1
|
Guo Z, Chiesa G, Yin J, Sanford A, Meier S, Khalil AS, Cheng JX. Structural Mapping of Protein Aggregates in Live Cells Modeling Huntington's Disease. Angew Chem Int Ed Engl 2024; 63:e202408163. [PMID: 38880765 DOI: 10.1002/anie.202408163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a β-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller β-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Adam Sanford
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Stefan Meier
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Rogers DM, Do H, Hirst JD. An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins. J Phys Chem B 2024; 128:7350-7361. [PMID: 39034688 DOI: 10.1021/acs.jpcb.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a β-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for β-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (α helix), jacalin (β strand), concanavalin A (β type I), elastase (β type II), papain (α + β), 310-helix bundle (310-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.
Collapse
Affiliation(s)
- David M Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering and Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
3
|
Chng CP, Dowd A, Mechler A, Hsia KJ. Molecular dynamics simulations reliably identify vibrational modes in far-IR spectra of phospholipids. Phys Chem Chem Phys 2024; 26:18715-18726. [PMID: 38932689 DOI: 10.1039/d4cp00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The properties of self-assembled phospholipid membranes are of essential importance in biochemistry and physical chemistry, providing a platform for many cellular life functions. Far-infrared (far-IR) vibrational spectroscopy, on the other hand, is a highly information-rich method to characterize intermolecular interactions and collective behaviour of lipids that can help explain, e.g., chain packing, thermodynamic phase behaviour, and sequestration. However, reliable interpretation of the far-IR spectra is still lacking. Here we present a molecular dynamics (MD) based approach to simulate vibrational modes of individual lipids and in an ensemble. The results are a good match to synchrotron far-IR measurements and enable identification of the molecular motions corresponding to each vibrational mode, thus allowing the correct interpretation of membrane spectra with high accuracy and resolving the longstanding ambiguities in the literature in this regard. Our results demonstrate the feasibility of using MD simulations for interpreting far-IR spectra broadly, opening new avenues for practical use of this powerful method.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| | - Annette Dowd
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Republic of Singapore
| |
Collapse
|
4
|
Liu B, Fang R, Li W, Wu X, Liu T, Lin M, Sun J, Chen X. Fast Catalyst-Free Synthesis of Stereoselective Polypeptides via Hierarchical Chiral Assembly. J Am Chem Soc 2024. [PMID: 38858162 DOI: 10.1021/jacs.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Understanding how life's essential homochiral biopolymers arose from racemic precursors is a challenging quest. Herein, we present a groundbreaking approach involving hierarchical chiral assembly-driven stereoselective ring-opening polymerization of ε-benzyloxycarbonyl-l/d-lysine N-carboxyanhydrides assisted by ultrasonication in an aqueous medium. This method enabled a narrow dispersity within a few minutes and the achievement of high molecular weight for polypeptides, employing a living polymerization mechanism. The polymerization of l and d enantiomers yielded predominantly right- and left-handed superhelical assemblies in a one-pot preparation, respectively. Notably, stereoselective polypeptide segments were efficiently prepared through hierarchical assembly-driven polymerization of racemic monomers in the absence of a catalyst. This research offers an innovative strategy for the convenient preparations of stereoenriched polypeptides and, more importantly, sheds light on the plausible emergence of homochiral peptides in the origin of life.
Collapse
Affiliation(s)
- Borui Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Rui Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Wenlong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xiaoyu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Tianli Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| |
Collapse
|
5
|
Daou D, Zarate Y, Maaloum M, Collin D, Fleith G, Constantin D, Moulin E, Giuseppone N. Out-of-Equilibrium Mechanical Disruption of β-Amyloid-Like Fibers using Light-Driven Molecular Motors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311293. [PMID: 38236822 DOI: 10.1002/adma.202311293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Artificial molecular motors have the potential to generate mechanical work on their environment by producing autonomous unidirectional motions when supplied with a source of energy. However, the harnessing of this mechanical work to subsequently activate various endoenergetic processes that can be useful in materials science remains elusive. Here, it is shown that by integrating a light-driven rotary motor through hydrogen bonds in a β-amyloid-like structure forming supramolecular hydrogels, the mechanical work generated during the constant rotation of the molecular machine under UV irradiation is sufficient to disrupt the β-amyloid fibers and to trigger a gel-to-sol transition at macroscopic scale. This melting of the gel under UV irradiation occurs 25 °C below the temperature needed to melt it by solely using thermal activation. In the dark, a reversible sol-gel transition is observed as the system fully recovers its original microstructure, thus illustrating the possible access to new kinds of motorized materials that can be controlled by advanced out-of-equilibrium thermodynamics.
Collapse
Affiliation(s)
- Dania Daou
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Yohan Zarate
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Mounir Maaloum
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | | | | | - Doru Constantin
- CNRS, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Emilie Moulin
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Nicolas Giuseppone
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
6
|
Ricca JG, Mayali X, Qu J, Weber PK, Poirier G, Dufresne CP, Louda JW, Terentis AC. Endogenous Production and Vibrational Analysis of Heavy-Isotope-Labeled Peptides from Cyanobacteria. Chembiochem 2024; 25:e202400019. [PMID: 38311594 DOI: 10.1002/cbic.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Stable isotope labeling is an extremely useful tool for characterizing the structure, tracing the metabolism, and imaging the distribution of natural products in living organisms using mass-sensitive measurement techniques. In this study, a cyanobacterium was cultured in 15 N/13 C-enriched media to endogenously produce labeled, bioactive oligopeptides. The extent of heavy isotope incorporation in these peptides was determined with LC-MS, while the overall extent of heavy isotope incorporation in whole cells was studied with nanoSIMS and AFM-IR. Up to 98 % heavy isotope incorporation was observed in labeled cells. Three of the most abundant peptides, microcystin-LR (MCLR), cyanopeptolin-A (CYPA), and aerucyclamide-A (ACAA), were isolated and further studied with Raman and FTIR spectroscopies and DFT calculations. This revealed several IR and Raman active vibrations associated with functional groups not common in ribosomal peptides, like diene, ester, thiazole, thiazoline, and oxazoline groups, which could be suitable for future vibrational imaging studies. More broadly, this study outlines a simple and relatively inexpensive method for producing heavy-labeled natural products. Manipulating the bacterial culture conditions by the addition of specific types and amounts of heavy-labeled nutrients provides an efficient means of producing heavy-labeled natural products for mass-sensitive imaging studies.
