatives.
Collapse
Affiliation(s)
- Archana Chutia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ankita Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anil K. Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
4
|
Xu H, Lou X, Xie J, Qin Z, He H, Gao X. Regioselective Approach to β-Peroxyl Alcohols and Ethers from Alkenes. J Org Chem 2022; 87:9957-9968. [PMID: 35829642 DOI: 10.1021/acs.joc.2c00954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A different regioselective three-component reaction of alkenes, oxygen sources, and hydroperoxides mediated by ammonium iodine to α-oxyperoxidates has been developed. Mechanistic studies demonstrated that regioselective radical addition and subsequent SN2 nucleophilic substitution were possible for the formation of products. In addition to the traditional pathway of SN2 reaction, that is, where nucleophiles attack the α-C atoms at the back side, an additional unusual transition configuration with the H2O molecule attacking the α-C atom at the front side was obtained.
Collapse
Affiliation(s)
- Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Xinyao Lou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Junrang Xie
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ze Qin
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Xiaofang Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| |
Collapse
|
5
|
Xu X, Zheng W, Ren L, Jiao P. Thermodynamic and Kinetic Studies on Copper-Catalyzed Cross-Dehydrogenative Couplings of N-aryl Glycine Esters with Phenols. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofei Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lufei Ren
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | | |
Collapse
|
6
|
Kozumi H, Tanabe M, Kambe T, Imaoka T, Chun WJ, Yamamoto K. Copper-bismuth binary oxide clusters: an efficient catalyst for selective styrene bisperoxidation. CHEM LETT 2022. [DOI: 10.1246/cl.210725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiromu Kozumi
- Laboratory for Chemistry and Life Science (CLS), Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Makoto Tanabe
- ERATO−JST, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tetsuya Kambe
- Laboratory for Chemistry and Life Science (CLS), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO−JST, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takane Imaoka
- Laboratory for Chemistry and Life Science (CLS), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO−JST, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science (CLS), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO−JST, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Ma N, Guo L, Shen ZJ, Qi D, Yang C, Xia W. Cascade Cyclization for the Synthesis of Indolo[2,1-α]isoquinoline Derivatives via Visible-Light-Induced Halogen-Atom-Transfer (XAT) and Hydrogen-Atom-Transfer (HAT). Org Biomol Chem 2022; 20:1731-1737. [DOI: 10.1039/d1ob02480a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free photoredox cascade cyclization is herein reported. In this protocol, sustainable visible light was used as energy source and organic light-emitting molecule Eosin Y served as efficient photocatalyst....
Collapse
|
8
|
Leifert D, Weidlich F, Adler F, Daniliuc CG, Alasmary FA, Studer A. 2,3-Difunctionalized Indoles via Radical Acylation or Trifluoromethylation of ortho-Alkynylphenyl Isonitriles. Org Lett 2021; 24:284-288. [PMID: 34898229 DOI: 10.1021/acs.orglett.1c03916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A radical cascade to 2,3-disubstituted indoles proceeding via acylation or trifluoromethylation of ortho-alkynylphenyl isonitriles is presented. In these cascades, two C-C bonds and one C-O bond are formed using an inexpensive oxidant and a catalytic copper or iron salt. The starting isonitriles are easily accessible, and commercially available aldehydes and fluoromethylation reagents serve as reaction partners. Functional group tolerance is high, as documented by the successful preparation of a series of 2,3-disubstituted indoles.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Frauke Weidlich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Florin Adler
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany.,Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Gao X, Lin J, Zhang L, Lou X, Guo G, Peng N, Xu H, Liu Y. Iodine-Initiated Dioxygenation of Aryl Alkenes Using tert-Butylhydroperoxides and Water: A Route to Vicinal Diols and Bisperoxides. J Org Chem 2021; 86:15469-15480. [PMID: 34706535 DOI: 10.1021/acs.joc.1c01968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An environment-friendly and efficient dioxygenation of aryl alkenes for the construction of vicinal diols has been developed in water with iodine as the catalyst and tert-butylhydroperoxides (TBHPs) as the oxidant. The protocol was efficient, sustainable, and operationally simple. Detailed mechanistic studies indicated that one of the hydroxyl groups is derived from water and the other one is derived from TBHP. Additionally, the bisperoxides could be obtained in good yields with iodine as the catalyst, Na2CO3 as the additive, and propylene carbonate as the solvent, instead.
