1
|
Abdulla HM, Gangwar P, Sajith PK, Ramachandran CN. Probing the Interaction of NO with C 60: Comparison between Endohedral and Exohedral Complexes. J Phys Chem A 2023; 127:3598-3607. [PMID: 37051864 DOI: 10.1021/acs.jpca.3c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Recent advances in synthetic methodologies have opened new strategies for synthesizing stable metal-free electron spin systems based on fullerenes. Introducing nitric oxide (NO) inside a fullerene cage is one of the methods to attain this goal. In the present study, dispersion corrected density functional theory (B3LYP-D3) has been used to evaluate the structure, stability, and electronic properties of NO encapsulated fullerene NO@C60 and compared those with its exohedral fullerene NO.C60 analog. The calculated stabilization energy for NO@C60 is appreciably higher than NO.C60, and this difference is comprehended via the Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) topological analyses. The delocalization of electron density of NO and the C60 cage in NO@C60 is discussed using electrostatic potential analysis. In addition, an attempt has been made to understand the different locations and orientations involving the interaction of two NO radicals and the fullerene C60. It is shown that the encapsulation of the NO dimer inside the C60 cage is an energetically unfavorable process. On the other hand, stable structures are obtained upon the physisorption of other NO on the surface of NO@C60 and NO.C60. The present work provides an in-depth understanding of the interaction of NO and C60 fullerene, its preferable position, and its orientation in both endohedral and exohedral complexes.
Collapse
Affiliation(s)
| | - Peaush Gangwar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
2
|
Dinse KP, Kato T, Hasegawa S, Hashikawa Y, Murata Y, Bittl R. EPR study of NO radicals encased in modified open C 60 fullerenes. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:197-207. [PMID: 37904828 PMCID: PMC10500688 DOI: 10.5194/mr-1-197-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/10/2020] [Indexed: 11/01/2023]
Abstract
Using pulsed electron paramagnetic resonance (EPR) techniques, the low-temperature magnetic properties of the NO radical being confined in two different modified open C 60 -derived cages are determined. It is found that the smallest principal g value g 3 , being assigned to the axis of the radical, deviates strongly from the free electron value. This behaviour results from partial compensation of the spin and orbital contributions to the g 3 value. The measured g 3 values in the range of 0.7 yield information about the deviation of the locking potential for the encaged NO from axial symmetry. The estimated 17 meV asymmetry is quite small compared to the situation found for the same radical in polycrystalline or amorphous matrices ranging from 300 to 500 meV. The analysis of the temperature dependence of spin relaxation times resulted in an activation temperature of about 3 K, assigned to temperature-activated motion of the NO within the modified open C 60 -derived cages with coupled rotational and translational degrees of freedom in a complicated three-dimensional locking potential.
Collapse
Affiliation(s)
- Klaus-Peter Dinse
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Tatsuhisa Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Robert Bittl
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
3
|
Mendt M, Barth B, Hartmann M, Pöppl A. Low-temperature binding of NO adsorbed on MIL-100(Al)—A case study for the application of high resolution pulsed EPR methods and DFT calculations. J Chem Phys 2017; 147:224701. [DOI: 10.1063/1.4995551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Matthias Mendt
- Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Benjamin Barth
- Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Martin Hartmann
- Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Andreas Pöppl
- Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Continuous Wave EPR of Radicals in Solids. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-94-007-4893-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
5
|
Yu Q, Wang H, Liu T, Xiao L, Jiang X, Zheng X. High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2337-2344. [PMID: 22260249 DOI: 10.1021/es203405c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A combined adsorption-discharge plasma catalytic process was used for the removal of NO(x) using zeolites as catalysts without external heating. It was found that the types of plasma carrier gases exert great effect on the conversion of adsorbed NO(x). The conversion of adsorbed NO(x) is much lower in N(2) plasma than in Ar plasma, which is attributed to the reverse reaction, NO(x) formation reaction. The momentary increase of oxygen species derived from the decomposition of adsorbed NO(x) is considered to be the main cause as their collisions with nitrogen species can generate NO(x) again. Thus, solid carbon was added to the catalyst to act as a scavenger for active oxygen species to improve the conversion of adsorbed NO(x) in N(2) plasma. A NO(x) removal rate of 97.8% was obtained on 8.5wt.% carbon mixed H-ZSM-5 at an energy efficiency of 0.758 mmol NO(x)/W·h.