Collapse
Affiliation(s)
- John G Ricca
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, 33431, Boca Raton, FL, USA
- Center for Environmental Studies, Florida Atlantic University, 3200 College Ave, 33314, Davie, FL, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, 94550, Livermore, CA, USA
| | - Jing Qu
- Advanced Materials Characterization Lab, University of Delaware, 19716, Newark, DE, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, 94550, Livermore, CA, USA
| | - Gerald Poirier
- Advanced Materials Characterization Lab, University of Delaware, 19716, Newark, DE, USA
| | | | - J William Louda
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, 33431, Boca Raton, FL, USA
| | - Andrew C Terentis
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, 33431, Boca Raton, FL, USA
| |
Collapse
|
7
|
Yang L, Wang Y, Zhang W, Ma G. New Insight into the Structural Nature of Diphenylalanine Nanotube through Comparison with Amyloid Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1046-1057. [PMID: 38153333 DOI: 10.1021/acs.langmuir.3c03270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Diphenylalanine (FF) nanotubes are a star material in the field of peptide self-assembly and have demonstrated numerous intriguing applications. Due to its resemblance to amyloid assembly, the FF nanotube is widely regarded as a simplified mimic of amyloids. Yet, whether FF nanotube truly possesses amyloid structure remains an open question. To better understand the structural nature of FF nanotube, we herein performed a comparative structural investigation between FF nanotube and typical amyloid systems by Aβ1-40, Aβ1-42, Aβ16-22, Aβ13-23, α-synuclein, and lysozyme using Fourier transform infrared spectroscopy. Through this comparative investigation, we obtained clear evidence to support that the FF nanotube does not possess a β-sheet structure, a key structural characteristic of amyloid assembly, thus revealing the non-amyloid structural nature of the FF nanotube. At last, in light of our new finding, we further discussed the unique self-assembly behaviors of FF during nanotube formation and the implications of our work for FF nanotube related applications.
Collapse
Affiliation(s)
- Lujuan Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yao Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Wenkai Zhang
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
8
|
Baronio CM, Barth A. Refining protein amide I spectrum simulations with simple yet effective electrostatic models for local wavenumbers and dipole derivative magnitudes. Phys Chem Chem Phys 2024; 26:1166-1181. [PMID: 38099625 DOI: 10.1039/d3cp02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Analysis of the amide I band of proteins is probably the most wide-spread application of bioanalytical infrared spectroscopy. Although highly desirable for a more detailed structural interpretation, a quantitative description of this absorption band is still difficult. This work optimized several electrostatic models with the aim to reproduce the effect of the protein environment on the intrinsic wavenumber of a local amide I oscillator. We considered the main secondary structures - α-helices, parallel and antiparallel β-sheets - with a maximum of 21 amide groups. The models were based on the electric potential and/or the electric field component along the CO bond at up to four atoms in an amide group. They were bench-marked by comparison to Hessian matrices reconstructed from density functional theory calculations at the BPW91, 6-31G** level. The performance of the electrostatic models depended on the charge set used to calculate the electric field and potential. Gromos and DSSP charge sets, used in common force fields, were not optimal for the better performing models. A good compromise between performance and the stability of model parameters was achieved by a model that considered the electric field at the positions of the oxygen, nitrogen, and hydrogen atoms of the considered amide group. The model describes also some aspects of the local conformation effect and performs similar on its own as in combination with an explicit implementation of the local conformation effect. It is better than a combination of a local hydrogen bonding model with the local conformation effect. Even though the short-range hydrogen bonding model performs worse, it captures important aspects of the local wavenumber sensitivity to the molecular surroundings. We improved also the description of the coupling between local amide I oscillators by developing an electrostatic model for the dependency of the dipole derivative magnitude on the protein environment.
Collapse
Affiliation(s)
- Cesare M Baronio
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
Brüggemann J, Chekmeneva M, Wolter M, Jacob CR. Structural Dependence of Extended Amide III Vibrations in Two-Dimensional Infrared Spectra. J Phys Chem Lett 2023; 14:9257-9264. [PMID: 37812580 PMCID: PMC10591501 DOI: 10.1021/acs.jpclett.3c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Two-dimensional infrared (2D-IR) spectroscopy is a powerful experimental method for probing the structure and dynamics of proteins in aqueous solution. So far, most experimental studies have focused on the amide I vibrations, for which empirical vibrational exciton models provide a means of interpreting such experiments. However, such models are largely lacking for other regions of the vibrational spectrum. To close this gap, we employ an efficient quantum-chemical methodology for the calculation of 2D-IR spectra, which is based on anharmonic theoretical vibrational spectroscopy with localized modes. We apply this approach to explore the potential of 2D-IR spectroscopy in the extended amide III region. Using calculations for a dipeptide model as well as alanine polypeptides, we show that distinct 2D-IR cross-peaks in the extended amide III region can potentially be used to distinguish α-helix and β-strand structures. We propose that the extended amide III region could be a promising target for future 2D-IR experiments.
Collapse
Affiliation(s)
- Julia Brüggemann
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Maria Chekmeneva
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Unnikrishnan AC, Balamurugan K, Shanmugam G. Structural Insights into the Amyloid Fibril Polymorphism Using an Isotope-Edited Vibrational Circular Dichroism Study at the Amino Acid Residue Level. J Phys Chem B 2023; 127:7674-7684. [PMID: 37667494 DOI: 10.1021/acs.jpcb.3c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Polymorphism is common in both in vitro and in vivo amyloid fibrils formed by the same peptide/protein. However, the differences in their self-assembled structures at the amino acid level remain poorly understood. In this study, we utilized isotope-edited vibrational circular dichroism (VCD) on a well-known amyloidogenic peptide fragment (N22FGAIL27) of human islet amyloid polypeptide (IAPf) to investigate the structural polymorphism. Two individual isotope-labeled IAPf peptides were used, with a 13C label on the carbonyl group of phenylalanine (IAPf-F) and glycine (IAPf-G). We compared the amyloid-like nanofibril of IAPf induced by solvent casting (fibril B) with our previous report on the same IAPf peptide fibril but with a different fibril morphology (fibril A) formed in an aqueous buffer solution. Fibril B consisted of entangled, laterally fused amyloid-like nanofibrils with a relatively shorter diameter (15-50 nm) and longer length (several microns), while fibril A displayed nanofibrils with a higher diameter (30-60 nm) and shorter length (500 nm-2 μm). The isotope-edited VCD analysis indicated that fibrils B consisted of anti-parallel β-sheet arrangements with glycine residues in the registry and phenylalanine residues out of the registry, which was significantly different from fibrils A, where a mixture of parallel β-sheet and turn structure with the registry at phenylalanine and glycine residues was observed. The VCD analysis, therefore, suggests that polymorphism in amyloid-like fibrils can be attributed to the difference in the packing/arrangement of the individual β-strands in the β-sheet and the difference in the amino acid registry. Our findings provide insights into the structural aspects of fibril polymorphism related to various amyloid diseases and may aid in designing amyloid fibril inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanagasabai Balamurugan
- Centre for High Computing, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Man VH, He X, Nguyen PH, Sagui C, Roland C, Xie XQ, Wang J. Unpolarized laser method for infrared spectrum calculation of amide I CO bonds in proteins using molecular dynamics simulation. Comput Biol Med 2023; 159:106902. [PMID: 37086661 PMCID: PMC10186340 DOI: 10.1016/j.compbiomed.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
The investigation of the strong infrared (IR)-active amide I modes of peptides and proteins has received considerable attention because a wealth of detailed information on hydrogen bonding, dipole-dipole interactions, and the conformations of the peptide backbone can be derived from the amide I bands. The interpretation of experimental spectra typically requires substantial theoretical support, such as direct ab-initio molecular dynamics simulation or mixed quantum-classical description. However, considering the difficulties associated with these theoretical methods and their applications are limited in small peptides, it is highly desirable to develop a simple yet efficient approach for simulating the amide I modes of any large proteins in solution. In this work, we proposed a comprehensive computational method that extends the well-established molecular dynamics (MD) simulation method to include an unpolarized IR laser for exciting the CO bonds of proteins. We showed the amide I frequency corresponding to the frequency of the laser pulse which resonated with the CO bond vibration. At this frequency, the protein energy and the CO bond length fluctuation were maximized. Overall, the amide I bands of various single proteins and amyloids agreed well with experimental data. The method has been implemented into the AMBER simulation package, making it widely available to the scientific community. Additionally, the application of the method to simulate the transient amide I bands of amyloid fibrils during the IR laser-induced disassembly process was discussed in details.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Phuong H Nguyen
