1
|
Jones TJ, Dutton KG, Dhattarwal HS, Blackburn PT, Saha R, Remsing RC, Lipke MC. Tuning Bro̷nsted Acidity by up to 12 p Ka Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites. J Am Chem Soc 2025; 147:2086-2098. [PMID: 39746663 DOI: 10.1021/jacs.4c15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites (M = H2, ZnII, CoII, CoI) affect the pKa of benzoic acid guests bound in discrete porphyrin nanoprisms (M3TriCage) in CD3CN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H+ transfer processes that are needed to support important electrochemical reactions (e.g., reductions of H+, O2, or CO2). Usefully, the cavities of the host-guest complexes become hydrated at low water concentrations (10-40 mM), providing a good representation of the active sites of porous electrocatalysts in water. Under these conditions, Lewis acidic CoII and ZnII ions increase the Bro̷nsted acidities of the guests by 4 and 8 pKa units, respectively, while reduction of the CoII sites to anionic CoI sites produces an electrostatic potential that lowers acidity by ca. 4 units (8 units relative to the CoII state). Lacking functional metal sites, H6TriCage increases the acidity of the guests by just 2.5 pKa units despite the 12+ charge of this host and contributions from other factors (hydrogen bonding, hydration) that might stabilize the deprotonated guests. Thus, the metal sites have dominant effects on acid-base chemistry in the M3TriCages, providing a larger pKa range (12.75 to ≥24.5) for an encapsulated acid than attained via other confinement effects in proteins and artificial porous materials.
Collapse
Affiliation(s)
- Taro J Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Harender S Dhattarwal
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - P Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rupak Saha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Gong Z, Wang L, Xu Y, Xie D, Qi X, Nam W, Guo M. Enhanced Reactivities of Iron(IV)-Oxo Porphyrin Species in Oxidation Reactions Promoted by Intramolecular Hydrogen-Bonding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310333. [PMID: 38477431 PMCID: PMC11109629 DOI: 10.1002/advs.202310333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
High-valent iron-oxo species are one of the common intermediates in both biological and biomimetic catalytic oxidation reactions. Recently, hydrogen-bonding (H-bonding) has been proved to be critical in determining the selectivity and reactivity. However, few examples have been established for mechanistic insights into the H-bonding effect. Moreover, intramolecular H-bonding effect on both C-H activation and oxygen atom transfer (OAT) reactions in synthetic porphyrin model system has not been investigated yet. In this study, a series of heme-containing iron(IV)-oxo porphyrin species with or without intramolecular H-bonding are synthesized and characterized. Kinetic studies revealed that intramolecular H-bonding can significantly enhance the reactivity of iron(IV)-oxo species in OAT, C-H activation, and electron-transfer reactions. This unprecedented unified H-bonding effect is elucidated by theoretical calculations, which showed that intramolecular H-bonding interactions lower the energy of the anti-bonding orbital of iron(IV)-oxo porphyrin species, resulting in the enhanced reactivities in oxidation reactions irrespective of the reaction type. To the best of the knowledge, this is the first extensive investigation on the intramolecular H-bonding effect in heme system. The results show that H-bonding interactions have a unified effect with iron(IV)-oxo porphyrin species in all three investigated reactions.
Collapse
Affiliation(s)
- Zhe Gong
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Yiran Xu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Duanfeng Xie
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760South Korea
| | - Mian Guo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| |
Collapse
|
3
|
Hastings CD, Huffman LSX, Tiwari CK, Betancourth JG, Brennessel WW, Barnett BR. Coordinatively Unsaturated Metallates of Cobalt(II), Nickel(II), and Zinc(II) Guarded by a Rigid and Narrow Void. Inorg Chem 2023; 62:11920-11931. [PMID: 37462947 PMCID: PMC10394664 DOI: 10.1021/acs.inorgchem.3c01335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Both natural enzymatic systems and synthetic porous material catalysts utilize well-defined and uniform channels to dictate reaction selectivities on the basis of size or shape. Mimicry of this design element in homogeneous systems is generally difficult owing to the flexibility inherent in most small molecular species. Herein, we report the synthesis of a tripodal ligand scaffold that orients a narrow and rigid cavity atop accessible metal coordination space. The permanent void is formed through a macrocyclization reaction whereby the 3,5-dihydroxyphenyl arms are covalently linked through methylene bridges. Deprotonative metallation leads to anionic and coordinatively unsaturated complexes of divalent cobalt, nickel, and zinc. An analogous series of trigonal monopyramidal complexes bearing a nonmacrocyclized variant of the tripodal ligand are also reported. Physical characterization of the coordination complexes has been carried out using multiple spectroscopic techniques (NMR, EPR, and UV-vis), cyclic voltammetry, and X-ray diffraction. Complexes of the macrocyclized [LOCH2O]3- ligand retain a rigid cavity upon metallation, with this cavity guarding the entrance to the open axial coordination site. Through a combination of spectroscopic and computational studies, it is shown that acetonitrile entry into the void is sterically precluded, disrupting anticipated coordination at the intracavity site.
