1
|
de Dios SMR, Hass JL, Graham DL, Kumar N, Antony AE, Morton MD, Berkowitz DB. Information-Rich, Dual-Function 13C/ 2H-Isotopic Crosstalk NMR Assay for Human Serine Racemase (hSR) Provides a PLP-Enzyme "Partitioning Fingerprint" and Reveals Disparate Chemotypes for hSR Inhibition. J Am Chem Soc 2023; 145:3158-3174. [PMID: 36696670 PMCID: PMC11103274 DOI: 10.1021/jacs.2c12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The first dual-function assay for human serine racemase (hSR), the only bona fide racemase in human biology, is reported. The hSR racemization function is essential for neuronal signaling, as the product, d-serine (d-Ser), is a potent N-methyl d-aspartate (NMDA) coagonist, important for learning and memory, with dysfunctional d-Ser-signaling being observed in some neuronal disorders. The second hSR function is β-elimination and gives pyruvate; this activity is elevated in colorectal cancer. This new NMR-based assay allows one to monitor both α-proton-exchange chemistry and β-elimination using only the native l-Ser substrate and hSR and is the most sensitive such assay. The assay judiciously employs segregated dual 13C-labeling and 13C/2H crosstalk, exploiting both the splitting and shielding effects of deuterium. The assay is deployed to screen a 1020-compound library and identifies an indolo-chroman-2,4-dione inhibitor family that displays allosteric site binding behavior (noncompetitive inhibition vs l-Ser substrate; competitive inhibition vs adenosine 5'-triphosphate (ATP)). This assay also reveals important mechanistic information for hSR; namely, that H/D exchange is ∼13-fold faster than racemization, implying that K56 protonates the carbanionic intermediate on the si-face much faster than does S84 on the re-face. Moreover, the 13C NMR peak pattern seen is suggestive of internal return, pointing to K56 as the likely enamine-protonating residue for β-elimination. The 13C/2H-isotopic crosstalk assay has also been applied to the enzyme tryptophan synthase and reveals a dramatically different partition ratio in this active site (β-replacement: si-face protonation ∼6:1 vs β-elimination: si-face protonation ∼1:3.6 for hSR), highlighting the value of this approach for fingerprinting the pyridoxal phosphate (PLP) enzyme mechanism.
Collapse
Affiliation(s)
| | | | | | - Nivesh Kumar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | - Aina E. Antony
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | - Martha D. Morton
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | | |
Collapse
|
2
|
Shrivastava SK, Sinha O, Kumar M, Waiker DK, Verma A, Tripathi PN, Bhardwaj B, Saraf P. Synthesis, characterization, and biological evaluation of some novel ϒ-aminobutyric acid aminotransferase (GABA-AT) inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Silverman RB. Design and Mechanism of GABA Aminotransferase Inactivators. Treatments for Epilepsies and Addictions. Chem Rev 2018; 118:4037-4070. [PMID: 29569907 PMCID: PMC8459698 DOI: 10.1021/acs.chemrev.8b00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When the brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) diminishes below a threshold level, the excess neuronal excitation can lead to convulsions. This imbalance in neurotransmission can be corrected by inhibition of the enzyme γ-aminobutyric acid aminotransferase (GABA-AT), which catalyzes the conversion of GABA to the excitatory neurotransmitter l-glutamic acid. It also has been found that raising GABA levels can antagonize the rapid elevation and release of dopamine in the nucleus accumbens, which is responsible for the reward response in addiction. Therefore, the design of new inhibitors of GABA-AT, which increases brain GABA levels, is an important approach to new treatments for epilepsy and addiction. This review summarizes findings over the last 40 or so years of mechanism-based inactivators (unreactive compounds that require the target enzyme to catalyze their conversion to the inactivating species, which inactivate the enzyme prior to their release) of GABA-AT with emphasis on their catalytic mechanisms of inactivation, presented according to organic chemical mechanism, with minimal pharmacology, except where important for activity in epilepsy and addiction. Patents, abstracts, and conference proceedings are not covered in this review. The inactivation mechanisms described here can be applied to the inactivations of a wide variety of unrelated enzymes.