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005, Paris, France
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC, 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC, 27695-8202, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
12
|
Pfukwa NBC, Rautenbach M, Hunt NT, Olaoye OO, Kumar V, Parker AW, Minnes L, Neethling PH. Temperature-Induced Effects on the Structure of Gramicidin S. J Phys Chem B 2023; 127:3774-3786. [PMID: 37125750 DOI: 10.1021/acs.jpcb.2c06115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on the structure of Gramicidin S (GS) in a model membrane mimetic environment represented by the amphipathic solvent 1-octanol using one-dimensional (1D) and two-dimensional (2D) IR spectroscopy. To explore potential structural changes of GS, we also performed a series of spectroscopic measurements at differing temperatures. By analyzing the amide I band and using 2D-IR spectral changes, results could be associated to the disruption of aggregates/oligomers, as well as structural and conformational changes happening in the concentrated solution of GS. The ability of 2D-IR to enable differentiation in melting transitions of oligomerized GS structures is attributed to the sensitivity of the technique to vibrational coupling. Two melting transition temperatures were identified; at Tm1 in the range 41-47 °C where the GS aggregates/oligomers disassemble and at Tm2 = 57 ± 2 °C where there is significant change involving GS β-sheet-type hydrogen bonds, whereby it is proposed that there is loss of interpeptide hydrogen bonds and we are left with mainly intrapeptide β-sheet and β-turn hydrogen bonds of the smaller oligomers. Further analysis with quantum mechanical/molecular mechanics (QM/MM) simulations and second derivative results highlighted the participation of active GS side chains. Ultimately, this work contributes toward understanding the GS structure and the formulation of GS analogues with improved bioactivity.
Collapse
Affiliation(s)
- Ngaatendwe B C Pfukwa
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Olufemi O Olaoye
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Vikas Kumar
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Anthony W Parker
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Research Complex at Harwell, Rutherford Appleton Laboratory, STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Lucy Minnes
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | - Pieter H Neethling
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
13
|
Piao Z, Park JK, Jeong B. Cytogel: A Cell-Crosslinked Thermogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17688-17695. [PMID: 36989397 DOI: 10.1021/acsami.3c01457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hydrogels are a three-dimensional network material with a high equilibrium water content where chemical, physical, or biomolecular crosslinking systems have been used for the network formation. In this study, we report a thermosensitive cytogel of lactobionic acid/butanoic acid-conjugated poly(ε-l-lysine) (PKLC4). The thermogelation of the aqueous PKLC4 solution (3.5 wt %) was induced by partial dehydration accompanying a random coil-to-β-sheet transition of the polymer. During the sol-to-gel transition, the modulus increased from <0.05 Pa at <10 °C to 1300-1360 Pa at 37 °C. When HepG2 cells were incorporated into the PKLC4 solution, the gel modulus at 37 °C increased to 2300-2670 Pa. Moreover, the gel modulus was significantly affected by the cell type, population of the HepG2 cells, and live/dead states of the HepG2 cells. The cells proliferate better in the biointeractive PKLC4 thermogel than in the bioinert PEG-PA thermogel. To conclude, by combining thermosensitivity and specific binding of the receptor to the substrate, the hydrogel attained a high modulus without delay in gel time. This study provides new insights into hydrogel preparation in that substrate-receptor binding can be utilized as a crosslinking system to control the hydrogel modulus as well as a design principle for three-dimensional cache that improves cytocompatibility for cells.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
14
|
Kriebisch BAK, Kriebisch CME, Bergmann AM, Wanzke C, Tena‐Solsona M, Boekhoven J. Tuning the Kinetic Trapping in Chemically Fueled Self‐Assembly**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brigitte A. K. Kriebisch
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Christine M. E. Kriebisch
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Alexander M. Bergmann
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Caren Wanzke
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Marta Tena‐Solsona
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Job Boekhoven
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
15
|
Ghosh T, Wang S, Kashyap D, Jadhav RG, Rit T, Jha HC, Cousins BG, Das AK. Self-assembled benzoselenadiazole-capped tripeptide hydrogels with inherent in vitro anti-cancer and anti-inflammatory activity. Chem Commun (Camb) 2022; 58:7534-7537. [PMID: 35703336 DOI: 10.1039/d2cc01160c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled benzoselenadiazole (BSe)-capped tripeptide based nanofibrillar hydrogels have been developed with inherent anticancer and anti-inflammatory activity.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Shu Wang
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Rohit G Jadhav
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Brian G Cousins
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
16
|
Arndt T, Greco G, Schmuck B, Bunz J, Shilkova O, Francis J, Pugno NM, Jaudzems K, Barth A, Johansson J, Rising A. Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200986. [PMID: 36505976 PMCID: PMC9720699 DOI: 10.1002/adfm.202200986] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Indexed: 06/17/2023]
Abstract
Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in β-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high β-strand propensity and can mediate tight inter-β-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger β-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & MechanicsDepartment of Civil, Environmental and Mechanical EngineeringUniversity of TrentoVia Mesiano 77Trento38123Italy
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jessica Bunz
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Present address:
Spiber Technologies ABAlbaNova University CenterSE‐10691StockholmSweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & MechanicsDepartment of Civil, Environmental and Mechanical EngineeringUniversity of TrentoVia Mesiano 77Trento38123Italy
- School of Engineering and Materials SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Kristaps Jaudzems
- Department of Physical Organic ChemistryLatvian Institute of Organic SynthesisRigaLV‐1006Latvia
| | - Andreas Barth
- Department of Biochemistry and BiophysicsThe Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholm10691Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
17
|
Li H, Yu Y, Ruan M, Jiao F, Chen H, Gao J, Weng Y, Bao Y. The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin. Biophys J 2022; 121:2233-2250. [PMID: 35619565 DOI: 10.1016/j.bpj.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat-shock protein (sHsps), efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry (LC-MS) was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of α-crystallin oligomer, and Fourier transform infrared (FTIR) spectroscopy and temperature-jump (T-jump) nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form αγ-complex, then follows the reassociation of αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at an expense of a loss of a short C-terminal peptide in γD-crystallin.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Meixia Ruan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Gao
- College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
18
|
Edun DN, Cracchiolo OM, Serrano AL. A theoretical analysis of coherent cross-peaks in polarization selective 2DIR for detection of cross-α fibrils. J Chem Phys 2022; 156:035102. [DOI: 10.1063/5.0070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dean N. Edun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Olivia M. Cracchiolo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Arnaldo L. Serrano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
19
|
Aye SSS, Zhang ZH, Yu X, Ma WD, Yang K, Yuan B, Liu X, Li JL. Antimicrobial and Bioactive Silk Peptide Hybrid Hydrogel with a Heterogeneous Double Network Formed by Orthogonal Assembly. ACS Biomater Sci Eng 2021; 8:89-99. [PMID: 34859992 DOI: 10.1021/acsbiomaterials.1c01228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydrogels mimic the natural extracellular matrix in terms of their nanofibrous structure and large water content. However, the lack of a combination of properties including sufficient heterogeneity in the gel structure, intrinsic antimicrobial activity, and bioactivity limits the efficiency of hydrogels for tissue engineering applications. In this work, a hydrogel with a combination of these properties was fabricated by hybridizing silk fibroin with a low-molecular-weight peptide gelator. It was observed that silk fibroin and the peptide gelator assembled orthogonally in sequence. While the morphology of silk fibroin nanofibrils was not affected by the peptide gelator, silk fibroin promoted the formation of wider nanoribbons of the peptide gelator by modulating its nucleation and growth. Orthogonal assembly maintained the antimicrobial activity of the peptide gelator and the excellent biocompatibility of silk fibroin in the hybrid gel. The hybrid gel also demonstrated improved interactions with cells, an indicator of a higher bioactivity, possibly due to the heterogeneous double network structure.