Collapse
Affiliation(s)
- Christopher D Hastings
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Lucy S X Huffman
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Chandan Kumar Tiwari
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brandon R Barnett
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
5
|
Bhunia S, Ghatak A, Rana A, Dey A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e -/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023; 145:3812-3825. [PMID: 36744304 DOI: 10.1021/jacs.2c13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron porphyrins with one or four tertiary amine groups in their second sphere are used to investigate the electrochemical O2 reduction reaction (ORR) in organic (homogeneous) and aqueous (heterogeneous) conditions. Both of these complexes show selective 4e-/4H+ reduction of oxygen to water at rates that are 2-3 orders of magnitude higher than those of iron tetraphenylporphyrin lacking these amines in the second sphere. In organic solvents, these amines get protonated, which leads to the lowering of overpotentials, and the rate of the ORR is enhanced almost 75,000 times relative to rates expected from the established scaling relationship for the ORR by iron porphyrins. In the aqueous medium, the same trend of higher ORR rates at a lower overpotential is observed. In situ resonance Raman data under heterogeneous aqueous conditions show that the presence of one amine group in the second sphere leads to a cleavage of the O-O bond in a FeIII-OOH intermediate as the rate-determining step (rds). The presence of four such amine groups enhances the rate of O-O bond cleavage such that this intermediate is no longer observed during the ORR; rather, the proton-coupled reduction of the FeIII-O2- intermediate with a H/D isotope effect of 10.6 is the rds. These data clearly demonstrate changes in the rds of the electrochemical ORR depending on the nature of second-sphere residues and explain their deviation from linear scaling relationships.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| |
Collapse
|
6
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
7
|
Lu X, Wang S, Qin JH. Isolating Fe-O 2 Intermediates in Dioxygen Activation by Iron Porphyrin Complexes. Molecules 2022; 27:4690. [PMID: 35897870 PMCID: PMC9332324 DOI: 10.3390/molecules27154690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dioxygen (O2) is an environmentally benign and abundant oxidant whose utilization is of great interest in the design of bioinspired synthetic catalytic oxidation systems to reduce energy consumption. However, it is unfortunate that utilization of O2 is a significant challenge because of the thermodynamic stability of O2 in its triplet ground state. Nevertheless, nature is able to overcome the spin state barrier using enzymes, which contain transition metals with unpaired d-electrons facilitating the activation of O2 by metal coordination. This inspires bioinorganic chemists to synthesize biomimetic small-molecule iron porphyrin complexes to carry out the O2 activation, wherein Fe-O2 species have been implicated as the key reactive intermediates. In recent years, a number of Fe-O2 intermediates have been synthesized by activating O2 at iron centers supported on porphyrin ligands. In this review, we focus on a few examples of these advances with emphasis in each case on the particular design of iron porphyrin complexes and particular reaction environments to stabilize and isolate metal-O2 intermediates in dioxygen activation, which will provide clues to elucidate structures of reactive intermediates and mechanistic insights in biological processes.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (S.W.); (J.-H.Q.)
| | | | | |
Collapse
|
8
|
Sun R, Liu M, Zheng SL, Dogutan DK, Costentin C, Nocera DG. Proton-coupled electron transfer of macrocyclic ring hydrogenation: The chlorinphlorin. Proc Natl Acad Sci U S A 2022; 119:e2122063119. [PMID: 35533271 PMCID: PMC9171799 DOI: 10.1073/pnas.2122063119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe chemical reduction of unsaturated bonds occurs by hydrogenation with H2 as the reductant. Conversely, in biology, the unavailability of H2 engenders the typical reduction of unsaturated bonds with electrons and protons from different cofactors, requiring olefin hydrogenation to occur by proton-coupled electron transfer (PCET). Moreover, the redox noninnocence of tetrapyrrole macrocycles furnishes unusual PCET intermediates, including the phlorin, which is an intermediate in tetrapyrrole ring reductions. Whereas the phlorin of a porphyrin is well established, the phlorin of a chlorin is enigmatic. By controlling the PCET reactivity of a chlorin, including the use of a hangman functionality to manage the proton transfer, the formation of a chlorinphlorin by PCET is realized, and the mechanism for its formation is defined.
Collapse
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Mengran Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Cyrille Costentin
- Université Grenoble Alpes, CNRS, Grenoble, 38000 France
- Université Paris Cité, Paris, 75013 France
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
9
|
Ghosh S, Tran PN, McElheny D, Perez JJ, Nguyen AI. Peptidic Scaffolds Enable Rapid and Multivariate Secondary Sphere Evolution for an Abiotic Metallocatalyst. Inorg Chem 2022; 61:6679-6687. [PMID: 35446044 DOI: 10.1021/acs.inorgchem.2c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloenzymes have benefited from the iterative process of evolution to achieve the precise arrangements of secondary sphere non-covalent interactions that enhance metal-centered catalysis. Iterative synthesis of scaffolds that display complex secondary sphere elements in abiotic systems can be highly challenging and time-intensive. To overcome this synthetic bottleneck, we developed a highly modular and rapid synthetic strategy, leveraging the efficiency of solid-phase peptide synthesis and conformational control afforded by non-canonical residues to construct a ligand platform displaying up to four unique residues of varying electronics and sterics in the secondary coordination sphere. As a proof-of-concept that peptidic secondary sphere can cooperate with the metal complex, we applied this scaffold to a well-known, modestly active C-H oxidizing Fe catalyst to evolve specific non-covalent interactions that is more than double its catalytic activity. Solution-state NMR structures of several catalyst variants suggest that higher activity is correlated with a hydrophobic pocket above the Fe center that may enhance the formation of a catalyst-substrate complex. Above all, we show that peptides are a convenient, highly modular, and structurally defined ligand platform for creating secondary coordination spheres that comprise multiple, diverse functional groups.