Collapse
Affiliation(s)
- Qinqin Yu
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University (XiXi Campus), Hangzhou 310028, China
| | | | | | | | | | | |
Collapse
|
6
|
Danilczuk M, Lund A. Adsorption of NO in Li-exchanged zeolite A. A density functional theory study. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Chiesa M, Giamello E, Che M. EPR Characterization and Reactivity of Surface-Localized Inorganic Radicals and Radical Ions. Chem Rev 2009; 110:1320-47. [DOI: 10.1021/cr800366v] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mario Chiesa
- Dipartimento di Chimica IFM and NIS, Università di Torino, 10125 Torino, Italy, and Laboratoire de Réactivité de Surface, UMR 7197-CNRS, Université Pierre et Marie Curie—Paris 6 and Institut Universitaire de France, 75005 Paris, France
| | - Elio Giamello
- Dipartimento di Chimica IFM and NIS, Università di Torino, 10125 Torino, Italy, and Laboratoire de Réactivité de Surface, UMR 7197-CNRS, Université Pierre et Marie Curie—Paris 6 and Institut Universitaire de France, 75005 Paris, France
| | - Michel Che
- Dipartimento di Chimica IFM and NIS, Università di Torino, 10125 Torino, Italy, and Laboratoire de Réactivité de Surface, UMR 7197-CNRS, Université Pierre et Marie Curie—Paris 6 and Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
8
|
Baldansuren A, Eichel RA, Roduner E. Nitrogen oxide reaction with six-atom silver clusters supported on LTA zeolite. Phys Chem Chem Phys 2009; 11:6664-75. [DOI: 10.1039/b903870a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Petersen J, Fisher K, Lowe DJ. Structural basis for VO2+ inhibition of nitrogenase activity (A): 31P and 23Na interactions with the metal at the nucleotide binding site of the nitrogenase Fe protein identified by ENDOR spectroscopy. J Biol Inorg Chem 2008; 13:623-35. [PMID: 18351402 DOI: 10.1007/s00775-008-0360-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/27/2008] [Indexed: 11/30/2022]
Abstract
We previously reported the vanadyl hyperfine couplings of VO(2+)-ATP and VO(2+)-ADP complexes in the presence of the nitrogenase Fe protein from Klebsiella pneumoniae (Petersen et al. in Biochemistry 41:13253-13263, 2002). It was demonstrated that different VO(2+)-nucleotide coordination environments coexist and are distinguishable by electron paramagnetic resonance (EPR) spectroscopy. Here orientation-selective continuous-wave electron-nuclear double resonance (ENDOR) spectra have been investigated especially in the low-radio-frequency range in order to identify superhyperfine interactions with nuclei other than protons. Some of these resonances have been attributed to the presence of a strong interaction with a 31P nucleus although no resolvable superhyperfine structure due to 31P or other nuclei was detected in the EPR spectra. The superhyperfine coupling component is determined to be about 25 MHz. Such a 31P coupling is consistent with an interaction of the metal with phosphorus from a directly, equatorially coordinated nucleotide phosphate group(s). Additionally, novel more prominent 31P ENDOR signals are detected in the low-frequency region. Some of these correspond to a relatively weak 31P coupling. This coupling is present with ATP for all pH forms but is absent with ADP. The ENDOR resonances of these weakly coupled 31P are likely to originate from an interaction of the metal with a nucleotide phosphate group of the nucleoside triphosphate and are attributed to a phosphorus with axial characteristics. Another set of resonances, split about the nuclear Zeeman frequency of 23Na, was detected, suggesting that a monovalent Na+ ion is closely associated with the divalent metal-nucleotide binding site. Na+ replacement by K+ unambiguously confirmed that ENDORs at radio frequencies between 3.0 and 4.5 MHz arise from an interaction with Na+ ions. In contrast to the low-frequency 31P signal, these resonances are present in spectra with both ADP and ATP, and for both low- and neutral-pH forms, although slight differences are detected, showing that these are sensitive to the nucleotide and pH.