Collapse
Affiliation(s)
- San Seint Seint Aye
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Zhi-Hong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xin Yu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Wen-Dong Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xin Liu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Jing-Liang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| |
Collapse
|
20
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self‐Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
21
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self-Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021; 60:18838-18844. [PMID: 34185371 PMCID: PMC8456905 DOI: 10.1002/anie.202107034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Light-induced molecular piping of cyclic peptide nanotubes to form bent tubular structures is described. The process is based on the [4+4] photocycloaddition of anthracene moieties, whose structural changes derived from the interdigitated flat disposition of precursors to the corresponding cycloadduct moieties, induced the geometrical modifications in nanotubes packing that provokes their curvature. For this purpose, we designed a new class of cyclic peptide nanotubes formed by β- and α-amino acids. The presence of the former predisposes the peptide to stack in a parallel fashion with the β-residues aligned along the nanotube and the homogeneous distribution of anthracene pendants.
Collapse
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
22
|
Murphy R, Kordbacheh S, Skoulas D, Ng S, Suthiwanich K, Kasko AM, Cryan SA, Fitzgerald-Hughes D, Khademhosseini A, Sheikhi A, Heise A. Three-dimensionally printable shear-thinning triblock copolypeptide hydrogels with antimicrobial potency. Biomater Sci 2021; 9:5144-5149. [PMID: 34236349 DOI: 10.1039/d1bm00275a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through rational design, block sequence controlled triblock copolypeptides comprising cysteine and tyrosine as well as a lysine or glutamic acid central block are devised. In these copolypeptides, each block contributes a specific property to the hydrogels to render them extrusion printable and antimicrobial. Three-dimensional (3D) printing of complex hydrogel structures with high shape retention is demonstrated. Moreover, composition dependent potent antimicrobial activity in contact-killing assays is elucidated.
Collapse
Affiliation(s)
- Robert Murphy
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
El Khoury Y, Le Breton G, Cunha AV, Jansen TLC, van Wilderen LJGW, Bredenbeck J. Lessons from combined experimental and theoretical examination of the FTIR and 2D-IR spectroelectrochemistry of the amide I region of cytochrome c. J Chem Phys 2021; 154:124201. [PMID: 33810651 DOI: 10.1063/5.0039969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amide I difference spectroscopy is widely used to investigate protein function and structure changes. In this article, we show that the common approach of assigning features in amide I difference signals to distinct secondary structure elements in many cases may not be justified. Evidence comes from Fourier transform infrared (FTIR) and 2D-IR spectroelectrochemistry of the protein cytochrome c in the amide I range, in combination with computational spectroscopy based on molecular dynamics (MD) simulations. This combination reveals that each secondary structure unit, such as an alpha-helix or a beta-sheet, exhibits broad overlapping contributions, usually spanning a large part of the amide I region, which in the case of difference absorption experiments (such as in FTIR spectroelectrochemistry) may lead to intensity-compensating and even sign-changing contributions. We use cytochrome c as the test case, as this small electron-transferring redox-active protein contains different kinds of secondary structure units. Upon switching its redox-state, the protein exhibits a different charge distribution while largely retaining its structural scaffold. Our theoretical analysis suggests that the change in charge distribution contributes to the spectral changes and that structural changes are small. However, in order to confidently interpret FTIR amide I difference signals in cytochrome c and proteins in general, MD simulations in combination with additional experimental approaches such as isotope labeling, the insertion of infrared labels to selectively probe local structural elements will be required. In case these data are not available, a critical assessment of previous interpretations of protein amide I 1D- and 2D-IR difference spectroscopy data is warranted.
Collapse
Affiliation(s)
- Youssef El Khoury
- Institut für Biophysik, Johann-Wolfgang-Goethe-Universität, Max-von-Laue-Strasse. 1, 60438 Frankfurt am Main, Germany
| | - Guillaume Le Breton
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ana V Cunha
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luuk J G W van Wilderen
- Institut für Biophysik, Johann-Wolfgang-Goethe-Universität, Max-von-Laue-Strasse. 1, 60438 Frankfurt am Main, Germany
| | - Jens Bredenbeck
- Institut für Biophysik, Johann-Wolfgang-Goethe-Universität, Max-von-Laue-Strasse. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
González-Freire E, Novelli F, Pérez-Estévez A, Seoane R, Amorín M, Granja JR. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes. Chemistry 2021; 27:3029-3038. [PMID: 32986280 DOI: 10.1002/chem.202004127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/25/2023]
Abstract
A new class of amphipathic cyclic peptides, which assemble in bacteria membranes to form polymeric supramolecular nanotubes giving them antimicrobial properties, is described. The method is based on the use of two orthogonal clickable transformations to incorporate different hydrophobic or hydrophilic moieties in a simple, regioselective, and divergent manner. The resulting cationic amphipathic cyclic peptides described in this article exhibit strong antimicrobial properties with a broad therapeutic window. Our studies suggest that the active form is the nanotube resulted from the parallel stacking of the cyclic peptide precursors. Several techniques, CD, FTIR, fluorescence, and STEM, among others, confirm the nanotube formation.