Collapse
Affiliation(s)
- Sabari Ghosh
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Juan J Perez
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
11
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Water oxidation and oxygen reduction reactions: A mechanistic perspective. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Dobbelaar E, Rauber C, Bonck T, Kelm H, Schmitz M, de Waal Malefijt ME, Klein JEMN, Krüger HJ. Combining Structural with Functional Model Properties in Iron Synthetic Analogue Complexes for the Active Site in Rabbit Lipoxygenase. J Am Chem Soc 2021; 143:13145-13155. [PMID: 34383499 DOI: 10.1021/jacs.1c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron complexes that model the structural and functional properties of the active iron site in rabbit lipoxygenase are described. The ligand sphere of the mononuclear pseudo-octahedral cis-(carboxylato)(hydroxo)iron(III) complex, which is completed by a tetraazamacrocyclic ligand, reproduces the first coordination shell of the active site in the enzyme. In addition, two corresponding iron(II) complexes are presented that differ in the coordination of a water molecule. In their structural and electronic properties, both the (hydroxo)iron(III) and the (aqua)iron(II) complex reflect well the only two essential states found in the enzymatic mechanism of peroxidation of polyunsaturated fatty acids. Furthermore, the ferric complex is shown to undergo hydrogen atom abstraction reactions with O-H and C-H bonds of suitable substrates, and the bond dissociation free energy of the coordinated water ligand of the ferrous complex is determined to be 72.4 kcal·mol-1. Theoretical investigations of the reactivity support a concerted proton-coupled electron transfer mechanism in close analogy to the initial step in the enzymatic mechanism. The propensity of the (hydroxo)iron(III) complex to undergo H atom abstraction reactions is the basis for its catalytic function in the aerobic peroxidation of 2,4,6-tri(tert-butyl)phenol and its role as a radical initiator in the reaction of dihydroanthracene with oxygen.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christian Rauber
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Thorsten Bonck
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Markus Schmitz
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matina Eloïse de Waal Malefijt
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Hans-Jörg Krüger
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
14
|
Roubelakis MM, Bediako DK, Dogutan DK, Nocera DG. Influence of the proton relay spacer on hydrogen electrocatalysis by cobalt hangman porphyrins. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150067x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt hangman porphyrin system with a phenyl spacer between the porphyrin ring and an internal carboxylic acid group as well as its non-hangman analogue were synthesized and utilized for the study of the proton-coupled electron transfer (PCET) kinetics attendant to electrocatalytic hydrogen evolution. Cyclic voltammetry (CV) together with simulations show that a short distance between the proton relay and the redox active cobalt center as well as the increased proton donating strength results in superior catalytic activity. The mechanism of hydrogen generation is at the nexus of proton transfer–electron transfer (PTET) and concerted proton–electron transfer (CPET), as opposed to an ETPT mechanism that is characteristic of hangman systems with longer proton relay networks.
Collapse
Affiliation(s)
- Manolis M. Roubelakis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - D. Kwabena Bediako
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
16
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Zee DZ, Harris TD. Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metal-organic framework. Chem Sci 2020; 11:5447-5452. [PMID: 32874492 PMCID: PMC7449529 DOI: 10.1039/d0sc01796e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
Catalytic heme active sites of enzymes are sequestered by the protein superstructure and are regulated by precisely defined outer coordination spheres. Here, we emulate these protective functions in the porphyrinic metal-organic framework PCN-224 by post-synthetic acetylation and subsequent hydroxylation of the Zr6 nodes. A suite of physical methods demonstrates that both transformations preserve framework structure, crystallinity, and porosity without modifying the inner coordination spheres of the iron sites. Single-crystal X-ray analyses establish that acetylation replaces the mixture of formate, benzoate, aqua, and terminal hydroxo ligands at the Zr6 nodes with acetate ligands, and hydroxylation affords nodes with seven-coordinate, hydroxo-terminated Zr4+ ions. The chemical influence of these reactions is probed with heme-catalyzed cyclohexane hydroxylation as a model reaction. By virtue of passivated reactive sites at the Zr6 nodes, the acetylated framework oxidizes cyclohexane with a yield of 68(8)%, 2.6-fold higher than in the hydroxylated framework, and an alcohol/ketone ratio of 5.6(3).
Collapse
Affiliation(s)
- David Z Zee
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , USA .
| |
Collapse
|
18
|
Abstract
Two complementary rational synthetic routes have been developed in order to synthesize hangman chlorins, which differ with regard to the order of the installation (pre- and post-formation of the chlorin macrocycle) and position of the xanthene backbone about the chlorin periphery. The versatility of the synthetic method is demonstrated with the preparation of ten new hangman chlorins bearing a xanthene backbone and a pendant carboxylic acid. Cyclic voltammograms of hangman chlorins exhibit a hangman effect derived from intermolecular proton transfer. This hangman effect is manifested in catalytic hydrogen evolution production.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Dilek K Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Margarit CG, Asimow NG, Gonzalez MI, Nocera DG. Double Hangman Iron Porphyrin and the Effect of Electrostatic Nonbonding Interactions on Carbon Dioxide Reduction. J Phys Chem Lett 2020; 11:1890-1895. [PMID: 32022566 DOI: 10.1021/acs.jpclett.9b03897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hangman porphyrins influence the reaction rates of small molecule activation by positioning a functional group in the secondary coordination sphere of the metal center. Electrocatalysis by hangman porphyrins has examined only one face modification of the macrocycle with a hanging group, thus allowing for circumvention of secondary sphere effects by reaction of the small molecule on the opposite face of the hangman cleft. We now report the synthesis and characterization of a double hangman Fe porphyrin in which both faces of the macrocycle are modified with a hanging group. With this double hangman architecture, we are able to unequivocally examine the role of electrostatic interactions on the carbon dioxide reduction reaction (CO2RR) and show that CO2RR rates are significantly attenuated, consistent with the initial reduction of CO2 to generate the anion, whose binding is diminished within the negatively charged carboxylic groups of the hangman cleft. The results demonstrate the pronounced role that nonbonding electrostatic interactions may play in CO2RR and highlight the need to manage deleterious electrostatic interactions during catalytic turnover.