Collapse
Affiliation(s)
- Jan Petersen
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
10
|
Goldfarb D. High field ENDOR as a characterization tool for functional sites in microporous materials. Phys Chem Chem Phys 2006; 8:2325-43. [PMID: 16710481 DOI: 10.1039/b601513c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The determination of the details of the spatial and electronic structure of functional sites (centers) in any system, be it in materials chemistry or in biology, is the first step towards understanding their function. When such sites happen to be paramagnetic in any point of their activity cycle, the tool box offered by a variety of high resolution electron paramagnetic resonance (EPR) spectroscopic techniques becomes very attractive for their characterization. This tool box has been considerably expanded by the developments in high field (HF) EPR in general, and HF electron nuclear double resonance (ENDOR), in particular. These have led to numerous new applications in the fields of biology, physics, chemistry and materials sciences. This overview focuses specifically on recent applications of pulsed HF ENDOR spectroscopy to microporous materials, such as zeotype materials, presenting the new opportunities it offers. First, a brief description of the theoretical basis required for the analysis of the HF ENDOR spectrum is given, followed by a description of the pulsed techniques used to record spectra and assign the signals, along with a brief presentation of the required instrumentation. Next, specific applications are given, including transition metal ions and complexes exchanged into zeolite cages, transition metal substitution into frameworks of zeolites, aluminophosphate molecular sieves, and silicious mesoporous materials, the interaction of NO with Lewis sites in zeolite cages and trapped S. We end with a discussion of the advantages and the shortcomings of the method and conclude with a future outlook.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Umamaheswari V, Hartmann M, Pöppl A. Pulsed ENDOR Study of Cu(I)−NO Adsorption Complexes in Cu−L Zeolite. J Phys Chem B 2005; 109:10842-8. [PMID: 16852319 DOI: 10.1021/jp0502914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The local environments of Cu(I)-NO adsorption complexes formed in zeolites Cu-L and Cu-ZSM-5 were studied by electron spin resonance (ESR), pulsed electron nuclear double resonance (ENDOR), and hyperfine sublevel correlation spectroscopy (HYSCORE). Cu(I)-NO complexes have attracted special interest because they are important intermediates in the catalytic decomposition of nitric oxide over copper exchanged zeolites. Recently, detailed structures of the complexes in Cu-ZSM-5 zeolites, O2-Al-O2-Cu(I)-NO, have been proposed on the basis of quantum chemical calculations (Pietrzyk, et al. J. Phys. Chem. B 2003, 107, 6105. Dedecek, et al. Phys. Chem. Chem. Phys. 2002, 4, 5406). 27Al pulsed ENDOR and HYSCORE experiments allowed the hyperfine coupling parameters of an aluminum nuclei found in the vicinity of the Cu(I)-NO complex formed in zeolite Cu-L to be estimated. The data indicate that the aluminum atom is located in the third coordination sphere of the adsorbed NO molecule in agreement with the suggested geometry of the adsorption sites. Broad distributions of aluminum nuclear quadrupole and hyperfine coupling parameters and short electron spin relaxation times of the Cu(I)-NO species prevented the determination of the 27Al hyperfine couplings for zeolite Cu-ZSM-5.
Collapse
Affiliation(s)
- V Umamaheswari
- Faculty of Physics and Geoscience, University of Leipzig, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
12
|
Liu YJ, Lund A, Persson P, Lunell S. Density functional theory study of NO adsorbed in A-zeolite. J Phys Chem B 2005; 109:7948-51. [PMID: 16851928 DOI: 10.1021/jp044198b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory was employed to investigate the adsorption site and hyperfine interactions of nitric oxide adsorbed in Na-LTA (previous name NaA) zeolite. Three different cluster models of increasing complexity were used to represent the zeolite network: (1) a six-membered ring terminated by hydrogen atoms with one sodium ion above the ring, (2) as model 1 with the addition of three sodium ions located at the centers of three imagined four-membered rings adjacent to the six-membered ring, and (3) as model 2 with the addition of the three four-membered rings adjacent to the six-membered ring. Calculations on the largest system (model 3) showed very good agreement with measured electronic Zeeman interaction couplings, 14N hyperfine coupling tensors, and 23Na hyperfine and nuclear quadruple coupling tensors of the S = 1/2 Na+...N-O adsorption complex when the position of the sodium ion was relaxed. The optimized geometry of the complex agreed nicely with that estimated experimentally, except for the Na-N distance, where the present results indicate that the distance deduced from previous ENDOR experiments may be underestimated by as much as 0.5 angstroms.