Collapse
Affiliation(s)
- Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Pérez-Estévez
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rafael Seoane
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
25
|
Vosough F, Barth A. Characterization of Homogeneous and Heterogeneous Amyloid-β42 Oligomer Preparations with Biochemical Methods and Infrared Spectroscopy Reveals a Correlation between Infrared Spectrum and Oligomer Size. ACS Chem Neurosci 2021; 12:473-488. [PMID: 33455165 PMCID: PMC8023574 DOI: 10.1021/acschemneuro.0c00642] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Soluble oligomers of the amyloid-β(1-42)
(Aβ42) peptide,
widely considered to be among the relevant neurotoxic species involved
in Alzheimer’s disease, were characterized with a combination
of biochemical and biophysical methods. Homogeneous and stable Aβ42
oligomers were prepared by treating monomeric solutions of the peptide
with detergents. The prepared oligomeric solutions were analyzed with
blue native and sodium dodecyl sulfate polyacrylamide gel electrophoresis,
as well as with infrared (IR) spectroscopy. The IR spectra indicated
a well-defined β-sheet structure of the prepared oligomers.
We also found a relationship between the size/molecular weight of
the Aβ42 oligomers and their IR spectra: The position of the
main amide I′ band of the peptide backbone correlated with
oligomer size, with larger oligomers being associated with lower wavenumbers.
This relationship explained the time-dependent band shift observed
in time-resolved IR studies of Aβ42 aggregation in the absence
of detergents, during which the oligomer size increased. In addition,
the bandwidth of the main IR band in the amide I′ region was
found to become narrower with time in our time-resolved aggregation
experiments, indicating a more homogeneous absorption of the β-sheets
of the oligomers after several hours of aggregation. This is predominantly
due to the consumption of smaller oligomers in the aggregation process.
Collapse
Affiliation(s)
- Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
26
|
Kriebisch BAK, Jussupow A, Bergmann AM, Kohler F, Dietz H, Kaila VRI, Boekhoven J. Reciprocal Coupling in Chemically Fueled Assembly: A Reaction Cycle Regulates Self-Assembly and Vice Versa. J Am Chem Soc 2020; 142:20837-20844. [PMID: 33237773 DOI: 10.1021/jacs.0c10486] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In biology, self-assembly of proteins and energy-consuming reaction cycles are intricately coupled. For example, tubulin is activated and deactivated for assembly by a guanosine triphosphate (GTP)-driven reaction cycle, and the emerging microtubules catalyze this reaction cycle by changing the microenvironment of the activated tubulin. Recently, synthetic analogs of chemically fueled assemblies have emerged, but examples in which assembly and reaction cycles are reciprocally coupled remain rare. In this work, we report a peptide that can be activated and deactivated for self-assembly. The emerging assemblies change the microenvironment of their building blocks, which consequently accelerate the rates of building block deactivation and reactivation. We quantitatively understand the mechanisms at play, and we are thus able to tune the catalysis by molecular design of the peptide precursor.
Collapse
Affiliation(s)
- Brigitte A K Kriebisch
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Alexander Jussupow
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Fabian Kohler
- Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Hendrik Dietz
- Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Ville R I Kaila
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.,Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Garching, Germany
| |
Collapse
|
27
|
Liu S, Li H, Zhang J, Tian X, Li X. A biocompatible supramolecular hydrogel with multivalent galactose ligands inhibiting Pseudomonas aeruginosa virulence and growth. RSC Adv 2020; 10:33642-33650. [PMID: 35519035 PMCID: PMC9056750 DOI: 10.1039/d0ra06718k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 01/14/2023] Open
Abstract
In recent years, peptide self-assembly proved to be an efficient strategy to create complex structures or functional materials with nanoscale precision. In this work, we designed and synthesized a novel glycopeptide molecule with a galactose moiety through peptide galactosylation. Then relying on peptide self-assembling strategies, we created a supramolecular hydrogel with multivalent galactose ligands on the surface of self-assembled nanofibers for molecular recognition and interactions. Because of multivalent galactose-LecA interactions, the self-assemblies of glycopeptide could target P. aeruginosa specifically, and acted as anti-virulence and antibacterial agents to inhibit biofilm formation and bacterial growth of P. aeruginosa. Moreover, in association with polymyxin B, a common antibiotic, the glycopeptide hydrogel exhibited a synergistic growth inhibition effect on biofilm colonization of P. aeruginosa.
Collapse
Affiliation(s)
- Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Hang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University Suzhou 215123 China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
28
|
Ghosh M, Bera S, Schiffmann S, Shimon LJW, Adler-Abramovich L. Collagen-Inspired Helical Peptide Coassembly Forms a Rigid Hydrogel with Twisted Polyproline II Architecture. ACS NANO 2020; 14:9990-10000. [PMID: 32806033 PMCID: PMC7450664 DOI: 10.1021/acsnano.0c03085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Collagen, the most abundant protein in mammals, possesses notable cohesion and elasticity properties and efficiently induces tissue regeneration. The Gly-Pro-Hyp canonical tripeptide repeating unit of the collagen superhelix has been well-characterized. However, to date, the shortest tripeptide repeat demonstrated to attain a helical conformation contained 3-10 peptide repeats. Here, taking a minimalistic approach, we studied a single repeating unit of collagen in its protected form, Fmoc-Gly-Pro-Hyp. The peptide formed single crystals displaying left-handed polyproline II superhelical packing, as in the native collagen single strand. The crystalline assemblies also display head-to-tail H-bond interactions and an "aromatic zipper" arrangement at the molecular interface. The coassembly of this tripeptide, with Fmoc-Phe-Phe, a well-studied dipeptide hydrogelator, produced twisted helical fibrils with a polyproline II conformation and improved hydrogel mechanical rigidity. The design of these peptides illustrates the possibility to assemble superhelical nanostructures from minimal collagen-inspired peptides with their potential use as functional motifs to introduce a polyproline II conformation into hybrid hydrogel assemblies.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Santu Bera
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah Schiffmann
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lihi Adler-Abramovich
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
From Mouse to Human: Comparative Analysis between Grey and White Matter by Synchrotron-Fourier Transformed Infrared Microspectroscopy. Biomolecules 2020; 10:biom10081099. [PMID: 32722088 PMCID: PMC7464184 DOI: 10.3390/biom10081099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fourier Transform Infrared microspectroscopy (μFTIR) is a very useful method to analyze the biochemical properties of biological samples in situ. Many diseases affecting the central nervous system (CNS) have been studied using this method, to elucidate alterations in lipid oxidation or protein aggregation, among others. In this work, we describe in detail the characteristics between grey matter (GM) and white matter (WM) areas of the human brain by μFTIR, and we compare them with the mouse brain (strain C57BL/6), the most used animal model in neurological disorders. Our results show a clear different infrared profile between brain areas in the lipid region of both species. After applying a second derivative in the data, we established a 1.5 threshold value for the lipid/protein ratio to discriminate between GM and WM areas in non-pathological conditions. Furthermore, we demonstrated intrinsic differences of lipids and proteins by cerebral area. Lipids from GM present higher C=CH, C=O and CH3 functional groups compared to WM in humans and mice. Regarding proteins, GM present lower Amide II amounts and higher intramolecular β-sheet structure amounts with respect to WM in both species. However, the presence of intermolecular β-sheet structures, which is related to β-aggregation, was only observed in the GM of some human individuals. The present study defines the relevant biochemical properties of non-pathological human and mouse brains by μFTIR as a benchmark for future studies involving CNS pathological samples.