Collapse
Affiliation(s)
- Charles G Margarit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Naomi G Asimow
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Miguel I Gonzalez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
20
|
Gordon Z, Miller TJ, Leahy CA, Matson EM, Burgess M, Drummond MJ, Popescu CV, Smith CM, Lord RL, Rodríguez-López J, Fout AR. Characterization of Terminal Iron(III)-Oxo and Iron(III)-Hydroxo Complexes Derived from O 2 Activation. Inorg Chem 2019; 58:15801-15811. [PMID: 31714068 DOI: 10.1021/acs.inorgchem.9b02079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O2 activation at nonheme iron centers is a common motif in biological systems. While synthetic models have provided numerous insights into the reactivity of high-valent iron-oxo complexes related to biological processes, the majority of these complexes are synthesized using alternative oxidants. This report describes O2 activation by an iron(II)-triflate complex of the imino-functionalized tris(pyrrol-2-ylmethyl)amine ligand framework, H3[N(piCy)3]. Initial reaction conditions result in the formation of a mixture of oxidation products including terminal iron(III)-oxo and iron(III)-hydroxo complexes. The relevance of these species to the O2 activation process is demonstrated through reactivity studies and electrochemical analysis of the iron(III)-oxo complex.
Collapse
Affiliation(s)
- Zachary Gordon
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Tabitha J Miller
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Clare A Leahy
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Ellen M Matson
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Mark Burgess
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Michael J Drummond
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Codrina V Popescu
- Department of Chemistry , University of St. Thomas , 2115 Summit Avenue , St. Paul , Minnesota 55105 , United States
| | - Connor M Smith
- Department of Chemistry , University of St. Thomas , 2115 Summit Avenue , St. Paul , Minnesota 55105 , United States
| | - Richard L Lord
- Department of Chemistry , Grand Valley State University , 1 Campus Drive Allendale , Michigan 49401 , United States
| | - Joaquín Rodríguez-López
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Alison R Fout
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
21
|
Nehrkorn J, Bonke SA, Aliabadi A, Schwalbe M, Schnegg A. Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorg Chem 2019; 58:14228-14237. [PMID: 31599581 DOI: 10.1021/acs.inorgchem.9b02348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferric hangman porphyrins are bioinspired models for haem hydroperoxidase enzymes featuring an acid/base group in close vicinity to the metal center, which results in improved catalytic activity for reactions requiring O-O bond activation. These functional biomimics are examined herein with a combination of EPR techniques to determine the effects of the hanging group on the electronics of the ferric center. These results are compared to those for ferric octaethylporphyrin chloride [Fe(OEP)Cl], tetramesitylporphyrin chloride [Fe(TMP)Cl], and the pentafluorophenyl derivative [Fe(TPFPP)Cl], which were also examined herein to study the electronic effects of various substituents. Frequency-domain Fourier-transform THz-EPR combined with field domain EPR in a broad frequency range from 9.5 to 629 GHz allowed the determination of zero-field splitting parameters, revealing minor rhombicity E/D and D values in a narrow range of 6.24(8) to 6.85(5) cm-1. Thus, the hangman porphyrins display D values in the expected range for ferric porphyrin chlorides, though D appears to be correlated with the Fe-Cl bond length. Extrapolating this trend to the ferric hangman porphyrin chlorides, for which no crystal structure has been reported, indicates a slightly elongated Fe-Cl bond length compared to the non-hangman equivalent.
Collapse
Affiliation(s)
- Joscha Nehrkorn
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut für Anorganische und Angewandte Chemie , Universität Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Shannon A Bonke
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Azar Aliabadi
- Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Matthias Schwalbe
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Alexander Schnegg
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| |
Collapse
|
22
|
Liu Y, Leung KY, Michaud SE, Soucy TL, McCrory CCL. Controlled Substrate Transport to Electrocatalyst Active Sites for Enhanced Selectivity in the Carbon Dioxide Reduction Reaction. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2019.1628025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yingshuo Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Kwan Yee Leung
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel E. Michaud
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Taylor L. Soucy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Maher AG, Liu M, Nocera DG. Ligand Noninnocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation under Hydrogen Evolution Conditions. Inorg Chem 2019; 58:7958-7968. [DOI: 10.1021/acs.inorgchem.9b00717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrew G. Maher
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mengran Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Wang L, Gennari M, Cantú Reinhard FG, Gutiérrez J, Morozan A, Philouze C, Demeshko S, Artero V, Meyer F, de Visser SP, Duboc C. A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. J Am Chem Soc 2019; 141:8244-8253. [DOI: 10.1021/jacs.9b02011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lianke Wang
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Marcello Gennari
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Javier Gutiérrez
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Adina Morozan
- Université Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et
Biologie des Métaux, F-38000 Grenoble, France
| | | | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Vincent Artero
- Université Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et
Biologie des Métaux, F-38000 Grenoble, France
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
26
|
Drummond MJ, Ford CL, Gray DL, Popescu CV, Fout AR. Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation. J Am Chem Soc 2019; 141:6639-6650. [PMID: 30969766 DOI: 10.1021/jacs.9b01516] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The characterization of high-valent iron centers in enzymes has been aided by synthetic model systems that mimic their reactivity or structural and spectral features. For example, the cleavage of dioxygen often produces an iron(IV)-oxo that has been characterized in a number of enzymatic and synthetic systems. In non-heme 2-oxogluterate dependent (iron-2OG) enzymes, the ferryl species abstracts an H-atom from bound substrate to produce the proposed iron(III)-hydroxo and caged substrate radical. Most iron-2OG enzymes perform a radical rebound hydroxylation at the site of the H-atom abstraction (HAA); however, recent reports have shown that certain substrates can be desaturated through the loss of a second H atom at a site adjacent to a heteroatom (N or O) for most native desaturase substrates. One proposed mechanism for the removal of the second H-atom involves a polar-cleavage mechanism (electron transfer-proton transfer) by the iron(III)-hydroxo, as opposed to a second HAA. Herein we report the synthesis and characterization of a series of iron complexes with hydrogen bonding interactions between bound aquo or hydroxo ligands and the secondary coordination sphere in ferrous and ferric complexes. Interconversion among the iron species is accomplished by stepwise proton or electron addition or subtraction, as well as H-atom transfer (HAT). The calculated bond dissociation free energies (BDFEs) of two ferric hydroxo complexes, differentiated by their noncovalent interactions and reactivity, suggest that neither complex is capable of activating even weak C-H bonds, lending further support to the proposed mechanism for desaturation in iron-2OG desaturase enzymes. Additionally, the ferric hydroxo species are differentiated by their reactivity toward performing a radical rebound hydroxylation of triphenylmethylradical. Our findings should encourage further study of the desaturase systems that may contain unique H-bonding motifs proximal to the active site that help bias substrate desaturation over hydroxylation.