Collapse
Affiliation(s)
- Ya-Jun Liu
- Department of Quantum Chemistry, Uppsala University, Box 518, S-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|
13
|
Umamaheswari V, Hartmann M, Pöppl A. EPR Spectroscopy of Cu(I)−NO Adsorption Complexes Formed over Cu−ZSM-5 and Cu−MCM-22 Zeolites. J Phys Chem B 2005; 109:1537-46. [PMID: 16851125 DOI: 10.1021/jp046907r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Cu(I)-NO adsorption complexes were formed over copper exchanged and autoreduced high siliceous Cu-ZSM-5 and Cu-MCM-22 zeolites and studied by EPR spectroscopy at X-, Q-, and W-band frequencies. The spin Hamiltonian parameters of the Cu(I)-NO species are indicative of a nitrogen-centered radical complex with a bent geometry and a significant contribution of the Cu(I) 4s atomic orbital to the wave function of the unpaired electron. Two different Cu(I)-NO species were found in both zeolites. It has been confirmed by comparing the experimental data with the results of previous theoretical studies that the presence of two different species is due to the formation of Cu(I)-NO adsorption complexes from two different Cu(I) sites in the zeolite matrix with different numbers of oxygen coligands. The structure of the two sites in the Cu-ZSM-5 and Cu-MCM-22 zeolites must be similar as the spin Hamiltonian parameters are found to be almost independent of the zeolite matrix, where the Cu(I)-NO complex is formed. The EPR signal intensity of the Cu(I)-NO species was studied as a function of the NO loading, and the formation of diamagnetic Cu(I)-(NO)(2) species with rising NO pressure at the expense of paramagnetic Cu(I)-NO monomers could be demonstrated for both systems at low temperatures.
Collapse
Affiliation(s)
- V Umamaheswari
- Faculty of Physics and Geoscience, University of Leipzig, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
14
|
Goldfarb D, Epel B, Zimmermann H, Jeschke G. 2D TRIPLE in orientationally disordered samples--a means to resolve and determine relative orientation of hyperfine tensors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:75-87. [PMID: 15082251 DOI: 10.1016/j.jmr.2004.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/26/2004] [Indexed: 05/24/2023]
Abstract
The two-dimensional (2D) TRIPLE experiment provides correlations between electron-nuclear double resonance (ENDOR) frequencies that belong to the same electron-spin manifold, M(S), and therefore allows to assign ENDOR lines to their specific paramagnetic centers and M(S) manifolds. This, in turn, also provides the relative signs of the hyperfine couplings. So far this experiment has been applied only to single crystals, where the cross-peaks in the 2D spectrum are well resolved with regular shapes. Here we introduce the application of the 2D TRIPLE experiment to orientationally disordered systems, where it can resolve overlapping powder patterns. Moreover, analysis of the shape of the cross-peaks shows that it is highly dependent on the relative orientation of the hyperfine tensors of the two nuclei contributing to this particular peak. This is done initially through a series of simulations and then demonstrated experimentally at a high field (W-band, 95 GHz). The first example concerned the (1)H hyperfine tensors of the stable radical alpha,gamma-bisdiphenylene-beta-phenylallyl (BDPA) immobilized in a polystyrene matrix. Then, the experiment was applied to a more complex system, a frozen solution of Cu(II)-bis(2,2':6',2'' terpyridine) complex. There, the 2D TRIPLE experiment was combined with the variable mixing time (VMT) ENDOR experiment, which determined the absolute sign of the hyperfine couplings involved, and orientation selective ENDOR experiments. Analysis of the three experiments gave the hyperfine tensors of a few coupled protons.
Collapse
Affiliation(s)
- D Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
15
|
Yahiro H, Lund A, Shiotani M. Nitric oxide adsorbed on zeolites: EPR studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2004; 60:1267-1278. [PMID: 15134724 DOI: 10.1016/j.saa.2003.10.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 10/12/2003] [Indexed: 05/24/2023]
Abstract
CW-EPR studies of NO adsorbed on sodium ion-exchanged zeolites were focused on the geometrical structure of NO monoradical and (NO)2 biradical formed on zeolites. The EPR spectrum of NO monoradical adsorbed on zeolite can be characterized by the three different g-tensor components and the resolved y-component hyperfine coupling with the 14N nucleus. Among the g-tensor components, the value of g(zz) is very sensitive to the local environment of zeolite and becomes a measure of the electrostatic field in zeolite. The temperature dependence of the g-tensor demonstrated the presence of two states of the Na-NO adduct, in rigid and rotational states. The EPR spectra of NO adsorbed on alkaline metal ion-exchanged zeolite and their temperature dependency are essentially the same as that on sodium ion-exchanged zeolite. On the other hand, for NO adsorbed on copper ion-exchanged zeolite it is known that the magnetic interaction between NO molecule and paramagnetic copper ion are observable in the spectra recorded at low temperature. The signals assigned to (NO)2 biradical were detected for EPR spectrum of NO adsorbed on Na-LTA. CW-EPR spectra as well as their theoretical calculation suggested that the two NO molecules are aligned along their N-O bond axes. A new procedure for automatical EPR simulation is described which makes it possible to analyze EPR spectrum easily. In the last part of this paper, some instances when other nitrogen oxides were used as a probe molecule to characterize the zeolite structure, chemical properties of zeolites, and dynamics of small molecules were described on the basis of selected literature data reported recently.
