1
|
Deng J, Gao L, Liu W, Yin F, Chen C, Jia T, He Y, Mao T, Wu W. Distributions and transformation of polyhalogenated carbazoles in environmental matrices contaminated by printing and dyeing plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124451. [PMID: 38942278 DOI: 10.1016/j.envpol.2024.124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
As emerging organic contaminants, Polyhalogenated carbazoles (PHCZs) have caused wide concerns due to their wide distribution in the environment and dioxin-like toxicity. Nevertheless, research on the distribution and formation mechanisms of PHCZs in polluted environment of printing and dyeing plants is lacking. Here, 11 PHCZs were detected in samples from the Cao'e River, China, a typical river heavily polluted by printing and dyeing. The PHCZs concentrations in the soil, sediment, and water samples were 8.3-134.5 ng/g (median: 26.3 ng/g), 17.7-348.8 ng/g (median: 64.2 ng/g), and 1.2-41.4 μg/L (median: 4.8 μg/L), respectively. 3,6-dichlorocarbazole was the dominant congener, proved by both analysis results and formation mechanisms. PHCZ migration patterns in water-sediment systems indicated that highly halogenated PHCZs tend to be transferred to sediment. Furthermore, PHCZs are persistent, can undergo long-range transport, and pose high risks to aquatic organisms by models. PHCZs released from dye production into environment can be form through halogenation of carbazole or PHCZs formed during the dye synthesis, heating of halogenated indigo dyes, and photolysis of highly halogenated PHCZs. This is the first comprehensive study to reveal the impact of printing and dyeing plant activities on PHCZs in the environment.
Collapse
Affiliation(s)
- Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Fei Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenqi Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
2
|
Hu S, Jiang L, Jiang L, Tang L, Wickrama Arachchige AUK, Yu H, Deng Z, Li L, Wang C, Zhang D, Chen C, Lin S, Chen X, Zhang C. Spatial distribution characteristics of carbazole and polyhalogenated carbazoles in water column and sediments in the open Western Pacific Ocean. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133956. [PMID: 38460258 DOI: 10.1016/j.jhazmat.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Polyhalogenated carbazoles (PHCZs), an emerging persistent halogenated organic pollutant, have been detected in the environment. However, our understanding of PHCZs in the ocean remains limited. In this study, 47 seawater samples (covering 50 - 4000 m) and sediment samples (49 surface and 3 cores) were collected to investigate the occurrence and spatial distribution patterns of carbazole and its halogenated derivants (CZDs) in the Western Pacific Ocean. In seawater, the detection frequencies of CZ (97.87%) and 3-CCZ (57.45%) were relatively high. In addition, the average concentration of ΣPHCZs in the upper water (< 150 m, 0.23 ± 0.21 ng/L) was significantly lower than that in the deep ocean (1000 - 4000 m, 0.65 ± 0.56 ng/L, P < 0.05), which may indicate the vertical transport of PHCZs in the marine environment. The concentration of ΣCZDs in surface sediment ranges from 0.46 to 6.48 ng/g (mean 1.54 ng/g), among which CZ and 36-CCZ were the predominant components. Results from sediment cores demonstrate a noteworthy negative correlation between the concentration of CZDs and depth, indicating the ongoing natural degradation process occurring in sediment cores over a long period. This study offers distinctive insights into the occurrence, composition, and vertical features of CZDs in oceanic environments.
Collapse
Affiliation(s)
- Songtao Hu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Lingbo Jiang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316021, Zhejiang, China
| | - Leiming Tang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316021, Zhejiang, China
| | | | - Hao Yu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Longyu Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Shiquan Lin
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiang Chen
- Zhoushan Institute for Food and Drug Control, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
3
|
Brunen S, Mitschke B, Leutzsch M, List B. Asymmetric Catalytic Friedel-Crafts Reactions of Unactivated Arenes. J Am Chem Soc 2023. [PMID: 37440437 PMCID: PMC10375537 DOI: 10.1021/jacs.3c05148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Since its discovery more than a century ago, the Friedel-Crafts reaction has manifested itself as a powerful method for the introduction of carbon substituents to arenes. Despite its potential generality, the scope of the reaction is intrinsically limited by the arene's nucleophilicity, which has previously restrained the applicability of asymmetric variants to activated substrates. To overcome this fundamental limitation, we report herein an asymmetric Friedel-Crafts reaction of unactivated, purely hydrocarbon arenes, alkoxybenzenes, and heteroarenes with N,O-acetals to give enantioenriched arylglycine esters. Highly regio- and stereoselective C-C bond formation was achieved using strong and confined Brønsted acid organocatalysts, enabling the first asymmetric catalytic Friedel-Crafts reaction of simple alkylbenzenes.
