1
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
2
|
Sharma P, Sweta Jha N. Curcumin Knoevenagel's Schiff Base as a Promising Stabilizer of G-Quadruplex Structure. Chem Biodivers 2024; 21:e202400797. [PMID: 38946104 DOI: 10.1002/cbdv.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
G-quadruplex DNA sequences present in the promoter and telomere regions of the genomic sequence are considered therapeutic targets for the treatment of cancer. Curcumin, derived from Curcuma longa, has been known as a quadruplex binder and has a potential role in the apoptosis of cancer cells. Here, we have reported the Schiff base ligand of curcumin synthesized through the condensation of the amino acid L-tryptophan and the knoevenagel derivative of curcumin (4-nitrobenzylidene curcumin (NBC)) as a potential G-quadruplex binder. Thus, spectroscopic and biophysical studies reveal a higher binding affinity of the ligand Sb-NBC towards the promoter and telomere G-quadruplex sequence as compared to the parent NBC. The ligand Sb-NBC highly stabilizes the parallel and hybrid G-quadruplex topologies to 10.5 °C-6.4 °C. Interestingly, the ligands also exhibit selective cytotoxicity toward cancer cells over normal cells. Taken together, this work provides evidence of the possibility of applying curcumin Schiff base in cancer therapy to regulate oncogene expression in cancer cells.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| |
Collapse
|
3
|
Satta G, Trajkovski M, Cantara A, Mura M, Meloni C, Olla G, Dobrovolná M, Pisano L, Gaspa S, Salis A, De Luca L, Mocci F, Brazda V, Plavec J, Carraro M. Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back. Chemistry 2024:e202402600. [PMID: 39291646 DOI: 10.1002/chem.202402600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
G-quadruplexes (G4 s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl) porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. This study enabled the synthesis of tetracationic porphyrin derivatives that exhibited binding and stabilizing capacity against G-quadruplex structures; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4 s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl) porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.
Collapse
Affiliation(s)
- Giuseppe Satta
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, Bari, 70126, Italy
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, SI-1000, Slovenia
| | - Alessio Cantara
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Monica Mura
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042, Monserrato, Italy
| | - Claudia Meloni
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042, Monserrato, Italy
| | - Giulia Olla
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042, Monserrato, Italy
| | - Michaela Dobrovolná
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Luisa Pisano
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, Bari, 70126, Italy
| | - Silvia Gaspa
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| | - Andrea Salis
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042, Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| | - Francesca Mocci
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042, Monserrato, Italy
| | - Vaclav Brazda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, SI-1000, Slovenia
- EN→FIST Centre of Excellence, Trg OF 13, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia
| | - Massimo Carraro
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, Bari, 70126, Italy
| |
Collapse
|
4
|
Neidle S. A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules 2024; 29:3653. [PMID: 39125057 PMCID: PMC11314571 DOI: 10.3390/molecules29153653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant in the human genome and are over-represented in the promoter regions of many genes involved in human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of these genes. However, structural information is currently available on only a very small number of G4s and their ligand complexes. This limitation, coupled with the currently restricted information on the G4-containing genes involved in most complex human cancers, has led to the development of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a pan-G4 drug of potential utility beyond pancreatic cancer.
Collapse
Affiliation(s)
- Stephen Neidle
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
5
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Zhong G. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:371-388. [PMID: 37876494 PMCID: PMC10591300 DOI: 10.1021/acsbiomedchemau.3c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 10/26/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of exponentially increased natural products with characteristic chemical structures, topologies, and biosynthetic mechanisms as well as exceptional bioactivities including antibacteria, antitumors, and antiviruses. The biosynthesis of RiPP proceeds via a ribosomally assembled precursor peptide that undergoes varied post-translational modifications to generate a mature peptide. Cytochrome P450 (CYP or P450) monooxygenases are a superfamily of heme-containing enzymes that span a wide range of secondary metabolite biosynthetic pathways due to their broad substrate scopes and excellent catalytic versatility. In contrast to the enormous quantities of RiPPs and P450s, the P450 associated RiPP biosynthesis is comparatively limited, with most of their functions and timings remaining mysterious. Herein, this Review aims to provide an overview on the striking roles of P450s in RiPP biosyntheses uncovered to date and to illustrate their remarkable functions, mechanisms, as well as remaining challenges. This will shed light on novel P450 discovery and characterizations in RiPP biosyntheses.
Collapse
Affiliation(s)
- Guannan Zhong
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
7
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
8
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P. Int J Mol Sci 2023; 24:10274. [PMID: 37373425 PMCID: PMC10299155 DOI: 10.3390/ijms241210274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro, and to display better selectivity toward G4s than the previously published BG4 antibody. To get insight into G4P- G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
Affiliation(s)
| | | | | | | | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (M.H.)