Collapse
Affiliation(s)
- Xiaofang Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jiani Lin
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Li Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xinyao Lou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Guanghui Guo
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,State Key Laboratory of Membrane of Separation and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300378, P. R. China
| |
Collapse
|
10
|
Sacchelli BAL, Rocha BC, Andrade LH. Cascade Reactions Assisted by Microwave Irradiation: Ultrafast Construction of 2-Quinolinone-Fused γ-Lactones from N-( o-Ethynylaryl)acrylamides and Formamide. Org Lett 2021; 23:5071-5075. [PMID: 34152153 DOI: 10.1021/acs.orglett.1c01606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrafast (10 s) methodology to construct novel highly functionalized 2-quinolinones from N-(o-ethynylaryl)acrylamides (1,7-enynes) is described for the first time. Microwave irradiation enabled the ultrafast synthesis of 2-quinolinone-fused γ-lactones from Fenton's reagents in formamide. After six key consecutive reactions, including a diastereoselective step, 2-quinolinone-fused γ-lactones were obtained in good overall yield (up to 46%; 10 s).
Collapse
Affiliation(s)
| | - Bianca C Rocha
- Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | |
Collapse
|
11
|
Wang W, He Y, He J, Dang Y, Kankanmkapuge T, Gao W, Cong R, Suib SL, Yang T. Identification of key oxidative intermediates and the function of chromium dopants in PKU-8: catalytic dehydrogenation of sec-alcohols with tert-butylhydroperoxide. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01822h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
t-BuOO* activated by Cr-PKU-8 from TBHP is the key intermediate to the highly selective dehydrogenation of sec-alcohols.
Collapse
Affiliation(s)
- Weilu Wang
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- People's Republic of China
| | - Yang He
- Department of Chemistry and Chemical Engineering
- University of Tennessee
- Knoxville
- USA
| | - Junkai He
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Yanliu Dang
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | | | - Wenliang Gao
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- People's Republic of China
| | - Rihong Cong
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- People's Republic of China
| | - Steven L. Suib
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Tao Yang
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- People's Republic of China
| |
Collapse
|
12
|
Andrade-Sampedro P, Correa A, Matxain JM. On the Mechanism of Cross-Dehydrogenative Couplings between N-aryl Glycinates and Indoles: A Computational Study. J Org Chem 2020; 85:13133-13140. [PMID: 32940464 DOI: 10.1021/acs.joc.0c01816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the widespread use of cross-dehydrogenative couplings in modern organic synthesis, mechanistic studies are still rare in the literature and those applied to α-amino carbonyl compounds remain virtually unexplored. Herein, the mechanism of Co-catalyzed cross-dehydrogenative couplings of N-aryl glycinates with indoles is described. Density functional theory studies supported the formation of an imine-type intermediate as the more plausible transient electrophilic species. Likewise, key information regarding the role of the N-aryl group and free NH motif within the reaction outcome has been gained, which may set the stage for further developments in this field of expertise.