Collapse
Affiliation(s)
- Sebastian Brunen
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Zhang Y, Sun YK, Chang YP, Shao H, Zhao YM. Palladium-catalyzed cascade carbonylative annulation between alkene-tethered aryl iodides and carbon monoxide. Chem Commun (Camb) 2021; 57:7023-7026. [PMID: 34165470 DOI: 10.1039/d1cc02217b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid construction of molecules bearing all-substituted quaternary stereocenters represents a highly significant but challenging task in organic synthesis. Herein, we report a novel palladium-catalyzed cascade between alkene-tethered aryl iodides and carbon monoxide, which has resulted in a practical and powerful method for the synthesis of complex polycyclic molecules containing aryl-substituted quaternary stereocenters. Mechanistic studies suggested that the reaction proceeded via a Heck-type carbonylative cyclization, followed by a ketene-involved Friedel-Crafts acylation.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Ya-Kui Sun
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Ya-Ping Chang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| |
Collapse
|
5
|
Kinney RG, Arndtsen BA. Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- R. Garrison Kinney
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Bruce A. Arndtsen
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
6
|
Kinney RG, Arndtsen BA. Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles. Angew Chem Int Ed Engl 2019; 58:5085-5089. [PMID: 30776306 DOI: 10.1002/anie.201814660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Indexed: 01/07/2023]
Abstract
We report a new strategy for the conversion of carboxylic acids into potent acid triflate electrophiles. The reaction involves oxidative carbonylation of carboxylic acids with I2 in the presence of AgOTf, and is postulated to proceed via acyl hypoiodites that react with CO to form acid triflates. Coupling this chemistry with subsequent trapping with arenes offers a mild, room temperature approach to generate ketones directly from broadly available carboxylic acids without the use of corrosive and reactive Lewis or Bronsted acid additives, and instead from compounds that are readily available, stable, and functional group compatible.
Collapse
Affiliation(s)
- R Garrison Kinney
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
7
|
A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation. Nat Chem 2017; 10:193-199. [DOI: 10.1038/nchem.2903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023]
|
8
|
Gorsline BJ, Wang L, Ren P, Carrow BP. C–H Alkenylation of Heteroarenes: Mechanism, Rate, and Selectivity Changes Enabled by Thioether Ligands. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b03887] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bradley J. Gorsline
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Long Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Peng Ren
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brad P. Carrow
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
McGough JS, Cid J, Ingleson MJ. Catalytic Electrophilic C−H Borylation Using NHC⋅Boranes and Iodine Forms C2-, not C3-, Borylated Indoles. Chemistry 2017; 23:8180-8184. [DOI: 10.1002/chem.201702060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- John S. McGough
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Jessica Cid
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Michael J. Ingleson
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
10
|
Wu Y, Tan H, Sutton R, Chen D. From Sediment to Top Predators: Broad Exposure of Polyhalogenated Carbazoles in San Francisco Bay (U.S.A.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2038-2046. [PMID: 28112952 DOI: 10.1021/acs.est.6b05733] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.
Collapse
Affiliation(s)
- Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Hongli Tan
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University , Carbondale, Illinois 62901, United States
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou, Guangdong 510632, China
| | - Rebecca Sutton
- San Francisco Estuary Institute , 4911 Central Avenue, Richmond, California 94804, United States
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University , Carbondale, Illinois 62901, United States
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou, Guangdong 510632, China
| |
Collapse
|
11
|
Thoughts about the electrophilic aromatic substitution mechanism: the Friedel-crafts alkylation and acylation of benzene with acetyl and t-butyl cations in the gas phase. Struct Chem 2017. [DOI: 10.1007/s11224-017-0915-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wu Y, Qiu Y, Tan H, Chen D. Polyhalogenated carbazoles in sediments from Lake Tai (China): Distribution, congener composition, and toxic equivalent evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:142-149. [PMID: 27640760 DOI: 10.1016/j.envpol.2016.09.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) have attracted mounting environmental concerns since they were recently discovered in sediments and soil. Current knowledge on their occurrence, environmental behavior and fate remains very limited in general. In the present study, 11 PHCZ congeners were screened in surface sediments of Lake Tai, an important freshwater system located in the Yangtze River Delta, China. Total concentrations of PHCZs (∑PHCZs) ranged up to 15.8 ng/g dry weight (median: 1.54 ng/g dw), rivaling those of polybrominated diphenyl ethers (∑PBDEs, 0.07-15.9 ng/g dw) in the same sediments. The PHCZ congener composition profiles revealed a dominance of 3,6-dichlorocarbazole and 3,6-dibromocarbazole with comparable concentrations. These two dominant congeners differed in spatial distribution patterns in Lake Tai, indicating different sources or origins. Potential toxic effects associated with the levels of PHCZs in the sediments were evaluated via the toxic equivalent (TEQ) approach. The TEQs of PHCZs in Lake Tai sediments ranged up to 1.36 pg TEQ/g dw. As the first report on the occurrence of PHCZs in an Asian waterbody, our findings suggest that PHCZs should be given more attention during environmental monitoring and risk assessments of hazardous chemicals, as they may represent another group of persistent organic pollutants with dioxin-like effects and wide distributions.