| |
Collapse
|
9
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-molecule analysis of the improved variants of the G-quadruplex recognition protein G4P. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539902. [PMID: 37214990 PMCID: PMC10197523 DOI: 10.1101/2023.05.08.539902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al . synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro , and to display better selectivity towards G4s than the previously published BG4 antibody. To get insight into the G4P-G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
|
10
|
Mérgola-Greef J, Milne BF. First-principles study of electronic and optical properties in 1-dimensional oligomeric derivatives of telomestatin. Phys Chem Chem Phys 2023; 25:12744-12753. [PMID: 37114806 DOI: 10.1039/d3cp01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Real-space self-interaction corrected (time-dependent) density functional theory has been used to investigate the ground-state electronic structure and optical absorption profiles of a series of linear oligomers inspired by the natural product telomestatin. Length-dependent development of plasmonic excitations in the UV region is seen in the neutral species which is augmented by polaron-type absorption with tunable wavelengths in the IR when the chains are doped with an additional electron/hole. Combined with a lack of absorption in the visible region this suggests these oligomers as good candidates for applications such as transparent antennae in dye-sensitised solar energy collection materials. Due to strong longitudinal polarisation in their absorption spectra, these compounds are also indicated for use in nano-structured devices displaying orientation-sensitive optical responses.
Collapse
Affiliation(s)
- Joëlle Mérgola-Greef
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
| | - Bruce F Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
11
|
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:1-31. [PMID: 37101606 PMCID: PMC10125368 DOI: 10.1021/acsbiomedchemau.2c00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 04/28/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.
Collapse
Affiliation(s)
- Guannan Zhong
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| | - Zong-Jie Wang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liujie Huo
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
12
|
Salem AA, El Haty IA, Ghattas MA. GW-2974 and SCH-442416 modulators of tyrosine kinase and adenosine receptors can also stabilize human telomeric G-quadruplex DNA. PLoS One 2022; 17:e0277963. [PMID: 36476719 PMCID: PMC9728906 DOI: 10.1371/journal.pone.0277963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
GW-2974 is a potent tyrosine kinase receptor inhibitor while SCH-442416 is a potent adenosine receptors' antagonist with high selectivity towards human adenosine A2A receptor over other adenosine receptors. The two compounds were reported to possess anti-cancer properties. This study aimed to investigate whether stabilization of human telomeric G-quadruplex DNA by GW-2974- and SCH-442416 is a plausible fundamental mechanism underlying their anti-cancer effects. Human telomeric G-quadruplex DNA with sequence AG3(TTAGGG)3 was used. The study used ultraviolet-visible (UV-Vis), fluorescence, fluorescence quenching, circular dichroism (CD), melting temperatures (Tm) and molecular docking techniques to evaluate interactions. The results showed that GW-2974 and SCH-442416 interacted with G-quadruplex DNA through intercalation binding into two types of dependent binding sites. Binding affinities of 1.3 × 108-1.72 × 106 M-1 and 1.55 × 107-3.74 × 105 M-1 were obtained for GW-2974 and SCH-442416, respectively. An average number of binding sites between 1 and 2 was obtained. Additionally, the melting temperature curves indicated that complexation of both compounds to G-quadruplex DNA provided more stability (ΔTm = 9.9°C and 9.6°C, respectively) compared to non-complexed G-quadruplex DNA. Increasing the molar ratios over 1:1 (drug:G-quadruplex) showed less stabilization effect on DNA. Furthermore, GW-2974 and SCH-442516 have proven ≥ 4.0 folds better selective towards G-quadruplex over double-stranded ct-DNA. In silico molecular docking and dynamics revealed favorable exothermic binding for the two compounds into two sites of parallel and hybrid G-quadruplex DNA structures. The results supported the hypothesis that GW-2974 and SCH-442416 firmly stabilize human telomeric G-quadruplex DNA in additions to modulating tyrosine kinase and adenosine receptors. Consequently, stabilizing G-quadruplex DNA could be a mechanism underlying their anti-cancer activity.
Collapse
Affiliation(s)
- Alaa A. Salem
- Department of Chemistry, College of science, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| | - Ismail A. El Haty
- Department of Chemistry, College of science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
13
|
Dual Targeting Topoisomerase/G-Quadruplex Agents in Cancer Therapy-An Overview. Biomedicines 2022; 10:biomedicines10112932. [PMID: 36428499 PMCID: PMC9687504 DOI: 10.3390/biomedicines10112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Topoisomerase (Topo) inhibitors have long been known as clinically effective drugs, while G-quadruplex (G4)-targeting compounds are emerging as a promising new strategy to target tumor cells and could support personalized treatment approaches in the near future. G-quadruplex (G4) is a secondary four-stranded DNA helical structure constituted of guanine-rich nucleic acids, and its stabilization impairs telomere replication, triggering the activation of several protein factors at telomere levels, including Topos. Thus, the pharmacological intervention through the simultaneous G4 stabilization and Topos inhibition offers a new opportunity to achieve greater antiproliferative activity and circumvent cellular insensitivity and resistance. In this line, dual ligands targeting both Topos and G4 emerge as innovative, efficient agents in cancer therapy. Although the research in this field is still limited, to date, some chemotypes have been identified, showing this dual activity and an interesting pharmacological profile. This paper reviews the available literature on dual Topo inhibitors/G4 stabilizing agents, with particular attention to the structure-activity relationship studies correlating the dual activity with the cytotoxic activity.