Collapse
Affiliation(s)
- Paula Andrade-Sampedro
- Department of Organic Chemistry I, Joxe Mari Korta R&D Center, University of the Basque Country (UPV/EHU), Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Arkaitz Correa
- Department of Organic Chemistry I, Joxe Mari Korta R&D Center, University of the Basque Country (UPV/EHU), Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
13
|
Zdvizhkov AT, Radulov PS, Novikov RA, Tafeenko VA, Chernyshev VV, Ilovaisky AI, Terent’ev AO, Nikishin GI. Convenient synthesis of furo[2,3-c][1,2]dioxoles from 1-aryl-2-allylalkane-1,3-diones. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Meireles AM, Martins DCDS. Classical and green cyclohexane oxidation catalyzed by manganese porphyrins: Ethanol as solvent and axial ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Su YL, De Angelis L, Tram L, Yu Y, Doyle MP. Catalytic Oxidative Cleavage Reactions of Arylalkenes by tert-Butyl Hydroperoxide – A Mechanistic Assessment. J Org Chem 2020; 85:3728-3741. [DOI: 10.1021/acs.joc.9b03346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Linh Tram
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yang Yu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
16
|
Lü X, Du YX, Mele G, Li J, Ni W, Zhao Y. Impact of metalloporphyrin‐based porous coordination polymers on catalytic activities for the oxidation of alkylbenzene. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang‐fei Lü
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of EducationSchool of Water and Environment, Chang'An University No. 126 Yanta Road, Xi'an Shaanxi 710054 P. R. China
- CCCC First Highway Consultants Co., LTD No. 205 Science and Technology Road Xi'an Shaanxi 710075 P. R. China
| | - Yan xia Du
- Shuangliu Middle School in Sichuan Province No. 39 Square Road, District Shuangliu Chengdu Sichuan 610200 P. R. China
| | - Giuseppe Mele
- Department of Engineering for InnovationUniversity of Salento via Arnesano Lecce 73100 Italy
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials ScienceNorthwest University Xi'an Shaanxi 710069 P. R. China
| | - Wan‐kui Ni
- Department of Geological EngineeringCollege of Geological Engineering and Geomatics, Chang'An University No. 126 Yanta Road, Xi'an Shaanxi 710054 P. R. China
| | - Yong‐guo Zhao
- CCCC First Highway Consultants Co., LTD No. 205 Science and Technology Road Xi'an Shaanxi 710075 P. R. China
| |
Collapse
|
17
|
Neff RK, Su YL, Liu S, Rosado M, Zhang X, Doyle MP. Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. J Am Chem Soc 2019; 141:16643-16650. [DOI: 10.1021/jacs.9b05921] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robynne K. Neff
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Melina Rosado
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
18
|
Zhang P, Hu J, Liu B, Yang J, Hou H. Recent advances in metalloporphyrins for environmental and energy applications. CHEMOSPHERE 2019; 219:617-635. [PMID: 30554049 DOI: 10.1016/j.chemosphere.2018.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Porphyrin-based chemistry has reached an unprecedented period of rapid development after decades of study. Due to attractive multifunctional properties, porphyrins and their analogues have emerged as multifunctional organometals for environmental and energy purposes. In particular, pioneer works have been conducted to explore their application in pollution abatement, energy conversion and storage and molecule recognition. This review summarizes recent advances of porphyrins chemistry, focusing on elucidating the nature of catalytic process. The Fenton-like redox chemistry and photo-excitability of porphyrins and their analogues are discussed, highlighting the generation of high-valent iron oxo porphyrin species. Finally, challenges in current research are identified and perspectives for future development in this area are presented.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
19
|
Bityukov OV, Vil' VA, Sazonov GK, Kirillov AS, Lukashin NV, Nikishin GI, Terent'ev AO. Kharasch reaction: Cu-catalyzed and non-Kharasch metal-free peroxidation of barbituric acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Copper catalysed cross-dehydrogenative coupling (CDC) reaction of 4-thiazolidinone with terminal alkyne. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.10.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Abstract
The azidation–peroxidation of alkenes is developed in the presence of a manganese catalyst.
Collapse
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Tian Tian
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
22
|
Székely A, Klussmann M. Molecular Radical Chain Initiators for Ambient‐ to Low‐Temperature Applications. Chem Asian J 2018; 14:105-115. [DOI: 10.1002/asia.201801636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Anna Székely
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 2 45470 Mülheim an der Ruhr Germany
| | - Martin Klussmann
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 2 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
23
|
Ye J, Lin Y, Liu Q, Xu D, Wu F, Liu B, Gao Y, Chen H. Biomimetic Oxidative Coupling Cyclization Enabling Rapid Construction of Isochromanoindolenines. Org Lett 2018; 20:5457-5460. [PMID: 30136588 DOI: 10.1021/acs.orglett.8b02377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a biomimetic oxidative coupling cyclization strategy for the highly efficient functionalization of tetrahydrocarbolines (THCs). This process enables rapid access to complex isochromanoindolenine scaffolds in moderate to excellent yields. The reaction proceeds smoothly and rapidly (complete within minutes) in an open flask. This operationally simple protocol is scalable and compatible with a wide range of functional groups. Late-stage functionalization of a pharmacologically relevant molecule is also demonstrated.