Collapse
Affiliation(s)
- Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongli Tan
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangzhou Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
13
|
Liu Y, Meng G, Liu R, Szostak M. Sterically-controlled intermolecular Friedel–Crafts acylation with twisted amides via selective N–C cleavage under mild conditions. Chem Commun (Camb) 2016; 52:6841-4. [DOI: 10.1039/c6cc02324j] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly chemoselective Friedel–Crafts acylation of arenes with twisted amides by N–C bond cleavage is reported for the first time.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Chemistry
- Rutgers University
- Newark
- USA
- College of Chemistry and Chemical Engineering
| | | | - Ruzhang Liu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | | |
Collapse
|
14
|
Mumbo J, Lenoir D, Henkelmann B, Schramm KW. Enzymatic synthesis of bromo- and chlorocarbazoles and elucidation of their structures by molecular modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8996-9005. [PMID: 23757025 DOI: 10.1007/s11356-013-1823-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
3-Chlorocarbazole, 3,6-dichlorocarbazole, dibromocarbazole, and 1,3,6,8-tetrabromocarbazole are emerging environmental contaminants which have been detected recently in water, sediment, and soil samples. However, their sources and occurrence have not been explained. Here, we report an enzymatic synthesis of bromo- and chlorocarbazoles by chloroperoxidase from Caldariomyces fumago in water. Density functional theory (DFT) method was used to predict the most stable products. Carbazole and chloroperoxidase were assayed in vitro in the presence of hydrogen peroxide, bromide, and chloride ions in different substrate ratio treatments against constant and varying enzyme concentrations. Halogenated carbazoles formed were identified by high-resolution gas chromatography coupled to mass spectrometry. In all treatments, bromination and chlorination took place, but the composition and concentration of compounds formed varied from one treatment to another. Mono-, di-, tri-, and tetra-substituted bromo- and chlorocarbazoles which include the reported environmental contaminants were synthesized. 3-Substituted and 3,6-substituted congeners were relatively higher in concentration. Enzyme concentration did not favor preferential formation of any of the compounds synthesized. However, their synthesis was influenced by halide concentration. Congeners with bromine and chlorine at position of C-3, C-3,6, C-1,3,6, and C-1,3,6,8 were calculated as the stable intermediate sigma complexes by DFT method. Regioselectivity in halogenation is discussed and hypothesis of the likely stable products in the environment explained. This study provides evidence that bromo- and chlorocarbazoles reported previously can be formed enzymatically in the environment, demonstrating the need to consider aromatic pollutants transformation and their potential toxicity enhancements in the management of water pollution and contaminated sites.
Collapse
Affiliation(s)
- John Mumbo
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany,
| | | | | | | |
Collapse
|
15
|
Melissen STAG, Tognetti V, Dupas G, Jouanneau J, Lê G, Joubert L. A DFT study of the Al2Cl6-catalyzed Friedel–Crafts acylation of phenyl aromatic compounds. J Mol Model 2013; 19:4947-58. [DOI: 10.1007/s00894-013-1984-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Sigismund T A G Melissen
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821, Mont-Saint-Aignan Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Gutiérrez RU, Correa HC, Bautista R, Vargas JL, Jerezano AV, Delgado F, Tamariz J. Regioselective synthesis of 1,2-dihydroquinolines by a solvent-free MgBr2-catalyzed multicomponent reaction. J Org Chem 2013; 78:9614-26. [PMID: 24044723 DOI: 10.1021/jo400973g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient and regioselective synthesis of 1,2-dihydroquinolines via a multicomponent reaction between an aniline and two ketones is described. This reaction was catalyzed by magnesium bromide and carried out under solvent-free conditions. When the reaction was performed by using 3-substituted anilines and nonsymmetrically substituted ketones, principally a single product was found among the four expected regioisomers. A variety of anilines and ketones, including cyclic ketones, were evaluated providing a series of 1,2-dihydroquinolines with diverse substitution patterns. A study of the mechanism is discussed. There is evidence of the in situ formation of the imine as a result of the reaction between the aniline and one of the ketones, before annulation to the heterocyclic ring.