Collapse
Affiliation(s)
- Hidenori Yahiro
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan
| | | | | |
Collapse
|
16
|
|
17
|
Neyman KM, Ganyushin DI, Nasluzov VA, Rösch N, Pöppl A, Hartmann M. Electronic g values of Na+–NO and Cu+–NO complexes in zeolites: Analysis using a relativistic density functional method. Phys Chem Chem Phys 2003. [DOI: 10.1039/b300737e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Affiliation(s)
- Tetsuo Nagano
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
19
|
Rudolf T, Böhlmann W, Pöppl A. Adsorption and desorption behavior of NO on H-ZSM-5, Na-ZSM-5, and Na-A as studied by EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:45-56. [PMID: 11945032 DOI: 10.1006/jmre.2002.2504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitric monoxide probe molecules are used to characterize the Lewis acid properties of sodium cations and aluminum defect centers in various zeolite materials. The adsorption-desorption behavior of NO probe molecules is studied at different temperatures for Na-A, Na-ZSM-5, H-ZSM-5, and silicalite. Adsorbed NO molecules form paramagnetic adsorption complexes with Lewis acid sites which can be examined by EPR transitions ((Delta)m(S)+/-1) at g approximately 2.0. Otherwise the desorption of NO into the gas phase can be monitored by the typical nine-line EPR spectrum ((Delta)m(J)+/-1) of the (2)Pi(3/2) state at g approximately 0.7776. This gas-phase signal is used to study the overall adsorption-desorption properties of the zeolites in the temperature range 150 K less than or approximately T less than or approximately 300 K. At lower temperatures the probe molecules are adsorbed at the Lewis acid sites inside the nanoporous materials and produce an intensive spectrum at T less than or approximately 110 K. But at intermediate temperatures 110 K less than or approximately T less than or approximately 150 K the NO molecules are adsorbed only for a few hundred picoseconds because the lifetime of the adsorption complexes is limited by the beginning desorption processes. The decreasing lifetime of the adsorption complex with rising temperature results in an increasing homogeneous line broadening of their EPR signals. An analysis of the line-broadening effects provides an opportunity for determining the specific desorption energies E(A)(H-ZSM-5)=(20.2+/-7.3) kJ/mol, E(A)(Na-ZSM-5)=(4.1+/-1.5) kJ/mol, and E(A)(Na-A)=(7.1+/-2.1) kJ/mol for NO probe molecules at sodium cations and aluminum defect centers just below the desorption temperature.
Collapse
Affiliation(s)
- Thomas Rudolf
- Fakultät für Physik und Geowissenschaften, Universität Leipzig, Germany
| | | | | |
Collapse
|
20
|
Gutjahr M, Böttcher R, Pöppl A. Characterization of the Di-tert-butyl Nitroxide:Li+ Adsorption Complex in LiY Zeolites by One- and Two-Dimensional Electron Spin−Echo Envelope Modulation Spectroscopy. J Phys Chem B 2002. [DOI: 10.1021/jp011864p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marlen Gutjahr
- Fakultät für Physik und Geowisenschaften, Universität Leipzig, Linnéstrasse 5, D-04103 Leipzig, Germany
| | - Rolf Böttcher
- Fakultät für Physik und Geowisenschaften, Universität Leipzig, Linnéstrasse 5, D-04103 Leipzig, Germany
| | - Andreas Pöppl
- Fakultät für Physik und Geowisenschaften, Universität Leipzig, Linnéstrasse 5, D-04103 Leipzig, Germany
| |
Collapse
|
21
|
Biglino D, Bonora M, Volodin A, Lund A. Pulsed EPR study of the (NO)2–Na+ triplet state adsorption complex. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)01250-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
|