Collapse
Affiliation(s)
- Michael J Drummond
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Courtney L Ford
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Danielle L Gray
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Codrina V Popescu
- Department of Chemistry , University of Saint Thomas , 2115 Summit Avenue , Saint Paul , Minnesota 55105 , United States
| | - Alison R Fout
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
27
|
Thammavongsy Z, Mercer IP, Yang JY. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem Commun (Camb) 2019; 55:10342-10358. [DOI: 10.1039/c9cc05139b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mini-review on using the secondary coordination sphere to facilitate multi-electron, multi-proton catalysis.
Collapse
Affiliation(s)
| | - Ian P. Mercer
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
28
|
Margarit CG, Schnedermann C, Asimow NG, Nocera DG. Carbon Dioxide Reduction by Iron Hangman Porphyrins. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00334] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Charles G. Margarit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christoph Schnedermann
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Naomi G. Asimow
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
29
|
Pegis ML, Wise CF, Martin DJ, Mayer JM. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem Rev 2018; 118:2340-2391. [PMID: 29406708 DOI: 10.1021/acs.chemrev.7b00542] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oxygen reduction reaction (ORR) is a key component of biological processes and energy technologies. This Review provides a comprehensive report of soluble molecular catalysts and electrocatalysts for the ORR. The precise synthetic control and relative ease of mechanistic study for homogeneous molecular catalysts, as compared to heterogeneous materials or surface-adsorbed species, enables a detailed understanding of the individual steps of ORR catalysis. Thus, the Review places particular emphasis on ORR mechanism and thermodynamics. First, the thermochemistry of oxygen reduction and the factors influencing ORR efficiency are described to contextualize the discussion of catalytic studies that follows. Reports of ORR catalysis are presented in terms of their mechanism, with separate sections for catalysis proceeding via initial outer- and inner-sphere electron transfer to O2. The rates and selectivities (for production of H2O2 vs H2O) of these catalysts are provided, along with suggested methods for accurately comparing catalysts of different metals and ligand scaffolds that were examined under different experimental conditions.
Collapse
Affiliation(s)
- Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Catherine F Wise
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - James M Mayer
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
30
|
Götz R, Ly HK, Wrzolek P, Schwalbe M, Weidinger IM. Surface enhanced resonance Raman spectroscopy of iron Hangman complexes on electrodes during electrocatalytic oxygen reduction: advantages and problems of common drycast methods. Dalton Trans 2017; 46:13220-13228. [PMID: 28682383 DOI: 10.1039/c7dt01174a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drycast methods have been used frequently in recent decades to adsorb a range of synthetic catalysts on electrodes. The uncoordinated multilayers that are formed via this immobilization method can however have a strong impact on the electrocatalytic reaction pathway as slow electron transfer and intermolecular interactions can alter the chemistry of the catalysts on the surface. To gain insight into the structure of Fe porphyrin Hangman catalysts during electrocatalytic oxygen reduction a combination of electrochemistry and surface enhanced resonance Raman spectroscopy (SERRS) was applied. The Hangman complexes were attached to the electrodes via different methods and the influence of the immobilisation technique on oxygen chemistry was studied. In multilayer systems, new intermediates could be identified via potential dependent SERRS that were not present in solution or in monolayer systems under catalytic conditions. A comparison of Raman spectra obtained either via Soret or Q-band excitation showed that the porphyrin symmetry is strongly distorted under reducing conditions, which was interpreted by the transient formation of dimer complexes during catalysis.
Collapse
Affiliation(s)
- R Götz
- Fachbereich Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden, Germany.