Collapse
Affiliation(s)
- Jinxiang Ye
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yuqi Lin
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Qing Liu
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Dekang Xu
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Fan Wu
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Bin Liu
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Gao
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Haijun Chen
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
24
|
Krylov IB, Paveliev SA, Shumakova NS, Syroeshkin MA, Shelimov BN, Nikishin GI, Terent'ev AO. Iminoxyl radicalsvs. tert-butylperoxyl radical in competitive oxidative C–O coupling with β-dicarbonyl compounds. Oxime ether formation prevails over Kharasch peroxidation. RSC Adv 2018; 8:5670-5677. [PMID: 35539576 PMCID: PMC9078167 DOI: 10.1039/c7ra13587d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/30/2018] [Indexed: 01/26/2023] Open
Abstract
Oxidative coupling of oxime and β-dicarbonyl compounds dominates in a β-dicarbonyl compound/oxime/Cu(ii)/t-BuOOH system; in the absence of oxime, oxidative coupling of t-BuOOH and a β-dicarbonyl compound (Kharasch peroxidation) takes place. The proposed conditions for oxidative coupling of oximes with dicarbonyl compounds require only catalytic amounts of copper salt and t-BuOOH serves as a terminal oxidant. The C–O coupling reaction proceeds via the formation of tert-butoxyl, tert-butylperoxyl and iminoxyl radicals. Apparently, tert-butylperoxyl radicals oxidize oxime into iminoxyl radical faster than they react with β-dicarbonyl compounds forming the Kharasch peroxidation product. Iminoxyl radicals are responsible for the formation of the target C–O coupling products; the yields are up to 77%. The Kharasch peroxidation system Cu(ii)cat./t-BuOOH, the source of t-BuOO˙ radicals, can be switched to generate iminoxyl radicals by adding various oximes.![]()
Collapse
Affiliation(s)
- I. B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - S. A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - N. S. Shumakova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - M. A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - B. N. Shelimov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - G. I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - A. O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| |
Collapse
|
25
|
First-Row-Transition Ion Metals(II)-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols. Catalysts 2017. [DOI: 10.3390/catal7110335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Lan Y, Chang XH, Fan P, Shan CC, Liu ZB, Loh TP, Xu YH. Copper-Catalyzed Silylperoxidation Reaction of α,β-Unsaturated Ketones, Esters, Amides, and Conjugated Enynes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02754] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Lan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xi-Hao Chang
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cui-Cui Shan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Bai Liu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teck-Peng Loh
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Advanced Synthesis, Jiangsu National Synergetic Innovation Center
for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637616
| | - Yun-He Xu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
27
|
Lan Y, Yang C, Xu YH, Loh TP. Direct coupling of sp3 carbon of alkanes with α,β-unsaturated carbonyl compounds using a copper/hydroperoxide system. Org Chem Front 2017. [DOI: 10.1039/c7qo00149e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology of monovalent copper-initiated direct coupling of alkanes and hydroperoxides with unsaturated carbonyl compounds is developed.
Collapse
Affiliation(s)
- Yun Lan
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Chao Yang
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Yun-He Xu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Teck-Peng Loh
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
- Division of Chemistry and Biological Chemistry
| |
Collapse
|
28
|
Yang Y, Gu J, Fang Z, Yang Z, Wei P, Guo K. Copper-catalyzed one-pot oxidative amidation between methylarenes and amines. RSC Adv 2017. [DOI: 10.1039/c7ra02942j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method for the synthesis of amides through direct one-pot oxidative amidation of methylarenes with amines catalyzed by copper has been developed.
Collapse
Affiliation(s)
- Yuhang Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiajia Gu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
29
|
Gandhi H, O'Reilly K, Gupta MK, Horgan C, O'Leary EM, O'Sullivan TP. Advances in the synthesis of acyclic peroxides. RSC Adv 2017. [DOI: 10.1039/c6ra28489b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This review summarises the many developments in the synthesis of acyclic peroxides, with a particular focus on the past 20 years, and seeks to update organic chemists about these new approaches.