Collapse
Affiliation(s)
- Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, 60208-3113, United States
| |
Collapse
|
4
|
Gökcan H, Monard G, Sungur Konuklar FA. Molecular dynamics simulations of apo, holo, and inactivator bound GABA-at reveal the role of active site residues in PLP dependent enzymes. Proteins 2016; 84:875-91. [PMID: 26800298 DOI: 10.1002/prot.24991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 11/08/2022]
Abstract
The pyridoxal 5-phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ-aminobutyric acid aminotransferase (GABA-AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA-AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA-AT. This is a consequence of a pKa shift triggered by a strong charge-charge interaction with an ionic "diad" formed by Asp298 and His190 that would help the activation of the first half-reaction of the catalytic mechanism in GABA-AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π-π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half-reaction in GABA-AT: the regeneration of PLP-bound GABA-AT (i.e., the holoenzyme). Proteins 2016; 84:875-891. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hatice Gökcan
- Universite De Lorraine, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France.,CNRS, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France.,Computational Science and Engineering Division, Informatics Institute, Ayazağa Campus, Maslak, Istanbul, 34496, Turkey
| | - Gerald Monard
- Universite De Lorraine, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France.,CNRS, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France
| | - F Aylin Sungur Konuklar
- Computational Science and Engineering Division, Informatics Institute, Ayazağa Campus, Maslak, Istanbul, 34496, Turkey
| |
Collapse
|
5
|
Le HV, Hawker DD, Wu R, Doud E, Widom J, Sanishvili R, Liu D, Kelleher NL, Silverman RB. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators. J Am Chem Soc 2015; 137:4525-33. [PMID: 25781189 PMCID: PMC4390550 DOI: 10.1021/jacs.5b01155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme.
Collapse
Affiliation(s)
- Hoang V. Le
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, and the Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208
| | - Dustin D. Hawker
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, and the Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208
| | - Rui Wu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660
| | - Emma Doud
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208
| | - Julia Widom
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, and the Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208
| | - Ruslan Sanishvili
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208
| | - Richard B. Silverman
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, and the Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208
| |
Collapse
|
6
|
Pinto A, Tamborini L, Pennacchietti E, Coluccia A, Silvestri R, Cullia G, De Micheli C, Conti P, De Biase D. Bicyclic γ-amino acids as inhibitors of γ-aminobutyrate aminotransferase. J Enzyme Inhib Med Chem 2015; 31:295-301. [DOI: 10.3109/14756366.2015.1021251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrea Pinto
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Eugenia Pennacchietti
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Latina, Italy, and
| | - Antonio Coluccia
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Romano Silvestri
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Gregorio Cullia
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Paola Conti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Daniela De Biase
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Latina, Italy, and
| |
Collapse
|
7
|
Lee H, Doud EH, Wu R, Sanishvili R, Juncosa JI, Liu D, Kelleher NL, Silverman RB. Mechanism of inactivation of γ-aminobutyric acid aminotransferase by (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115). J Am Chem Soc 2015; 137:2628-40. [PMID: 25616005 PMCID: PMC4353033 DOI: 10.1021/ja512299n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 11/28/2022]
Abstract
γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.
Collapse
Affiliation(s)
- Hyunbeom Lee
- Department
of Chemistry, Chemistry of Life Processes Institute, and Center for
Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emma H. Doud
- Department
of Chemistry, Chemistry of Life Processes Institute, and Center for
Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rui Wu
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1068 W. Sheridan
Road, Chicago, Illinois 60660, United States
| | - Ruslan Sanishvili
- X-ray
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jose I. Juncosa
- Department
of Chemistry, Chemistry of Life Processes Institute, and Center for
Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dali Liu
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1068 W. Sheridan
Road, Chicago, Illinois 60660, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Chemistry of Life Processes Institute, and Center for
Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard B. Silverman
- Department
of Chemistry, Chemistry of Life Processes Institute, and Center for
Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Kand D, Chauhan DP, Lahiri M, Talukdar P. δ-Unsaturated γ-amino acids: enantiodivergent synthesis and cell imaging studies. Chem Commun (Camb) 2013; 49:3591-3. [DOI: 10.1039/c3cc40824h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Gökcan H, Konuklar FAS. Theoretical study on HF elimination and aromatization mechanisms: a case of pyridoxal 5' phosphate-dependent enzyme. J Org Chem 2012; 77:5533-43. [PMID: 22646918 DOI: 10.1021/jo3005815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyridoxal 5-phosphate (PLP), the phosphorylated and the oxidized form of vitamin B6 is an organic cofactor. PLP forms a Schiff base with the ϵ-amino group of a lysine residue of PLP-dependent enzymes. γ-Aminobutyric acid (GABA) aminotransferase is a PLP-dependent enzyme that degrades GABA to succinic semialdehyde, while reduction of GABA concentration in the brain causes convolution besides several neurological diseases. The fluorine-containing substrate analogues for the inactivation of the GABA-AT are synthesized extensively in cases where the inactivation mechanisms involve HF elimination. Although two proposed mechanisms are present for the HF elimination, the details of the base-induced HF elimination are not well identified. In this density functional theory (DFT) study, fluorine-containing substrate analogue, 5-amino-2-fluorocyclohex-3-enecarboxylic acid, is particularly chosen in order to explain the details of the HF elimination reactions. On the other hand, the experimental studies revealed that aromatization competes with Michael addition mechanism in the presence of 5-amino-2-fluorocyclohex-3-enecarboxylic acid. The results allowed us to draw a conclusion for the nature of HF elimination, besides the elucidation of the mechanism preference for the inactivation mechanism. Furthermore, the solvent phase calculations carried out in this study ensure that the proton transfer steps should be assisted either by a water molecule or a base for lower activation energy barriers.