| | | | | | | | | |
Collapse
|
31
|
Guillo P, Daran J, Manoury E, Poli R. Synthesis and Characterization of First Row Metal Complexes Derived from a Pyridinophane Ligand Functionalized by Fluoroalcohol. ChemistrySelect 2017. [DOI: 10.1002/slct.201700404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pascal Guillo
- Université de ToulouseInstitut Universitaire de Technologie Paul Sabatier-Département de Chimie Av. Georges Pompidou, BP 20258 Castres Cedex F- 81104 France
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
| | - Jean‐Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
- Institut Universitaire de France 103 bd Saint-Michel Paris 75005 France
| |
Collapse
|
32
|
Kramer WW, McCrory CCL. Polymer coordination promotes selective CO 2 reduction by cobalt phthalocyanine. Chem Sci 2016; 7:2506-2515. [PMID: 28660020 PMCID: PMC5477023 DOI: 10.1039/c5sc04015a] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 12/23/2022] Open
Abstract
Cobalt phthalocyanine (CoPc) is a known electrocatalyst for the carbon dioxide reduction reaction (CO2RR) that, when adsorbed onto edge-plane graphite (EPG) electrodes, shows modest activity and selectivity for CO production along with co-generation of H2. In contrast, electrodes modified with CoPc immobilized in a poly-4-vinylpridine (P4VP) film show dramatically enhanced activity and selectivity compared to those modified with CoPc alone. CoPc-P4VP films display a faradaic efficiency of ∼90% for CO, with a turnover frequency of 4.8 s-1 at just -0.75 V vs. RHE. Two properties of P4VP contribute to enhancing the activity of CoPc: (1) the ability of individual pyridine residues to coordinate to CoPc and (2) the high concentration of uncoordinated pyridine residues throughout the film which may enhance the catalytic activity of CoPc through secondary and other outer coordination sphere effects. Electrodes modified with polymer-free, five-coordinate CoPc(py) films (py = pyridine) and with CoPc catalysts immobilized in non-coordinating poly-2-vinylpyridine films were prepared to independently investigate the role that each property plays in enhancing CO2RR performance of CoPc-P4VP. These studies show that a synergistic relationship between the primary and outer coordination sphere effects is responsible for the enhanced catalytic activity of CoPc when embedded in the P4VP membrane.
Collapse
Affiliation(s)
- W W Kramer
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - C C L McCrory
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| |
Collapse
|
33
|
Khosrowabadi Kotyk JF, Ziller JW, Yang JY. Copper tetradentate N 2Py 2 complexes with pendant bases in the secondary coordination sphere: improved ligand synthesis and protonation studies. J COORD CHEM 2016. [DOI: 10.1080/00958972.2015.1130223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
34
|
Ly HK, Wrzolek P, Heidary N, Götz R, Horch M, Kozuch J, Schwalbe M, Weidinger IM. 2 nd coordination sphere controlled electron transfer of iron hangman complexes on electrodes probed by surface enhanced vibrational spectroscopy. Chem Sci 2015; 6:6999-7007. [PMID: 29861938 PMCID: PMC5947519 DOI: 10.1039/c5sc02560e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Surface enhanced vibrational spectroscopy shows the correlation between electron transfer kinetics and protonation degree of Fe Hangman complexes on electrodes.
Iron hangman complexes exhibit improved catalytic properties regarding O2 and H2O2 reduction, which are attributed to the presence of a proton donating group in defined vicinity of the catalytic metal centre. Surface enhanced resonance Raman (SERR) and IR (SEIRA) spectro-electrochemistry has been applied concomitantly for the first time to analyse such iron hangman porphyrin complexes attached to electrodes in aqueous solution. While the SERR spectra yield information about the redox state of the central iron, the SEIRA spectra show protonation and deprotonation events of the 2nd coordination sphere. To investigate the influence of a proton active hanging group on the heterogeneous electron transfer between the iron porphyrin and the electrode, two hangman complexes with either an acid or ester functional group were compared. Using time resolved SERR spectroscopy the electron transfer rates of both complexes were determined. Complexes with an acid group showed a slow electron transfer rate at neutral pH that increased significantly at pH 4, while complexes with an ester group exhibited a much faster, but pH independent rate. SEIRA measurements were able to determine directly for the first time a pKa value of 3.4 of a carboxylic hanging group in the immobilized state that shifted to 5.2 in D2O buffer solution. The kinetic data showed an increase of the heterogeneous electron transfer rate with the protonation degree of the acid groups. From these results, we propose a PCET which is strongly modulated by the protonation state of the acid hanging group via hydrogen bond interactions.
Collapse
Affiliation(s)
- H K Ly
- Department of Chemistry , Technische Universität Berlin , PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - P Wrzolek
- Department of Chemistry , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - N Heidary
- Department of Chemistry , Technische Universität Berlin , PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - R Götz
- Department of Chemistry , Technische Universität Berlin , PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - M Horch
- Department of Chemistry , Technische Universität Berlin , PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - J Kozuch
- Department of Chemistry , Technische Universität Berlin , PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - M Schwalbe
- Department of Chemistry , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - I M Weidinger
- Department of Chemistry , Technische Universität Berlin , PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany . ;
| |
Collapse
|
35
|
Chang CK. Paul Rothemund and S. Ferguson MacDonald, and their Namesake Reactions - The Influence of the Fischer School on my Life in Porphyrin Chemistry. Isr J Chem 2015. [DOI: 10.1002/ijch.201500043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
|
37
|
Arafa WAA, Kärkäs MD, Lee BL, Åkermark T, Liao RZ, Berends HM, Messinger J, Siegbahn PEM, Åkermark B. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Phys Chem Chem Phys 2015; 16:11950-64. [PMID: 24554036 DOI: 10.1039/c3cp54800g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O2 and solar fuels, such as H2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn2(II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation.