Collapse
|
14
|
Geng X, Zhang Y, Li S, Liu L, Yao R, Liu L, Gao J. Design, synthesis, and biological evaluation of novel benzimidazolyl isoxazole derivatives as potential c-Myc G4 stabilizers to suppress c-Myc transcription and myeloma growth. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Chen L, Dickerhoff J, Sakai S, Yang D. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting. Acc Chem Res 2022; 55:2628-2646. [PMID: 36054116 PMCID: PMC9937053 DOI: 10.1021/acs.accounts.2c00337] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA G-quadruplex secondary structures formed in guanine-rich human telomeres and oncogene promoters are functionally important and have emerged as a promising new class of cancer-specific drug targets. These globular intramolecular structures are stabilized by K+ or Na+ and form readily under physiological solution conditions. Moreover, G-quadruplexes are epigenetic features and can alter chromatin structure and function together with interactive proteins. Here, we discuss our efforts over the last two decades to understand the structures and functions of DNA G-quadruplexes formed in key oncogene promoters and human telomeres and their interactions with small molecules. Using high-field NMR spectroscopy, we determined the high-resolution structures of physiologically relevant telomeric G-quadruplexes in K+ solution with a major form (hybrid-2) and a minor form (hybrid-1), as well as a two-tetrad intermediate. The intrinsic structural polymorphism of telomeric DNA may be important for the biology of human telomeres, and we proposed a model for the interconversion. More recently, we have worked on G-quadruplexes of MYC, BCL2, PDGFR-β, VEGF, and k-RAS oncogene promoters. We determined the structure of the major G-quadruplex formed in the MYC promoter, a prototype for parallel G-quadruplexes. It is the first example of the parallel-stranded G3NG3 structure motif with a 1-nt loop, which is prevalent in promoter sequences and likely evolutionarily selected to initiate folding. Remarkably, the parallel MYC promoter G-quadruplexes are highly stable. Additionally, we determined the molecular structures of G-quadruplexes formed in human BCL2, VEGF, and PDGFR-β promoters, each adopting a unique structure. For example, the BCL2 promoter contains distinct interchangeable G-quadruplexes in two adjacent regions, suggesting precise regulation by different proteins. The PDGFR-β promoter adopts unique "broken-strand" and vacancy G-quadruplexes, which can be recognized by cellular guanine metabolites for a potential regulatory role.Structural information on G-quadruplexes in complex with small-molecules is critical for understanding specific recognition and structure-based rational drug design. Our studies show that many G-quadruplexes contain unique structural features such as capping and loop structures, allowing specific recognition by drugs and protein. This represents a paradigm shift in understanding DNA as a drug target: Rather than a uniform, nonselective binding site in duplex DNA, the G-quadruplex is being pursued as a new class of selectively targetable drug receptors. We focus on targeting the biologically relevant MYC promoter G-quadruplex (MycG4) with small molecules and have determined its first and additional drug complex structures. Very recently, we have discovered clinically tested indenoisoquinolines as strong MycG4 binders and potent MYC inhibitors. We have also discovered drugs targeting the unique dGMP-bound-vG4 formed in the PDGFR-β promoter. Moreover, we determined the complex structures of the first small molecules that specifically recognize the physiologically relevant human telomeric G-quadruplexes. Unlike the previously recognized dogma that the optimal G-quadruplex ligands are large aromatic or cyclic compounds, our results suggest that smaller asymmetric compounds with appropriate functional groups are better choices to specifically bind G-quadruplexes. This body of work lays a strong foundation for future work aimed at understanding the cellular functions of G-quadruplexes and G-quadruplex-targeted drug design.
Collapse
Affiliation(s)
- Luying Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jonathan Dickerhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Saburo Sakai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, 201 University Street, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Liu L, Geng X, Zhang J, Li S, Gao J. Structure-based discovery of Licoflavone B and Ginkgetin targeting c-Myc G-quadruplex to suppress c-Myc transcription and myeloma growth. Chem Biol Drug Des 2022; 100:525-533. [PMID: 35557489 DOI: 10.1111/cbdd.14064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/27/2022]
Abstract
G-quadruplex (G4), present in the c-Myc promoter, has emerged as an attractive cancer-specific molecular target for drug development. So, the discovery of small molecules to stabilize c-Myc-G4 to inhibit transcription of c-Myc protein is of great significance. Herein, a combined molecular docking-based virtual screening strategy, molecular dynamics (MD) simulation, and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation was conducted on the existing L6000 Natural Compound Library. Four natural compounds, including Licoflavone B, Demethyleneberberine, Ginkgetin, and Mulberroside C, were predicted to have preferable binding affinities to c-Myc G4 and then selected for commercial purchase and experimental evaluation. Compounds Licoflavone B and Ginkgetin can significantly inhibit myeloma cell proliferation, with IC50 values <8 μM against the RPMI-8226 cell line. Moreover, our data demonstrated that the two compounds could simultaneously downregulate c-Myc transcription and expression. Collectively, compounds Licoflavone B and Ginkgetin might be regarded as new candidates for the development of the more potent c-Myc-G4 stabilizers in the future.