Collapse
Affiliation(s)
- Hatice Gökcan
- Informatics Institute, Computational Science and Engineering Programme, Istanbul Technical University, Ayazağa Campus 34469, Maslak, Istanbul, Turkey
| | | |
Collapse
|
10
|
Silverman RB. The 2011 E. B. Hershberg award for important discoveries in medicinally active substances: (1S,3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (CPP-115), a GABA aminotransferase inactivator and new treatment for drug addiction and infantile spasms. J Med Chem 2012; 55:567-75. [PMID: 22168767 PMCID: PMC3266980 DOI: 10.1021/jm201650r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard B Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States.
| |
Collapse
|
11
|
Synthesis of conformationally restricted 1,2,3-triazole-substituted ethyl β- and γ-aminocyclopentanecarboxylate stereoisomers. Multifunctionalized alicyclic amino esters. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Inactivation of GABA transaminase by 3-chloro-1-(4-hydroxyphenyl)propan-1-one. Bioorg Med Chem Lett 2009; 19:731-4. [DOI: 10.1016/j.bmcl.2008.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 11/05/2008] [Accepted: 12/06/2008] [Indexed: 11/21/2022]
|
13
|
Tao YH, Jiang DY, Xu HB, Yang XL. Inhibitory effect of Erigeron breviscapus extract and its flavonoid components on GABA shunt enzymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:92-7. [PMID: 17689232 DOI: 10.1016/j.phymed.2007.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 05/07/2007] [Indexed: 05/16/2023]
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, is metabolized by the successive action of GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Inhibition of both enzymes in brain tissues increases the GABA level and may have therapeutic applications in neurological diseases. Erigeron breviscapus ethanol extract was evaluated for their effect on both enzymes. This extract, its ethyl acetate fraction and aqueous fraction, significantly inhibited them at >100 microg/ml. Flavonoid components of E. breviscapus potently and noncompetitively inhibited both enzymes, and the different structure-activity relations were observed with respect to inhibition of both enzymes. Baicalein was the most potent inhibitor for GABA-T with an IC50 value of 12.8+/-1.2 microM, and scutellarein exhibited the best inhibitory effect on SSADH with an IC50 value of 7.20+/-0.9 microM. The present results may imply new pharmacological actions of E. breviscapus and contribute partially to the beneficial effect of the herb and flavonoids on the central nervous system.