Collapse
Affiliation(s)
- Wael A A Arafa
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brines LM, Coggins MK, Poon PCY, Toledo S, Kaminsky W, Kirk ML, Kovacs JA. Water-soluble Fe(II)-H2O complex with a weak O-H bond transfers a hydrogen atom via an observable monomeric Fe(III)-OH. J Am Chem Soc 2015; 137:2253-64. [PMID: 25611075 DOI: 10.1021/ja5068405] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the metal ion properties that favor O-H bond formation versus cleavage should facilitate the development of catalysts tailored to promote a specific reaction, e.g., C-H activation or H2O oxidation. The first step in H2O oxidation involves the endothermic cleavage of a strong O-H bond (BDFE = 122.7 kcal/mol), promoted by binding the H2O to a metal ion, and by coupling electron transfer to proton transfer (PCET). This study focuses on details regarding how a metal ion's electronic structure and ligand environment can tune the energetics of M(HO-H) bond cleavage. The synthesis and characterization of an Fe(II)-H2O complex, 1, that undergoes PCET in H2O to afford a rare example of a monomeric Fe(III)-OH, 7, is described. High-spin 7 is also reproducibly generated via the addition of H2O to {[Fe(III)(O(Me2)N4(tren))]2-(μ-O)}(2+) (8). The O-H bond BDFE of Fe(II)-H2O (1) (68.6 kcal/mol) is calculated using linear fits to its Pourbaix diagram and shown to be 54.1 kcal/mol less than that of H2O and 10.9 kcal/mol less than that of [Fe(II)(H2O)6](2+). The O-H bond of 1 is noticeably weaker than the majority of reported M(n+)(HxO-H) (M = Mn, Fe; n+ = 2+, 3+; x = 0, 1) complexes. Consistent with their relative BDFEs, Fe(II)-H2O (1) is found to donate a H atom to TEMPO(•), whereas the majority of previously reported M(n+)-O(H) complexes, including [Mn(III)(S(Me2)N4(tren))(OH)](+) (2), have been shown to abstract H atoms from TEMPOH. Factors responsible for the weaker O-H bond of 1, such as differences in the electron-donating properties of the ligand, metal ion Lewis acidity, and electronic structure, are discussed.
Collapse
Affiliation(s)
- Lisa M Brines
- Department of Chemistry, University of Washington , Campus Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | | | | | | | | |
Collapse
|
39
|
Matson EM, Park YJ, Bertke JA, Fout AR. Synthesis and characterization of M(ii) (M = Mn, Fe and Co) azafulvene complexes and their X3− derivatives. Dalton Trans 2015; 44:10377-84. [DOI: 10.1039/c5dt00985e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and electronic flexibility in a tripodal ligand platform featuring a secondary coordination sphere.
Collapse
Affiliation(s)
- Ellen M. Matson
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Yun Ji Park
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Jeffery A. Bertke
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Alison R. Fout
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
40
|
Anderson JS, Gallagher AT, Mason JA, Harris TD. A Five-Coordinate Heme Dioxygen Adduct Isolated within a Metal–Organic Framework. J Am Chem Soc 2014; 136:16489-92. [DOI: 10.1021/ja5103103] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John S. Anderson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Audrey T. Gallagher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jarad A. Mason
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - T. David Harris
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
41
|
Schwalbe M, Wrzolek P, Lal G, Braun B. High‐Yielding Synthesis of a Hetero‐Pacman Compound and the Characterization of Intermediates and Side‐Products. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Schwalbe
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| | - Pierre Wrzolek
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| | - Garima Lal
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| | - Beatrice Braun
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| |
Collapse
|
42
|
Matson EM, Bertke JA, Fout AR. Isolation of Iron(II) Aqua and Hydroxyl Complexes Featuring a Tripodal H-bond Donor and Acceptor Ligand. Inorg Chem 2014; 53:4450-8. [DOI: 10.1021/ic500102c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ellen M. Matson
- School
of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue Urbana, Illinois 61801, United States
| | - Jeffrey A. Bertke
- School
of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School
of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Adelhardt M, Chalkley MJ, Heinemann FW, Sutter J, Scheurer A, Meyer K. Synthesis and Characterization of Iron Trisphenolate Complexes with Hydrogen-Bonding Cavities. Inorg Chem 2014; 53:2763-5. [DOI: 10.1021/ic5002286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mario Adelhardt
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Matthew J. Chalkley
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
44
|
Xu N, Powell DR, Richter-Addo GB. Synthesis, molecular structure, and spectroelectrochemistry of a nitrosyl iron porphyrin containing an unsymmetrical xanthene-linked porphyrin core. Nitric Oxide 2014; 37:61-5. [PMID: 24447916 DOI: 10.1016/j.niox.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/05/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022]
Abstract
Synthetic nitrosyl porphyrins with meso-aryl substituents are potential models for the biologically-important NO-bound P460 heme cofactor. A five-coordinate iron nitrosyl tetraaryl-porphyrin (HTPPX-CO2H)Fe(NO) containing a xanthene-based meso substituent has been prepared. The crystal structure of this formally {FeNO}7 complex reveals an ordered axial and bent NO ligand (∠FeNO=142.5(6)Å) displaying an off-axis tilt of the nitrosyl N atom from the heme normal by 9.2°. Surprisingly, the porphyrin core does not display the expected asymmetry in FeN(por) distances frequently observed in iron nitrosyl porphyrins. The redox behavior as determined by cyclic voltammetry reveals, in contrast to most (por)Fe(NO) compounds, a fast NO dissociation after electrooxidation in CH2Cl2 to result in a net chemically-irreversible oxidation at Epa=+0.77V vs Ag/AgCl. IR spectroelectrochemistry reveals a recombination, on the spectroelectrochemistry time-scale, of the dissociated NO on oxidation with electrogenerated [(HTPPX-CO2H)Fe]+.
Collapse
Affiliation(s)
- Nan Xu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
45
|
Kochem A, Thomas F, Jarjayes O, Gellon G, Philouze C, Weyhermüller T, Neese F, van Gastel M. Structural and spectroscopic investigation of an anilinosalen cobalt complex with relevance to hydrogen production. Inorg Chem 2013; 52:14428-38. [PMID: 24266650 DOI: 10.1021/ic402818g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A Co(II) anilinosalen catalyst containing proton relays in the first coordination sphere has been synthesized that catalyzes the electrochemical production of hydrogen from acid in dichloromethane and acetonitrile solutions. The complex has been spectroscopically and theoretically characterized in different protonation and redox states. We show that both coordinated anilido groups of the neutral Co(II) complex can be protonated into aniline form. Protonation induces an anodic shift of more than 1 V of the reduction wave, which concomitantly becomes irreversible. Hydrogen evolution that originates from the aniline protons located in the first coordination sphere is observed upon bulk electrolysis at -1.5 V of the protonated complex in absence of external acid. Structures for intermediates in the catalytic reaction have been identified based on this data.