Collapse
Affiliation(s)
- Linlin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,College of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xiaoju Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jinyuan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shihao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
c-Myc Protein Level Affected by Unsymmetrical Bisacridines Influences Apoptosis and Senescence Induced in HCT116 Colorectal and H460 Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23063061. [PMID: 35328482 PMCID: PMC8955938 DOI: 10.3390/ijms23063061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Unsymmetrical bisacridines (UAs) are highly active antitumor compounds. They contain in their structure the drugs previously synthesized in our Department: C-1311 and C-1748. UAs exhibit different properties than their monomer components. They do not intercalate to dsDNA but stabilize the G-quadruplex structures, particularly those of the MYC and KRAS genes. Since MYC and KRAS are often mutated and constitutively expressed in cancer cells, they can be used as therapeutic targets. Herein, we investigate whether UAs can affect the expression and protein level of c-Myc and K-Ras in HCT116 and H460 cancer cells, and if so, what are the consequences for the UAs-induced cellular response. UAs did not affect K-Ras, but they strongly influenced the expression and translation of the c-Myc protein, and in H460 cells, they caused its full inhibition. UAs treatment resulted in apoptosis, as confirmed by the morphological changes, the presence of sub-G1 population and active caspase-3, cleaved PARP, annexin-V/PI staining and a decrease in mitochondrial potential. Importantly, apoptosis was induced earlier and to a greater extent in H460 compared to HCT116 cells. Moreover, accelerated senescence occurred only in H460 cells. In conclusion, the strong inhibition of c-Myc by UAs in H460 cells may participate in the final cellular response (apoptosis, senescence).
Collapse
|
19
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
20
|
Debbarma S, Acharya PC. Targeting G-Quadruplex Dna For Cancer Chemotherapy. Curr Drug Discov Technol 2022; 19:e140222201110. [PMID: 35156574 DOI: 10.2174/1570163819666220214115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
The self-association of DNA formed by Hoogsteen hydrogen bonding comprises several layers of four guanine or G-tetrads or G4s. The distinct feature of G4s, such as the G-tetrads and loops, qualify structure-selective recognition by small molecules and various ligands and can act as potential anticancer therapeutic molecules. The G4 selective-ligands, can influence gene expression by targeting a nucleic acid structure rather than sequence. Telomere G4 can be targeted for cancer treatment by small molecules inhibiting the telomerase activity whereas c-MYC is capable of controlling transcription, can be targeted to influence transcription. The k-RAS is one of the most frequently encountered oncogenic driver mutations in pancreatic, colorectal, and lung cancers. The k-RAS oncogene plays important role in acquiring and increasing the drug resistance and can also be directly targeted by small molecules to combat k-RAS mutant tumors. Modular G4 ligands with different functional groups, side chains and rotatable bonds as well as conformation affect the binding affinity/selectivity in cancer chemotherapeutic interventions. These modular G4 ligands act by targeting the diversity of G4 loops and groves and assists to develop more drug-like compounds with selectivity. In this review, we present the recent research on synthetic G4 DNA-interacting ligands as an approach toward the discovery of target specific anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Sumanta Debbarma
- Department of Pharmacy, Tripura University, Suryamaninagar-799022, India
| | | |
Collapse
|
21
|
Ahmad H, Ahmed W, Hassan A. Goldberg Coupling of Thiazole Substituted Aryl Bromide Demands Stoichiometric Copper Compared to Oxazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haseen Ahmad
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Waqar Ahmed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Abbas Hassan
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
22
|
I. V. Ramos C, A. S. Almodôvar V, Candeias N, Santos T, Cruz C, Graça P. M. S. Neves M, Tomé AC. Diketopyrrolo[3,4–c]pyrrole derivative as a promising ligand for the stabilization of G-quadruplex DNA structures. Bioorg Chem 2022; 122:105703. [DOI: 10.1016/j.bioorg.2022.105703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
|
23
|
Duraisamy R, Palanisamy UM, Sheriffa Begum KMM, Dharmar P. Facile induction and stabilization of intramolecular antiparallel G-quadruplex of d(TTAGGG)n on interaction with triazine-2-imidazole ethyl amine compound and its Cu(II), Zn(II) complexes under no-salt conditions. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Interaction between GW2974 and telomeric G-quadruplex DNA: a possible anticancer mechanism. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Jawarkar RD, Bakal RL, Khatale PN, Lewaa I, Jain CM, Manwar JV, Jaiswal MS. QSAR, pharmacophore modeling and molecular docking studies to identify structural alerts for some nitrogen heterocycles as dual inhibitor of telomerase reverse transcriptase and human telomeric G-quadruplex DNA. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA are amongst the favorable target for researchers to discover novel and more effective anticancer agents. To understand and elucidate structure activity relationship and mechanism of inhibition of telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA, a QSAR modeling and molecular docking were conducted.