Collapse
Affiliation(s)
- H. Gandhi
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - K. O'Reilly
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - M. K. Gupta
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - C. Horgan
- Department of Chemistry
- University College Cork
- Cork
- Ireland
| | - E. M. O'Leary
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - T. P. O'Sullivan
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| |
Collapse
|
30
|
Hossain MM, Shyu SG. Biphasic copper-catalyzed C–H bond activation of arylalkanes to ketones with tert-butyl hydroperoxide in water at room temperature. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Vandenbergh J, Schweitzer-Chaput B, Klussmann M, Junkers T. Acid-Induced Room Temperature RAFT Polymerization: Synthesis and Mechanistic Insights. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joke Vandenbergh
- Polymer Reaction Design Group, Institute for Materials Research (IMO), Hasselt University, Campus Diepenbeek, Building D, B-3590 Diepenbeek, Belgium
| | | | - Martin Klussmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tanja Junkers
- Polymer Reaction Design Group, Institute for Materials Research (IMO), Hasselt University, Campus Diepenbeek, Building D, B-3590 Diepenbeek, Belgium
- IMEC Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
32
|
Boess E, Wolf LM, Malakar S, Salamone M, Bietti M, Thiel W, Klussmann M. Competitive Hydrogen Atom Transfer to Oxyl- and Peroxyl Radicals in the Cu-Catalyzed Oxidative Coupling of N-Aryl Tetrahydroisoquinolines Using tert-Butyl Hydroperoxide. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00944] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Esther Boess
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Larry M. Wolf
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Santanu Malakar
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Michela Salamone
- Dipartimento di
Scienze e Tecnologie Chimiche Università “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento di
Scienze e Tecnologie Chimiche Università “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Walter Thiel
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Martin Klussmann
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
33
|
|
34
|
Gu J, Fang Z, Yang Y, Yang Z, Wan L, Li X, Wei P, Guo K. Copper-catalyzed one-pot oxidative amidation of alcohol to amide via C–H activation. RSC Adv 2016. [DOI: 10.1039/c6ra20732d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Copper-catalyzed one-pot oxidative amidation of both aliphatic and aromatic alcohols with N-chloramines, prepared in situ from many types of primary and secondary amines, to form amides under mild conditions.
Collapse
Affiliation(s)
- Jiajia Gu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yuhang Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Li Wan
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xin Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
35
|
Padala AK, Mupparapu N, Singh D, Vishwakarma RA, Ahmed QN. α-Carbonylimine to α-Carbonylamide: An Efficient Oxidative Amidation Approach. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Terent'ev AO, Sharipov MY, Krylov IB, Gaidarenko DV, Nikishin GI. Manganese triacetate as an efficient catalyst for bisperoxidation of styrenes. Org Biomol Chem 2015; 13:1439-45. [DOI: 10.1039/c4ob01823k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bisperoxidation of styrenes with tert-butyl hydroperoxide in the presence of a catalytic amount of Mn(OAc)3.
Collapse
Affiliation(s)
- Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia
| | - Mikhail Yu. Sharipov
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia
| | - Igor B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Darya V. Gaidarenko
- D.I. Mendeleev University of Chemical Technology of Russia
- Moscow
- Russian Federation
| | - Gennady I. Nikishin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
37
|
Chung A, Miner MR, Richert KJ, Rieder CJ, Woerpel KA. Formation of an Endoperoxide upon Chromium-Catalyzed Allylic Oxidation of a Triterpene by Oxygen. J Org Chem 2014; 80:266-73. [DOI: 10.1021/jo502344x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Abbie Chung
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - Matthew R. Miner
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - Kathleen J. Richert
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - Curtis J. Rieder
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - K. A. Woerpel
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| |
Collapse
|
38
|
Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Säurekatalysierte oxidative Radikaladdition von Ketonen an Olefine. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Acid-Catalyzed Oxidative Radical Addition of Ketones to Olefins. Angew Chem Int Ed Engl 2014; 53:8737-40. [DOI: 10.1002/anie.201401062] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 11/10/2022]
|
40
|
Terent'ev AO, Zdvizhkov AT, Kulakova AN, Novikov RA, Arzumanyan AV, Nikishin GI. Reactions of mono- and bicyclic enol ethers with the I2–hydroperoxide system. RSC Adv 2014. [DOI: 10.1039/c3ra46462h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reactions of mono- and bicyclic enol ethers with I2–H2O2, I2–ButOOH, and I2–tetrahydropyranyl hydroperoxide systems possessing unique and unpredictable reactivity have been studied.