Collapse
Affiliation(s)
- Y H Tao
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | | | | |
Collapse
|
14
|
Kiss L, Forró E, Sillanpää R, Fülöp F. Diastereo- and Enantioselective Synthesis of Orthogonally Protected 2,4-Diaminocyclopentanecarboxylates: A Flip from β-Amino- to β,γ-Diaminocarboxylates. J Org Chem 2007; 72:8786-90. [DOI: 10.1021/jo701332v] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry and Research Group of Stereochemistry of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary, and Department of Chemistry, University of Jyväskylä, FIN-40351, Jyväskylä, Finland
| | - Enikó Forró
- Institute of Pharmaceutical Chemistry and Research Group of Stereochemistry of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary, and Department of Chemistry, University of Jyväskylä, FIN-40351, Jyväskylä, Finland
| | - Reijo Sillanpää
- Institute of Pharmaceutical Chemistry and Research Group of Stereochemistry of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary, and Department of Chemistry, University of Jyväskylä, FIN-40351, Jyväskylä, Finland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and Research Group of Stereochemistry of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary, and Department of Chemistry, University of Jyväskylä, FIN-40351, Jyväskylä, Finland
| |
Collapse
|
15
|
Yuan H, Silverman RB. Structural modifications of (1S,3S)-3-amino-4-difluoromethylenecyclopentanecarboxylic acid, a potent irreversible inhibitor of GABA aminotransferase. Bioorg Med Chem Lett 2007; 17:1651-4. [PMID: 17267220 PMCID: PMC1853296 DOI: 10.1016/j.bmcl.2006.12.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/22/2006] [Indexed: 11/18/2022]
Abstract
Low brain levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) lead to convulsions. Inhibition of GABA aminotransferase increases the concentration of GABA and can terminate the convulsions. Earlier we reported the synthesis of (1S,3S)-3-amino-4-difluoromethylenecyclopentanecarboxylic acid (2), which is 186 times more potent an inactivator of GABA aminotransferase than the epilepsy drug S-vigabatrin. The corresponding dichloromethylene analogue of 2 (compound 3) has been made, but it shows only weak reversible inhibition of GABA aminotransferase. However, the tetrazole isostere of 2 (compound 4) has been found to be a time-dependent inactivator of GABA aminotransferase. Although it is 20 times less potent than carboxylic acid 2, it is 2.5 times more potent than S-vigabatrin. A calculation of the ClogP values indicates that 4 is the most lipophilic of the three, being 69 times more lipophilic than 2 and 55 times more lipophilic than S-vigabatrin, indicating potential for improved bioavailability.
Collapse
Affiliation(s)
| | - Richard B. Silverman
- *To whom correspondence should be addressed at the Department of Chemistry. Phone: 1-847-491-5653. Fax: 1-847-491-7713.
| |
Collapse
|
16
|
|
17
|
Wang Z, Yuan H, Nikolic D, Van Breemen RB, Silverman RB. (+/-)-(1S,2R,5S)-5-Amino-2-fluorocyclohex-3-enecarboxylic acid. A potent GABA aminotransferase inactivator that irreversibly inhibits via an elimination-aromatization pathway. Biochemistry 2006; 45:14513-22. [PMID: 17128990 PMCID: PMC2570588 DOI: 10.1021/bi061592m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of gamma-aminobutyric acid aminotransferase (GABA-AT) increases the concentration of GABA, an inhibitory neurotransmitter in human brain, which could have therapeutic applications for a variety of neurological diseases, including epilepsy. On the basis of studies of several previously synthesized conformationally restricted GABA-AT inhibitors, (+/-)-(1S,2R,5S)-5-amino-2-fluorocyclohex-3-enecarboxylic acid (12) was designed as a mechanism-based inactivator. This compound was shown to irreversibly inhibit GABA-AT; substrate protects the enzyme from inactivation. Mechanistic experiments demonstrated the loss of one fluoride ion per active site during inactivation and the formation of N-m-carboxyphenylpyridoxamine 5'-phosphate (26), the same product generated by inactivation of GABA-AT by gabaculine (8). An elimination-aromatization mechanism is proposed to account for these results.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry, Center for Drug Discovery and Chemical Biology, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | | | | | |
Collapse
|
18
|
The use of (−)-8-phenylisoneomenthol and (−)-8-phenylmenthol in the enantioselective synthesis of 3-functionalized 2-azabicyclo[2.2.1]heptane derivatives via aza-Diels–Alder reaction. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Tao YH, Xu HB, Yang XL. Inactivation of GABA transaminase by 4-acryloylphenol. Bioorg Med Chem Lett 2006; 16:3719-22. [PMID: 16690313 DOI: 10.1016/j.bmcl.2006.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/22/2006] [Accepted: 04/20/2006] [Indexed: 11/16/2022]
Abstract
Previous study showed that 4-hydroxybenzaldehyde is a competitive inhibitor of GABA transaminase. As a result, 4-acryloylphenol was synthesized as a 4-hydroxybenzaldehyde analogue, and shown to inactivate potently the enzyme in a time-dependent manner. The inactivation was protected by alpha-ketoglutarate, indicating that it occurs at the active site of the enzyme. Beta-mercaptoethanol also prevented the enzyme from inactivation. The possible mechanism involving a Michael addition was proposed to rationalize the inactivation.