Results
Two robust QSAR model were obtained which consist of full set QSAR model (R2: 0.8174, CCCtr: 0.8995, Q2loo: 0.7881, Q2LMO: 0.7814) and divided set QSAR model (R2: 0.8217, CCCtr: 0.9021, Q2loo: 0.7886, Q2LMO: 0.7783, Q2-F1: 0.7078, Q2-F2: 0.6865, Q2-F3: 0.7346) for envisaging the inhibitory activity of telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA. The analysis reveals that carbon atom exactly at 3 bonds from aromatic carbon atom, nitrogen atom exactly at six bonds from planer nitrogen atom, aromatic carbon atom within 2 A0 from the center of mass of molecule and occurrence of element hydrogen within 2 A0 from donar atom are the key pharmacophoric features important for dual inhibition of TERT and human telomeric G-quadruplex DNA. To validate this analysis, pharmacophore modeling and the molecular docking is performed. Molecular docking analysis support QSAR analysis and revealed that, dual inhibition of TERT and human telomeric DNA is mainly contributed from hydrophobic and hydrogen bonding interactions.
Conclusion
The findings of molecular docking, pharmacophore modelling, and QSAR are all consistent and in strong agreement. The validated QSAR analyses can detect structural alerts, pharmacophore modelling can classify a molecule's consensus pharmacophore involving hydrophobic and acceptor regions, whereas docking analysis can reveal the mechanism of dual inhibition of telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA. The combination of QSAR, pharmacophore modeling and molecular docking may be useful for the future drug design of dual inhibitors to combat the devastating issue of resistance.
Graphical abstract
Collapse
|
26
|
Pal S, Fatma K, Ravichandiran V, Dash J. Triazolyl Dibenzo[ a,c]phenazines Stabilize Telomeric G-quadruplex and Inhibit Telomerase. ASIAN J ORG CHEM 2021; 10:2921-2926. [PMID: 37823002 PMCID: PMC7614908 DOI: 10.1002/ajoc.202100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/10/2022]
Abstract
We herein report the synthesis and biophysical evaluation of triazolyl dibenzo[a,c]phenazine derivatives as a novel class of G-quadruplex ligands. The aromatic core facilitates π-π interaction and the flexible, protonatable side chains interact with the phosphate backbone of DNA via electrostatic interactions. Förster resonance energy transfer (FRET) melting assay and isothermal titration calorimetry (ITC) studies suggest that these ligands show binding preference for the hTELO G-quadruplex over G-quadruplexes found in the promoter region of various oncogenes and duplex DNA. The in vitro telomeric repeat amplification protocol (Q-TRAP) assay reveals that these ligands reduce telomerase activity in cancer cells.
Collapse
Affiliation(s)
- Sarmistha Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
- Department of Medicinal Chemistry, NIPER-KOLKATA, Chunilal Bhawan (Adjacent to BCPL), 168, Maniktala Main Road P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata – 700054, West Bengal
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, NIPER-KOLKATA, Chunilal Bhawan (Adjacent to BCPL), 168, Maniktala Main Road P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata – 700054, West Bengal
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
27
|
Seimiya H, Nagasawa K, Shin-Ya K. Chemical targeting of G-quadruplexes in telomeres and beyond for molecular cancer therapeutics. J Antibiot (Tokyo) 2021; 74:617-628. [PMID: 34285374 DOI: 10.1038/s41429-021-00454-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
G-quadruplexes (G4s) are higher-order structures formed by guanine-rich sequences of nucleic acids, such as the telomeric 5'-TTAGGG-3'/5'-UUAGGG-3' repeats and those in gene regulatory regions. G4s regulate various biological events, including replication, transcription, and translation. Imbalanced G4 dynamics is associated with diseases, such as cancer and neurodegenerative diseases. Telomestatin is a natural macrocyclic compound derived from Streptomyces anulatus 3533-SV4. It interacts with the guanine quartet via π-π stacking and potently stabilizes G4. Because G4 stabilization at the telomeric repeat inhibits the telomere-synthesizing enzyme telomerase, telomestatin was originally identified as a telomerase inhibitor. Whereas non-toxic doses of telomestatin induce gradual shortening of telomeres and eventual crisis in human cancer cells, higher doses trigger prompt replication stress and DNA damage responses, resulting in acute cell death. Suppression of the transcription and translation of G4-containing genes is also implicated in the anticancer effects of telomestatin. Because telomestatin is rare, labile, and insoluble, synthetic oxazole telomestatin derivatives have been developed and verified for their therapeutic efficacies in preclinical cancer models. Furthermore, a variety of G4-stabilizing compounds have been reported as promising seeds for molecular cancer therapeutics. To improve the design of future clinical studies, it will be important to identify predictive biomarkers of drug efficacy.