Collapse
|
30
|
Greco G, Francis J, Arndt T, Schmuck B, G. Bäcklund F, Barth A, Johansson J, M. Pugno N, Rising A. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation. Molecules 2020; 25:E3248. [PMID: 32708777 PMCID: PMC7397010 DOI: 10.3390/molecules25143248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
Efficient production of artificial spider silk fibers with properties that match its natural counterpart has still not been achieved. Recently, a biomimetic process for spinning recombinant spider silk proteins (spidroins) was presented, in which important molecular mechanisms involved in native spider silk spinning were recapitulated. However, drawbacks of these fibers included inferior mechanical properties and problems with low resistance to aqueous environments. In this work, we show that ≥5 h incubation of the fibers, in a collection bath of 500 mM NaAc and 200 mM NaCl, at pH 5 results in fibers that do not dissolve in water or phosphate buffered saline, which implies that the fibers can be used for applications that involve wet/humid conditions. Furthermore, incubation in the collection bath improved the strain at break and was associated with increased β-sheet content, but did not affect the fiber morphology. In summary, we present a simple way to improve artificial spider silk fiber strain at break and resistance to aqueous solvents.
Collapse
Affiliation(s)
- Gabriele Greco
- Laboratory of Bio-Inspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy;
| | - Juanita Francis
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo, 14186 Huddinge, Sweden; (J.F.); (T.A.); (B.S.); (F.G.B.); (J.J.)
| | - Tina Arndt
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo, 14186 Huddinge, Sweden; (J.F.); (T.A.); (B.S.); (F.G.B.); (J.J.)
| | - Benjamin Schmuck
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo, 14186 Huddinge, Sweden; (J.F.); (T.A.); (B.S.); (F.G.B.); (J.J.)
| | - Fredrik G. Bäcklund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo, 14186 Huddinge, Sweden; (J.F.); (T.A.); (B.S.); (F.G.B.); (J.J.)
| | - Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden;
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo, 14186 Huddinge, Sweden; (J.F.); (T.A.); (B.S.); (F.G.B.); (J.J.)
| | - Nicola M. Pugno
- Laboratory of Bio-Inspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy;
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Anna Rising
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo, 14186 Huddinge, Sweden; (J.F.); (T.A.); (B.S.); (F.G.B.); (J.J.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
31
|
On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers (Basel) 2020; 12:polym12061294. [PMID: 32516911 PMCID: PMC7361871 DOI: 10.3390/polym12061294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin from Bombyx mori caterpillar is an outstanding biocompatible polymer for the production of biomaterials. Its impressive combination of strength, flexibility, and degradability are related to the protein’s secondary structure, which may be altered during the manufacture of the biomaterial. The present study looks at the silk fibroin secondary structure during nanoparticle production using ionic liquids and high-power ultrasound using novel infrared spectroscopic approaches. The infrared spectrum of silk fibroin fibers shows that they are composed of 58% β-sheet, 9% turns, and 33% irregular and/or turn-like structures. When fibroin was dissolved in ionic liquids, its amide I band resembled that of soluble silk and no β-sheet absorption was detected. Silk fibroin nanoparticles regenerated from the ionic liquid solution exhibited an amide I band that resembled that of the silk fibers but had a reduced β-sheet content and a corresponding higher content of turns, suggesting an incomplete turn-to-sheet transition during the regeneration process. Both the analysis of the experimental infrared spectrum and spectrum calculations suggest a particular type of β-sheet structure that was involved in this deficiency, whereas the two other types of β-sheet structure found in silk fibroin fibers were readily formed.
Collapse
|
32
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
33
|
An alternative plant-like cyanobacterial ferredoxin with unprecedented structural and functional properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148084. [DOI: 10.1016/j.bbabio.2019.148084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
|
34
|
Domin H, Piergies N, Pięta E, Wyska E, Pochwat B, Wlaź P, Śmiałowska M, Paluszkiewicz C, Szewczyk B. Characterization of the Brain Penetrant Neuropeptide Y Y2 Receptor Antagonist SF-11. ACS Chem Neurosci 2019; 10:3454-3463. [PMID: 31267743 DOI: 10.1021/acschemneuro.9b00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This paper discusses the biological and three-dimensional molecular structure of the novel, nonpeptide Y2R antagonist, SF-11 [N-(4-ethoxyphenyl)-4-(hydroxydiphenylmethyl)-1-piperidinecarbothioamide]. Pharmacokinetic studies in a rat model indicated that, following intraperitoneal dosing, SF-11 crossed the blood-brain barrier and was able to penetrate the brain, making it a suitable tool for behavioral studies. We showed for the first time that SF-11 decreased the immobility time in the forced swim test (FST) after acute peripheral administration (10 and 20 mg/kg), indicating that it has antidepressant potential. Inhibitors of the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways blocked the anti-immobility effect of SF-11, suggesting that these pathways are involved in the antidepressant-like activity of SF-11 in the FST. The results of locomotor activity of rats indicate that the effects observed in the FST are specific and due to the antidepressant-like activity of SF-11. These findings provide further evidence for the antidepressant potential of Y2R antagonists. Also, the application of Fourier transform infrared absorption (FT-IR) and Raman spectroscopy (RS) methods combined with theoretical density functional theory (DFT) calculations allowed us to present the optimized spatial orientation of the investigated drug. Structural characterization of SF-11 based on vibrational spectroscopic data is of great importance and will aid in understanding its biological activity and pave the way for its development as a new antidepressant agent.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL-20-033 Lublin, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | | | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| |
Collapse
|
35
|
Higher peptide nonplanarity (ω) close to protein carboxy-terminal and its positive correlation with ψ dihedral-angle is evolved conferring protein thermostability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:1-9. [DOI: 10.1016/j.pbiomolbio.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022]
|
36
|
Acharyya A, DiGiuseppi D, Stinger BL, Schweitzer-Stenner R, Vaden TD. Structural Destabilization of Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution. J Phys Chem B 2019; 123:6933-6945. [DOI: 10.1021/acs.jpcb.9b04113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - David DiGiuseppi
- Department of Chemistry, Drexel University, 32 S. 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Brittany L. Stinger
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 32 S. 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Timothy D. Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
37
|
Declerck V, Pérez‐Mellor A, Guillot R, Aitken DJ, Mons M, Zehnacker A. Vibrational circular dichroism as a probe of solid‐state organisation of derivatives of cyclic β‐amino acids:
Cis
‐ and
trans
‐2‐aminocyclobutane‐1‐carboxylic acid. Chirality 2019; 31:547-560. [DOI: 10.1002/chir.23083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Valérie Declerck
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - Ariel Pérez‐Mellor
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris‐SudUniversité Paris‐Saclay Orsay France
| | - Régis Guillot
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - David J. Aitken
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - Michel Mons
- Laboratoire Interactions Dynamiques et Lasers (LIDYL)Université Paris Saclay Paris France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris‐SudUniversité Paris‐Saclay Orsay France
| |
Collapse
|
38
|
Clarke DE, Olesińska M, Mönch T, Schoenaers B, Stesmans A, Scherman OA. Aryl-viologen pentapeptide self-assembled conductive nanofibers. Chem Commun (Camb) 2019; 55:7354-7357. [PMID: 31172153 DOI: 10.1039/c9cc00862d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A pentapeptide sequence was functionalized with an asymmetric arylated methyl-viologen (AVI3D2) and through controllable β-sheet self-assembly, conductive nanofibers were formed. Using a combination of spectroscopic techniques and conductive atomic force microscopy, we investigated the molecular conformation of the resultant AVI3D2 fibers and how their conductivity is affected by β-sheet self-assembly. These conductive nanofibers have potential for future exploration as molecular wires in optoelectronic applications.