Collapse
Affiliation(s)
- Amélie Kochem
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Uyeda C, Peters JC. Selective nitrite reduction at heterobimetallic CoMg complexes. J Am Chem Soc 2013; 135:12023-31. [PMID: 23865638 DOI: 10.1021/ja4053653] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-containing nitrite reductases bind and activate nitrite by a mechanism that is proposed to involve interactions with Brønsted acidic residues in the secondary coordination sphere. To model this functionality using synthetic platforms that incorporate a Lewis acidic site, heterobimetallic CoMg complexes supported by diimine-dioxime ligands are described. The neutral (μ-NO2)CoMg species 3 is synthesized from the [(μ-OAc)(Br)CoMg](+) complex 1 by a sequence of one-electron reduction and ligand substitution reactions. Data are presented for a redox series of nitrite adducts, featuring a conserved μ-(η(1)-N:η(1)-O)-NO2 motif, derived from this synthon. Conditions are identified for the proton-induced N-O bond heterolysis of bound NO2(-) in the most reduced member of this series, affording the [(NO)(Cl)CoMg(H2O)](+) complex 6. Reduction of this complex followed by protonation leads to the evolution of free N2O. On the basis of these stoichiometric reactivity studies, the competence of complex 1 as a NO2(-) reduction catalyst is evaluated using electrochemical methods. In bulk electrolysis experiments, conducted at -1.2 V vs SCE using Et3NHCl as a proton source, N2O is produced selectively without the competing formation of NH3, NH2OH, or H2.
Collapse
Affiliation(s)
- Christopher Uyeda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
47
|
Sahu S, Widger LR, Quesne MG, de Visser SP, Matsumura H, Moënne-Loccoz P, Siegler MA, Goldberg DP. Secondary coordination sphere influence on the reactivity of nonheme iron(II) complexes: an experimental and DFT approach. J Am Chem Soc 2013; 135:10590-3. [PMID: 23834409 PMCID: PMC3746373 DOI: 10.1021/ja402688t] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/29/2022]
Abstract
The new biomimetic ligands N4Py(2Ph) (1) and N4Py(2Ph,amide) (2) were synthesized and yield the iron(II) complexes [Fe(II)(N4Py(2Ph))(NCCH3)](BF4)2 (3) and [Fe(II)(N4Py(2Ph,amide))](BF4)2 (5). Controlled orientation of the Ph substituents in 3 leads to facile triplet spin reactivity for a putative Fe(IV)(O) intermediate, resulting in rapid arene hydroxylation. Addition of a peripheral amide substituent within hydrogen-bond distance of the iron first coordination sphere leads to stabilization of a high-spin Fe(III)OOR species which decays without arene hydroxylation. These results provide new insights regarding the impact of secondary coordination sphere effects at nonheme iron centers.
Collapse
Affiliation(s)
- Sumit Sahu
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leland R. Widger
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Matthew G. Quesne
- Manchester Institute of Biotechnology
and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street,
Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology
and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street,
Manchester M1 7DN, United Kingdom
| | - Hirotoshi Matsumura
- Division of Environmental and Biomolecular Systems, Institute of
Environmental Health, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Pierre Moënne-Loccoz
- Division of Environmental and Biomolecular Systems, Institute of
Environmental Health, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Zhang Y, Jiang J, Hu C. Synthesis and Characterization of Iron(III) Complexes of 5-(8-Carboxy-1-naphthyl)-10, 15, 20-tritolyl Porphyrin. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Lacy DC, Mukherjee J, Lucas RL, Day VW, Borovik A. Metal complexes with varying intramolecular hydrogen bonding networks. Polyhedron 2013; 52:261-267. [PMID: 24904193 PMCID: PMC4043334 DOI: 10.1016/j.poly.2012.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alfred Werner described the attributes of the primary and secondary coordination spheres in his development of coordination chemistry. To examine the effects of the secondary coordination sphere on coordination chemistry, a series of tripodal ligands containing differing numbers of hydrogen bond (H-bond) donors were used to examine the effects of H-bonds on Fe(II), Mn(II)-acetato, and Mn(III)-OH complexes. The ligands containing varying numbers of urea and amidate donors allowed for systematic changes in the secondary coordination spheres of the complexes. Two of the Fe(II) complexes that were isolated as their Bu4N+ salts formed dimers in the solid-state as determined by X-ray diffraction methods, which correlates with the number of H-bonds present in the complexes (i.e., dimerization is favored as the number of H-bond donors increases). Electron paramagnetic resonance (EPR) studies suggested that the dimeric structures persist in acetonitrile. The Mn(II) complexes were all isolated as their acetato adducts. Furthermore, the synthesis of a rare Mn(III)-OH complex via dioxygen activation was achieved that contains a single intramolecular H-bond; its physical properties are discussed within the context of other Mn(III)-OH complexes.
Collapse
Affiliation(s)
- David C. Lacy
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697, United States
| | - Jhumpa Mukherjee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697, United States
| | - Robie L. Lucas
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - A.S. Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697, United States
| |
Collapse
|
50
|
Zyska B, Schwalbe M. Synthesis of sterically hindered xanthene-modified iron corroles with catalase-like activity. Chem Commun (Camb) 2013; 49:3799-801. [DOI: 10.1039/c3cc40625c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|