Collapse
Affiliation(s)
- Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Technology Research Association for Next Generation Natural Products Chemistry, Tokyo, Japan
| |
Collapse
|
28
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
29
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
30
|
Pei ZF, Yang MJ, Zhang K, Jian XH, Tang GL. Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Cell Chem Biol 2021; 29:650-659.e5. [PMID: 34474009 DOI: 10.1016/j.chembiol.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/03/2022]
Abstract
Mechercharmycin A (MCM-A) is a marine natural product belonging to a family of polyazole cyclopeptides with remarkable bioactivities and unique structures. Identification, heterologous expression, and genetic characterizations of the MCM biosynthetic gene cluster in Bacillus subtilis revealed that it is a ribosomally synthesized and post-translationally modified peptide (RiPP) possessing complex with distinctive modifications. Based on this heterologous expression system, two MCM analogs with comparable antitumor activity are generated by engineering the biosynthetic pathway. Combinatorial co-production of a precursor peptide with different modifying enzymes in Escherichia coli identifies a different timing of modifications, showing that a tRNAGlu-dependent highly regioselective dehydration is the first modification step, followed by polyazole formation through heterocyclization and dehydrogenation in an N- to C-terminal direction. Therefore, a rational biosynthetic pathway of MCMs is proposed, which unveils a subfamily of azol(in)e-containing RiPPs and sets the stage for further investigations of the enzymatic mechanism and synthetic biology.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min-Jie Yang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kai Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Hong Jian
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
31
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
32
|
Tokuyama H. Construction of N-Heterocycles Fused with a Highly Substituted Benzene Ring by a Benzyne-Mediated Cyclization/Functionalization Cascade Reaction and Its Application to the Total Synthesis of Marine Natural Products. Chem Pharm Bull (Tokyo) 2021; 69:707-716. [PMID: 34334514 DOI: 10.1248/cpb.c21-00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This account summarizes the development of a benzyne-mediated cyclization/functionalization protocol for the versatile construction of highly substituted benzene derivatives fused with an N-heterocyclic ring such as indolines, indoles, and related nitrogen-containing heterocycles. The protocol comprises sequential reactions initiated by generating a benzyne species and subsequent cyclization via addition of magnesium amide to the benzyne, followed by trapping of the resultant magnesium compound in situ with various electrophiles. The substituent scope was expanded by conducting a transmetalation on a copper species to introduce alkyl, aryl, and alkenyl substituents. The utility of the sequential reaction was demonstrated in the synthesis of a carbazole natural product (heptaphylline), pyrrolo[4,3,2-de]quinoline alkaloids (batzellines), and pyrrolo[2,3-c]carbazole alkaloids (dictyodendrines).
Collapse
|
33
|
Naturally Occurring Oxazole Structural Units as Ligands of Vanadium Catalysts for Ethylene-Norbornene (Co)polymerization. Catalysts 2021. [DOI: 10.3390/catal11080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
1,3-Oxazole and 4,5-dihydro-1,3-oxazole are common structural motifs in naturally occurring peptides. A series of vanadium complexes were synthesized using VCl3(THF)3 and methyl substituted (4,5-dihydro-1,3-oxazol-2-yl)-1,3-oxazoles as ligands and analyzed using NMR and MS methods. The complexes were found to be active catalysts both in ethylene polymerization and ethylene-norbornene copolymerization. The position of methyl substituent in the ligand has considerable impact on the performance of (co)polymerization reaction, as well as on the microstructure, and thus physical properties of the obtained copolymers.
Collapse
|
34
|
Banerjee N, Panda S, Chatterjee S. Frontiers in G-Quadruplex Therapeutics in Cancer: Selection of Small Molecules, Peptides and Aptamers. Chem Biol Drug Des 2021; 99:1-31. [PMID: 34148284 DOI: 10.1111/cbdd.13910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
G-quadruplex, a unique secondary structure in nucleic acids found throughout human genome, elicited widespread interest in the field of therapeutic research. Being present in key regulatory regions of oncogenes, RNAs and telomere, G-quadruplex structure regulates transcription, translation, splicing etc. Changes in its structure and stability leads to differential expression of oncogenes causing cancer. Thus, targeting G-Quadruplex structures with small molecules/other biologics has shown elevated research interest. Covering previous reports, in this review we try to enlighten the facts on the structural diversity in G-quadruplex ligands aiming to provide newer insights to design first-in-class drugs for the next generation cancer treatment.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| | - Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| |
Collapse
|
35
|
Sisco E, Barnes KL. Design, Synthesis, and Biological Evaluation of Novel 1,3-Oxazole Sulfonamides as Tubulin Polymerization Inhibitors. ACS Med Chem Lett 2021; 12:1030-1037. [PMID: 34141089 DOI: 10.1021/acsmedchemlett.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
A series of novel 1,3-oxazole sulfonamides were constructed and screened for their potential to inhibit cancer cell growth. These compounds were evaluated against the full NCI-60 human tumor cell lines, with the majority exhibiting promising overall growth inhibitory properties. They displayed high specificity within the panel of leukemia cell lines versus all other lines tested. When examined in the dose-response assay, GI50 values fell within the low micromolar to nanomolar ranges. 1,3-Oxazole sulfonamide 16 displayed the best average growth inhibition, whereas the 2-chloro-5-methylphenyl and 1-naphthyl substituents on the sulfonamide nitrogen proved to be the most potent leukemia inhibitors with mean GI50 values of 48.8 and 44.7 nM, respectively. In vitro tubulin polymerization experiments revealed that this class of compounds effectively binds to tubulin and induces the depolymerization of microtubules within cells.