Collapse
Affiliation(s)
- David E Clarke
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Booth SG, Felisilda BMB, Alvarez de Eulate E, Gustafsson OJR, Arooj M, Mancera RL, Dryfe RAW, Hackett MJ, Arrigan DWM. Secondary Structural Changes in Proteins as a Result of Electroadsorption at Aqueous-Organogel Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5821-5829. [PMID: 30955327 DOI: 10.1021/acs.langmuir.8b04227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The electroadsorption of proteins at aqueous-organic interfaces offers the possibility to examine protein structural rearrangements upon interaction with lipophilic phases, without modifying the bulk protein or relying on a solid support. The aqueous-organic interface has already provided a simple means of electrochemical protein detection, often involving adsorption and ion complexation; however, little is yet known about the protein structure at these electrified interfaces. This work focuses on the interaction between proteins and an electrified aqueous-organic interface via controlled protein electroadsorption. Four proteins known to be electroactive at such interfaces were studied: lysozyme, myoglobin, cytochrome c, and hemoglobin. Following controlled protein electroadsorption onto the interface, ex situ structural characterization of the proteins by FTIR spectroscopy was undertaken, focusing on secondary structural traits within the amide I band. The structural variations observed included unfolding to form aggregated antiparallel β-sheets, where the rearrangement was specifically dependent on the interaction with the organic phase. This was supported by MALDI ToF MS measurements, which showed the formation of protein-anion complexes for three of these proteins, and molecular dynamic simulations, which modeled the structure of lysozyme at an aqueous-organic interface. On the basis of these findings, the modulation of protein secondary structure by interfacial electrochemistry opens up unique prospects to selectively modify proteins.
Collapse
Affiliation(s)
- Samuel G Booth
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL U.K
| | | | | | | | - Mahreen Arooj
- Department of Chemistry, College of Sciences , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | | | - Robert A W Dryfe
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL U.K
| | | | | |
Collapse
|
40
|
Ilawe NV, Schweitzer-Stenner R, DiGuiseppi D, Wong BM. Is a cross-β-sheet structure of low molecular weight peptides necessary for the formation of fibrils and peptide hydrogels? Phys Chem Chem Phys 2019; 20:18158-18168. [PMID: 29696249 DOI: 10.1039/c8cp00691a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Short peptides have emerged as versatile building blocks for supramolecular structures and hydrogels. In particular, the presence of aromatic amino acid residues and/or aromatic end groups is generally considered to be a prerequisite for initiating aggregation of short peptides into nanotubes or cross β-sheet type fibrils. However, the cationic GAG tripeptide surprisingly violates these rules. Specifically, in water/ethanol mixtures, GAG peptides aggregate into very long crystalline fibrils at temperatures below 35 °C where they eventually form a spanning network structure and, thus, a hydrogel. Two gel phases are formed in this network, and they differ substantially in chirality and thickness of the underlying fibrils, their rheological parameters, and the kinetics of oligomerization, fibrilization, and gel formation. The spectroscopic data strongly suggests that the observed fibrils do not exhibit canonical cross β-sheet structures and are indicative of a yet unknown secondary conformation. To complement our unusual experimental observations in this perspective article, we performed large-scale DFT calculations to probe the geometry and spectroscopic properties of these GAG oligomers. Most importantly, our experimental and computational results yield rather unconventional structures that are not reminiscent of classical cross-β-sheet structures, and we give two extremely likely candidates for oligomer structures that are consistent with experimental amide I' profiles in IR and vibrational circular dichroism (VCD) spectra of the two gel phases.
Collapse
Affiliation(s)
- Niranjan V Ilawe
- Department of Chemical & Environmental Engineering, and Materials Science & Engineering Program, University of California-Riverside, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
41
|
Wakabayashi R, Suehiro A, Goto M, Kamiya N. Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control. Chem Commun (Camb) 2019; 55:640-643. [PMID: 30628590 DOI: 10.1039/c8cc08163h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein designed bi-functional aromatic peptide amphiphiles both self-assembling to fibrous nanomaterials and working as a substrate of microbial transglutaminase, leading to peptidyl scaffolds with different morphologies that can be enzymatically post-functionalized with proteins.
Collapse
Affiliation(s)
- Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|
42
|
Baronio CM, Baldassarre M, Barth A. Insight into the internal structure of amyloid-β oligomers by isotope-edited Fourier transform infrared spectroscopy. Phys Chem Chem Phys 2019; 21:8587-8597. [DOI: 10.1039/c9cp00717b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isotope-edited infrared spectroscopy reveals the structural unit of amyloid-β oligomers.
Collapse
Affiliation(s)
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics
- Stockholm University
- Sweden
| |
Collapse
|
43
|
Davis CM, Zanetti-Polzi L, Gruebele M, Amadei A, Dyer RB, Daidone I. A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy. Chem Sci 2018; 9:9002-9011. [PMID: 30647892 PMCID: PMC6301204 DOI: 10.1039/c8sc03786h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022] Open
Abstract
We break the barrier between simulation and experiment by comparing identical computed and experimental infrared observables.
For small molecule reaction kinetics, computed reaction coordinates often mimic experimentally measured observables quite accurately. Although nowadays simulated and measured biomolecule kinetics can be compared on the same time scale, a gap between computed and experimental observables remains. Here we directly compared temperature-jump experiments and molecular dynamics simulations of protein folding dynamics using the same observable: the time-dependent infrared spectrum. We first measured the stability and folding kinetics of the fastest-folding β-protein, the GTT35 WW domain, using its structurally specific infrared spectrum. The relaxation dynamics of the peptide backbone, β-sheets, turn, and random coil were measured independently by probing the amide I′ region at different frequencies. Next, the amide I′ spectra along folding/unfolding molecular dynamics trajectories were simulated by accurate mixed quantum/classical calculations. The simulated time dependence and spectral amplitudes at the exact experimental probe frequencies provided relaxation and folding rates in agreement with experimental observations. The calculations validated by experiment yield direct structural evidence for a rate-limiting reaction step where an intermediate state with either the first or second hairpin is formed. We show how folding switches from a more homogeneous (apparent two-state) process at high temperature to a more heterogeneous process at low temperature, where different parts of the WW domain fold at different rates.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Chemistry and Department of Physics , University of Illinois at Urbana-Champaign , IL 61801 , USA.,Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences , University of L'Aquila , 67010 L'Aquila , Italy .