Collapse
Affiliation(s)
- Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Alexander T. Zdvizhkov
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Alena N. Kulakova
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Ashot V. Arzumanyan
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| |
Collapse
|
41
|
Hong S, Lee YM, Cho KB, Seo MS, Song D, Yoon J, Garcia-Serres R, Clémancey M, Ogura T, Shin W, Latour JM, Nam W. Conversion of high-spin iron(iii)–alkylperoxo to iron(iv)–oxo species via O–O bond homolysis in nonheme iron models. Chem Sci 2014. [DOI: 10.1039/c3sc52236a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Selective copper(II)-catalyzed aerobic oxidative cleavage of aromatic gem-disubstituted alkenes to carbonyl compounds under neutral and mild conditions. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ratnikov MO, Doyle MP. Mechanistic Investigation of Oxidative Mannich Reaction with tert-Butyl Hydroperoxide. The Role of Transition Metal Salt. J Am Chem Soc 2013; 135:1549-57. [DOI: 10.1021/ja3113559] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Maxim O. Ratnikov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742,
United States
| | - Michael P. Doyle
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742,
United States
| |
Collapse
|
44
|
Huang R, Xie C, Huang L, Liu J. Copper-catalyzed N-alkoxyalkylation of nucleobases involving direct functionalization of sp3 C–H bonds adjacent to oxygen atoms. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Chen X, Zhu C, Cui X, Wu Y. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C–H bond activation. Chem Commun (Camb) 2013; 49:6900-2. [DOI: 10.1039/c3cc43947j] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Iron(II) α-Aminopyridine Complexes and Their Catalytic Activity in Oxidation Reactions: A Comparative Study of Activity and Ligand Decomposition. Chempluschem 2012. [DOI: 10.1002/cplu.201200244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Structural and electronic promotion with alkali cations of silica-supported Fe(III) sites for alkane oxidation. J Catal 2012. [DOI: 10.1016/j.jcat.2012.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Cadoni R, Porcheddu A, Giacomelli G, De Luca L. One-pot synthesis of amides from aldehydes and amines via C-H bond activation. Org Lett 2012; 14:5014-7. [PMID: 22978698 DOI: 10.1021/ol302175v] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A one-pot synthesis of amides from aldheydes with N-chloroamines, prepared in situ from amines, has been developed. Both aliphatic and aromatic aldehydes and many types of mono- and disubstituted amines are tolerant in this transformation. This cross-coupling reaction appears simple and convenient, has a wide substrate scope and makes use of cheap, abundant, and easily available reagents.
Collapse
Affiliation(s)
- Roberta Cadoni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | | | | | | |
Collapse
|
49
|
Srour H, Maux PL, Simonneaux G. Enantioselective Manganese-Porphyrin-Catalyzed Epoxidation and C–H Hydroxylation with Hydrogen Peroxide in Water/Methanol Solutions. Inorg Chem 2012; 51:5850-6. [DOI: 10.1021/ic300457z] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hassan Srour
- Institute
of Sciences Chimiques of Rennes, Ingénierie
Chimique et Molécules pour le vivant UMR 6226 CNRS, Campus
de Beaulieu 35042 Rennes cedex, France
| | - Paul Le Maux
- Institute
of Sciences Chimiques of Rennes, Ingénierie
Chimique et Molécules pour le vivant UMR 6226 CNRS, Campus
de Beaulieu 35042 Rennes cedex, France
| | - Gerard Simonneaux
- Institute
of Sciences Chimiques of Rennes, Ingénierie
Chimique et Molécules pour le vivant UMR 6226 CNRS, Campus
de Beaulieu 35042 Rennes cedex, France
| |
Collapse
|
50
|
Boess E, Schmitz C, Klussmann M. A Comparative Mechanistic Study of Cu-Catalyzed Oxidative Coupling Reactions with N-Phenyltetrahydroisoquinoline. J Am Chem Soc 2012; 134:5317-25. [DOI: 10.1021/ja211697s] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esther Boess
- Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Muelheim an der Ruhr, Germany
| | - Corinna Schmitz
- Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Muelheim an der Ruhr, Germany
| | - Martin Klussmann
- Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Muelheim an der Ruhr, Germany
| |
Collapse
|