Collapse
Affiliation(s)
- Edward Sisco
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Korry L. Barnes
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| |
Collapse
|
36
|
Chaudhuri R, Fatma K, Dash J. Regulation of gene expression by targeting DNA secondary structures. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, Rangappa KS. Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 2021; 86:998-1013. [PMID: 33979675 DOI: 10.1016/j.semcancer.2021.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, 571448, Nagamangala Taluk, India
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
38
|
Dai Y, Chen J, Wang Z, Wang T, Wang L, Yang Y, Qiao X, Fan B. Asymmetric Reduction of Aromatic α-Dehydroamino Acid Esters with Water as Hydrogen Source. J Org Chem 2021; 86:7141-7147. [PMID: 33966384 DOI: 10.1021/acs.joc.1c00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The asymmetric reduction of aromatic α-dehydroamino acid esters with water as the hydrogen source was developed by a Rh/Cu co-catalytic system. The reaction tolerates various functional groups, providing a valuable synthetic tool to access chiral α-amino acid esters readily. Moreover, the present methodology also was applied in the cost-effective and easy to handle preparation of chiral deuterated α-amino esters by using D2O.
Collapse
Affiliation(s)
- Yuze Dai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Zheting Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Ting Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Lin Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yong Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Accademy of Chinese Materia Medica, Chongqing 400065, China
| | - Xingfang Qiao
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Accademy of Chinese Materia Medica, Chongqing 400065, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China.,Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Accademy of Chinese Materia Medica, Chongqing 400065, China
| |
Collapse
|
39
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
40
|
Coban T, Robertson C, Schwikkard S, Singer R, LeGresley A. Synthesis and evaluation of bis(imino)anthracene derivatives as G-quadruplex ligands. RSC Med Chem 2021; 12:751-757. [PMID: 34124673 PMCID: PMC8152782 DOI: 10.1039/d0md00428f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The synthesis of a small number of bis(imino)anthracene derivatives is reported. They were evaluated via NMR for binding efficacy to the G-quadruplex-forming oligonucleotide sequence (TTGGGTT) and show activity against the HeLa cancer cell line. These novel ligands are compared to previously synthesised G-quadruplex ligands that target telomeres and oncogenes. The synthesis of a small number of bis(imino)anthracene derivatives is reported. They were evaluated via NMR for binding efficacy to the G-quadruplex-forming oligonucleotide sequence (TTGGGTT) and show activity against the HeLa cancer cell line.![]()
Collapse
Affiliation(s)
- Tomris Coban
- LSP&C, SEC Faculty, Kingston University Kingston-upon-Thames KT1 2EE UK
| | - Cameron Robertson
- LSP&C, SEC Faculty, Kingston University Kingston-upon-Thames KT1 2EE UK
| | - Sianne Schwikkard
- LSP&C, SEC Faculty, Kingston University Kingston-upon-Thames KT1 2EE UK
| | - Richard Singer
- LSP&C, SEC Faculty, Kingston University Kingston-upon-Thames KT1 2EE UK
| | - Adam LeGresley
- LSP&C, SEC Faculty, Kingston University Kingston-upon-Thames KT1 2EE UK
| |
Collapse
|
41
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Precise Distance Measurements in DNA G-Quadruplex Dimers and Sandwich Complexes by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:4939-4947. [PMID: 33063395 PMCID: PMC7984025 DOI: 10.1002/anie.202008618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/12/2020] [Indexed: 12/20/2022]
Abstract
DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.
Collapse
Affiliation(s)
- Lukas M. Stratmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Yury Kutin
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Müge Kasanmascheff
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
42
|
Long W, Zheng BX, Huang XH, She MT, Liu AL, Zhang K, Wong WL, Lu YJ. Molecular Recognition and Imaging of Human Telomeric G-Quadruplex DNA in Live Cells: A Systematic Advancement of Thiazole Orange Scaffold To Enhance Binding Specificity and Inhibition of Gene Expression. J Med Chem 2021; 64:2125-2138. [PMID: 33559473 DOI: 10.1021/acs.jmedchem.0c01656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of fluorescent ligands, which were systematically constructed from thiazole orange scaffold, was investigated for their interactions with G-quadruplex structures and antitumor activity. Among the ligands, compound 3 was identified to exhibit excellent specificity toward telomere G4-DNA over other nucleic acids. The affinity of 3-Htg24 was almost 5 times higher than that of double-stranded DNA and promoter G4-DNA. Interaction studies showed that 3 may bind to both G-tetrad and the lateral loop near the 5'-end. The intracellular colocalization with BG4 and competition studies with BRACO19 reveal that 3 may interact with G4-structures. Moreover, 3 reduces the telomere length and downregulates hTERC and hTERT mRNA expression in HeLa cells. The cytotoxicity of 3 against cancer cells (IC50 = 12.7-16.2 μM) was found to be generally higher than noncancer cells (IC50 = 52.3 μM). The findings may support that the ligand is telomere G4-DNA specific and may provide meaningful insights for anticancer drug design.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ao-Lu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514779, P. R. China
| |
Collapse
|
43
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
44
|
Savva L, Georgiades SN. Recent Developments in Small-Molecule Ligands of Medicinal Relevance for Harnessing the Anticancer Potential of G-Quadruplexes. Molecules 2021; 26:molecules26040841. [PMID: 33562720 PMCID: PMC7914483 DOI: 10.3390/molecules26040841] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes, a family of tetraplex helical nucleic acid topologies, have emerged in recent years as novel targets, with untapped potential for anticancer research. Their potential stems from the fact that G-quadruplexes occur in functionally-important regions of the human genome, such as the telomere tandem sequences, several proto-oncogene promoters, other regulatory regions and sequences of DNA (e.g., rDNA), as well as in mRNAs encoding for proteins with roles in tumorigenesis. Modulation of G-quadruplexes, via interaction with high-affinity ligands, leads to their stabilization, with numerous observed anticancer effects. Despite the fact that only a few lead compounds for G-quadruplex modulation have progressed to clinical trials so far, recent advancements in the field now create conditions that foster further development of drug candidates. This review highlights biological processes through which G-quadruplexes can exert their anticancer effects and describes, via selected case studies, progress of the last few years on the development of efficient and drug-like G-quadruplex-targeted ligands, intended to harness the anticancer potential offered by G-quadruplexes. The review finally provides a critical discussion of perceived challenges and limitations that have previously hampered the progression of G-quadruplex-targeted lead compounds to clinical trials, concluding with an optimistic future outlook.