| | - Martin Gruebele
- Department of Chemistry and Department of Physics , University of Illinois at Urbana-Champaign , IL 61801 , USA.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , IL 61801 , USA
| | - Andrea Amadei
- Department of Chemical and Technological Sciences , University of Rome "Tor Vergata" , 00133 Rome , Italy
| | - R Brian Dyer
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - Isabella Daidone
- Department of Physical and Chemical Sciences , University of L'Aquila , 67010 L'Aquila , Italy .
| |
Collapse
|
44
|
Yamamoto S, Nishina N, Matsui J, Miyashita T, Mitsuishi M. High-Density and Monolayer-Level Integration of π-Conjugated Units: Amphiphilic Carbazole Homopolymer Langmuir-Blodgett Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10491-10497. [PMID: 30146888 DOI: 10.1021/acs.langmuir.8b01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Precise integration of π-conjugated units is a key issue to achieve molecular (nano) electronic devices based on organic semiconductor materials. We specifically examine the Langmuir-Blodgett technique, which allows high-density integration of π-conjugated units. In this study, we designed a carbazole containing acrylamide-based homopolymer [poly(9-ethyl-3-carbazolyl acrylamide) (pCzAA)], in which the π-conjugated unit is connected with a hydrophilic amide unit directly as a side chain. Its Langmuir-Blodgett film formation properties were investigated. The pCzAA polymer took a stable monolayer formation in the presence of a small amount (ca. 10 mol %) of poly( N-dodecylacrylamide) (pDDA). Compared with amphiphilic carbazole-containing copolymers described in earlier reports, the direct connection of π-conjugated units through amide bonding enables the Cz content in monolayers to exceed that of the copolymer monolayers (ca. 30 mol %) dramatically. pCzAA:pDDA takes highly ordered layer structures toward the out-of-plane direction, although no structural order is formed in the in-plane direction. This method is a practical means to develop low-dimensional and high-density integration of π-conjugated units for molecular electronics.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai 980-8577 , Japan
| | - Nanae Nishina
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai 980-8577 , Japan
| | - Jun Matsui
- Department of Material and Biological Chemistry, Faculty of Science , Yamagata University , 1-4-12 Kojirakawamachi , Yamagata 990-8560 , Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai 980-8577 , Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai 980-8577 , Japan
| |
Collapse
|
45
|
Barco A, Ingham E, Fisher J, Fermor H, Davies R. On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration. J Pept Sci 2018; 24:e3114. [DOI: 10.1002/psc.3114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023]
Affiliation(s)
- A. Barco
- Institute of Medical and Biological Engineering; Leeds UK
| | - E. Ingham
- Institute of Medical and Biological Engineering; Leeds UK
| | - J. Fisher
- Institute of Medical and Biological Engineering; Leeds UK
| | - H. Fermor
- Institute of Medical and Biological Engineering; Leeds UK
| | | |
Collapse
|
46
|
Clarke DE, Parmenter CDJ, Scherman OA. Tunable Pentapeptide Self-Assembled β-Sheet Hydrogels. Angew Chem Int Ed Engl 2018; 57:7709-7713. [PMID: 29603545 PMCID: PMC6055752 DOI: 10.1002/anie.201801001] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 01/13/2023]
Abstract
Oligopeptide‐based supramolecular hydrogels hold promise in a range of applications. The gelation of these systems is hard to control, with minor alterations in the peptide sequence significantly influencing the self‐assembly process. We explored three pentapeptide sequences with different charge distributions and discovered that they formed robust, pH‐responsive hydrogels. By altering the concentration and charge distribution of the peptide sequence, the stiffness of the hydrogels could be tuned across two orders of magnitude (2–200 kPa). Also, through reassembly of the β‐sheet interactions the hydrogels could self‐heal and they demonstrated shear‐thin behavior. Using spectroscopic and cryo‐imaging techniques, we investigated the relationship between peptide sequence and molecular structure, and how these influence the mechanical properties of the hydrogel. These pentapeptide hydrogels with tunable morphology and mechanical properties have promise in tissue engineering, injectable delivery vectors, and 3D printing applications.
Collapse
Affiliation(s)
- David E Clarke
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher D J Parmenter
- Nottingham Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
47
|
Clarke DE, Parmenter CDJ, Scherman OA. Tunable Pentapeptide Self-Assembled β-Sheet Hydrogels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David E. Clarke
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Christopher D. J. Parmenter
- Nottingham Nanoscale and Microscale Research Centre; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
48
|
Funaki C, Yamamoto S, Hoshina H, Ozaki Y, Sato H. Three different kinds of weak C-H⋯O=C inter- and intramolecular interactions in poly(ε-caprolactone) studied by using terahertz spectroscopy, infrared spectroscopy and quantum chemical calculations. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Abstract
Attenuated total reflection FTIR (ATR-FTIR) has been used for decades to study protein secondary structures. More recently, it reveals also to be an exquisite and sensitive tool to study and discriminate amyloid aggregates. Based on the analysis of specific spectral features of β-sheet structures, we present here a detailed protocol to differentiate oligomers vs. fibrils. This protocol, applicable to all amyloid proteins, demonstrates the power of this inexpensive, rapid, and low protein material-demanding method.
Collapse
Affiliation(s)
- Jean-Marie Ruysschaert
- Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Raussens
- Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
50
|
Lomont JP, Rich KL, Maj M, Ho JJ, Ostrander JS, Zanni MT. Spectroscopic Signature for Stable β-Amyloid Fibrils versus β-Sheet-Rich Oligomers. J Phys Chem B 2017; 122:144-153. [PMID: 29220175 DOI: 10.1021/acs.jpcb.7b10765] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We use two-dimensional IR (2D IR) spectroscopy to explore fibril formation for the two predominant isoforms of the β-amyloid (Aβ1-40 and Aβ1-42) protein associated with Alzheimer's disease. Two-dimensional IR spectra resolve a transition at 1610 cm-1 in Aβ fibrils that does not appear in other Aβ aggregates, even those with predominantly β-sheet-structure-like oligomers. This transition is not resolved in linear IR spectroscopy because it lies under the broad band centered at 1625 cm-1, which is the traditional infrared signature for amyloid fibrils. The feature is prominent in 2D IR spectra because 2D lineshapes are narrower and scale nonlinearly with transition dipole strengths. Transmission electron microscopy measurements demonstrate that the 1610 cm-1 band is a positive identification of amyloid fibrils. Sodium dodecyl sulfate micelles that solubilize and disaggregate preaggregated Aβ samples deplete the 1625 cm-1 band but do not affect the 1610 cm-1 band, demonstrating that the 1610 cm-1 band is due to very stable fibrils. We demonstrate that the 1610 cm-1 transition arises from amide I modes by mutating out the only side-chain residue that could give rise to this transition, and we explore the potential structural origins of the transition by simulating 2D IR spectra based on Aβ crystal structures. It was not previously possible to distinguish stable Aβ fibrils from the less stable β-sheet-rich oligomers with infrared light. This 2D IR signature will be useful for Alzheimer's research on Aβ aggregation, fibril formation, and toxicity.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kacie L Rich
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|