Collapse
Affiliation(s)
- Rsuini U Gutiérrez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , Prol Carpio y Plan de Ayala, 11340 México, D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
17
|
Titinchi SJJ, Kamounah FS, Abbo HS, Hammerich O. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3'-dimethylbiphenyl and the oxidation of the acetyl derivatives. Chem Cent J 2012; 6:52. [PMID: 22682296 PMCID: PMC3505176 DOI: 10.1186/1752-153x-6-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/08/2012] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED BACKGROUND Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3'-dimethylbiphenyl (3,3'-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment. FINDINGS The effect of solvent and temperature on the selectivity of monoacetylation of 3,3'-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3'-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl3 equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4'- and 4,6'-diacetyl-3,3'-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms. CONCLUSIONS Friedel-Crafts acetylation of 3,3'-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl3 complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3'-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl3 does not seem to be important in determining the mechanism.
Collapse
Affiliation(s)
- Salam JJ Titinchi
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Fadhil S Kamounah
- CISMI, Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, P.O. Box 260, Roskilde, DK-4000, Denmark
| | - Hanna S Abbo
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Ole Hammerich
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark
| |
Collapse
|
18
|
Zhu H, Meyer MP. Cationic intermediates in Friedel–Crafts acylation: structural information from theory and experiment. Chem Commun (Camb) 2011; 47:409-11. [DOI: 10.1039/c0cc02286a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
De Vries TS, Prokofjevs A, Harvey JN, Vedejs E. Superelectrophilic intermediates in nitrogen-directed aromatic borylation. J Am Chem Soc 2009; 131:14679-87. [PMID: 19824728 PMCID: PMC2763325 DOI: 10.1021/ja905369n] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of borylation under conditions of borenium ion generation from hydrogen-bridged boron cations are described. The observable H-bridged cations are generated by hydride abstraction from N,N-dimethylamine boranes Ar(CH(2))(n)NMe(2)BH(3) using Ph(3)C(+) (C(6)F(5))(4)B(-) (TrTPFPB) as the hydride acceptor. In the presence of excess TrTPFPB, the hydrogen-bridged cations undergo internal borylation to afford cyclic amine borane derivatives with n = 1-3. The products are formed as the corresponding cyclic borenium ions according to reductive quenching experiments and (11)B and (1)H NMR spectroscopy in the case with Ar = C(6)H(5) and n = 1. The same cyclic borenium cation is also formed from the substrate with Ar = o-C(6)H(4)SiMe(3) via desilylation, but the analogous system with Ar = o-C(6)H(4)CMe(3) affords a unique cyclization product that retains the tert-butyl substituent. An ortho-deuterated substrate undergoes cyclization with a product-determining isotope effect of k(H)/k(D) 2.8. Potential cationic intermediates have been evaluated using B3LYP/6-31G* methods. The computations indicate that internal borylation from 14a occurs via a C-H insertion transition state that is accessible from either the borenium pi complex or from a Wheland intermediate having nearly identical energy. The Ar = o-C(6)H(4)SiMe(3) example strongly favors formation of the Wheland intermediate, and desilylation occurs via internal SiMe(3) migration from carbon to one of the hydrides attached to boron.
Collapse
Affiliation(s)
- Timothy S. De Vries
- Department of Chemistry, University of Michigan, Ann Arbor MI 48109, and School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Aleksandrs Prokofjevs
- Department of Chemistry, University of Michigan, Ann Arbor MI 48109, and School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Jeremy N. Harvey
- Department of Chemistry, University of Michigan, Ann Arbor MI 48109, and School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Edwin Vedejs
- Department of Chemistry, University of Michigan, Ann Arbor MI 48109, and School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
20
|
Larsen AS, Wang K, Lockwood MA, Rice GL, Won TJ, Lovell S, Sadílek M, Turecek F, Mayer JM. Hydrocarbon oxidation by Bis-mu-oxo manganese dimers: electron transfer, hydride transfer, and hydrogen atom transfer mechanisms. J Am Chem Soc 2002; 124:10112-23. [PMID: 12188675 DOI: 10.1021/ja020204a] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.
Collapse
Affiliation(s)
- Anna S Larsen
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle 98195-1700, USA
| | | | | | | | | | | | | | | | | |
Collapse
|