Collapse
|
45
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
46
|
Jebaraj BMC, Stilgenbauer S. Telomere Dysfunction in Chronic Lymphocytic Leukemia. Front Oncol 2021; 10:612665. [PMID: 33520723 PMCID: PMC7844343 DOI: 10.3389/fonc.2020.612665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres are nucleprotein structures that cap the chromosomal ends, conferring genomic stability. Alterations in telomere maintenance and function are associated with tumorigenesis. In chronic lymphocytic leukemia (CLL), telomere length is an independent prognostic factor and short telomeres are associated with adverse outcome. Though telomere length associations have been suggested to be only a passive reflection of the cell's replication history, here, based on published findings, we suggest a more dynamic role of telomere dysfunction in shaping the disease course. Different members of the shelterin complex, which form the telomere structure have deregulated expression and POT1 is recurrently mutated in about 3.5% of CLL. In addition, cases with short telomeres have higher telomerase (TERT) expression and activity. TERT activation and shelterin deregulation thus may be pivotal in maintaining the minimal telomere length necessary to sustain survival and proliferation of CLL cells. On the other hand, activation of DNA damage response and repair signaling at dysfunctional telomeres coupled with checkpoint deregulation, leads to terminal fusions and genomic complexity. In summary, multiple components of the telomere system are affected and they play an important role in CLL pathogenesis, progression, and clonal evolution. However, processes leading to shelterin deregulation as well as cell intrinsic and microenvironmental factors underlying TERT activation are poorly understood. The present review comprehensively summarizes the complex interplay of telomere dysfunction in CLL and underline the mechanisms that are yet to be deciphered.
Collapse
Affiliation(s)
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
- Klinik für Innere Medizin I, Universitätsklinikum des Saarlandes, Homburg, Germany
| |
Collapse
|
47
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Chaudhuri R, Bhattacharya S, Dash J, Bhattacharya S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J Med Chem 2020; 64:42-70. [PMID: 33355454 DOI: 10.1021/acs.jmedchem.0c01145] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine-rich DNA sequences have the propensity to adopt four-stranded tetrahelical G-quadruplex (G4) structures that are overrepresented in gene promoters. The structural polymorphism and physicochemical properties of these non-Watson-Crick G4 structures make them important targets for drug development. The guanine-rich nuclease hypersensitivity element III1 present in the upstream of P1 promoter of c-MYC oncogene has the ability to form an intramolecular parallel G4 structure. The G4 structure that forms transiently in the c-MYC promoter functions as a transcriptional repressor element. The c-MYC oncogene is overexpressed in a wide variety of cancers and plays a key role in cancer progression. Till now, a large number of compounds that are capable of interacting and stabilizing thec-MYC G4 have been reported. In this review, we summarize various c-MYC G4 specific molecules and discuss their effects on c-MYC gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
49
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Präzise Abstandsmessungen in DNA‐G‐Quadruplex‐Dimeren und Sandwichkomplexen über gepulste dipolare EPR‐Spektroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lukas M. Stratmann
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Yury Kutin
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Müge Kasanmascheff
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
50
|
Harisha MB, Dhanalakshmi P, Suresh R, Kumar RR, Muthusubramanian S. Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate. Beilstein J Org Chem 2020; 16:2108-2118. [PMID: 32952727 PMCID: PMC7476590 DOI: 10.3762/bjoc.16.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
The reactivity of α-azidochalcones has been explored for the preparation of highly substituted oxazoles via a 2H-azirine intermediate. The azidochalcones, when treated with potassium thiocyanate in the presence of potassium persulfate, lead to 2,4,5-trisubstituted oxazoles in good yields. Incidentally, 2-aminothiazoles are the products when ferric nitrate is employed instead of persulfate in the above reaction.
Collapse
Affiliation(s)
- Mysore Bhyrappa Harisha
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India.,Eurofins-Advinus Limited, Phase II, Peenya Industrial Area, Bangalore-560 058, India
| | - Pandi Dhanalakshmi
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India.,Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore-560 012, India
| | - Rajendran Suresh
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Shanmugam Muthusubramanian
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| |
Collapse
|