Collapse
Affiliation(s)
- Yun-Hai Tao
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | | |
Collapse
|
20
|
Hu Y, Yu SL, Yang YJ, Zhu J, Deng JG. Synthesis of Stereoisomers of 3-Aminocyclohexanecarboxylic Acid andcis-3-Aminocyclohexene-5-carboxylic Acid. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Tao YH, Yuan Z, Tang XQ, Xu HB, Yang XL. Inhibition of GABA shunt enzymes’ activity by 4-hydroxybenzaldehyde derivatives. Bioorg Med Chem Lett 2006; 16:592-5. [PMID: 16290145 DOI: 10.1016/j.bmcl.2005.10.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/27/2005] [Accepted: 10/15/2005] [Indexed: 11/18/2022]
Abstract
4-Hydroxybenzaldehyde (HBA) derivatives were examined as inhibitors for GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Investigation of structure-activity relation revealed that a carbonyl group or an amino group as well as a hydroxy group at the para position of the benzene ring are important for both enzymes' inhibition. HBA was shown to give competitive inhibition of GABA-T with respect to alpha-ketoglutarate and competitive inhibition of SSADH. 4-Hydroxybenzylamine (HBM) also showed the competitive inhibition on GABA-T with respect to GABA. In conclusion, the inhibitory effects of HBA and HBM on both enzymes could result from the similarity between both molecules and the two enzymes' substrates in structure, as well as the conjugative effect of the benzene ring. This suggested that the presence of the benzene ring may be accepted by the active site of both enzymes, HBA and HBM may be considered as lead compounds to design novel GABA-T inhibitors.
Collapse
Affiliation(s)
- Yun-Hai Tao
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | | | | | | |
Collapse
|
22
|
Pan Y, Calvert K, Silverman RB. Conformationally-restricted vigabatrin analogs as irreversible and reversible inhibitors of γ-aminobutyric acid aminotransferase. Bioorg Med Chem 2004; 12:5719-25. [PMID: 15465348 DOI: 10.1016/j.bmc.2004.07.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/02/2004] [Indexed: 11/17/2022]
Abstract
Compounds that inhibit gamma-aminobutyric acid aminotransferase exhibit anticonvulsant activity; vigabatrin is a known irreversible inhibitor of this enzyme and anticonvulsant drug. Conformationally-restricted, five-membered- and six-membered-ring vigabatrin analogs were synthesized and tested as inhibitors of gamma-aminobutyric acid aminotransferase. Two monofluorinated compounds, 4 and 5, are time-dependent inhibitors of the enzyme, and their potencies are comparable to that of vigabatrin. Compounds 6 and 7 are weak reversible inhibitors.
Collapse
Affiliation(s)
- Yue Pan
- Department of Chemistry, and Drug Discovery Program, Northwestern University, Evanston, IL 60208-3113, USA
| | | | | |
Collapse
|
23
|
[3+2] Cycloaddition reactions: a simple entry to the 1-aza-2-oxo-3,4,5,6-tetrahydroxybicyclo[3.3.0]octane ring system. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes are unrivaled in the diversity of reactions that they catalyze. New structural data have paved the way for targeted mutagenesis and mechanistic studies and have provided a framework for interpretation of those results. Together, these complementary approaches yield new insight into function, particularly in understanding the origins of substrate and reaction type specificity. The combination of new sequences and structures enables better reconstruction of their evolutionary heritage and illuminates unrecognized similarities within this diverse group of enzymes. The important metabolic roles of many PLP-dependent enzymes drive efforts to design specific inhibitors, which are now guided by the availability of comprehensive structural and functional databases. Better understanding of the function of this important group of enzymes is crucial not only for inhibitor design, but also for the design of improved protein-based catalysts.
Collapse
Affiliation(s)
- Andrew C Eliot
- Department of Chemistry University of California, Berkeley, California 94720-3206, USA.
| | | |
Collapse
|
25
|
Storici P, De Biase D, Bossa F, Bruno S, Mozzarelli A, Peneff C, Silverman RB, Schirmer T. Structures of γ-Aminobutyric Acid (GABA) Aminotransferase, a Pyridoxal 5′-Phosphate, and [2Fe-2S] Cluster-containing Enzyme, Complexed with γ-Ethynyl-GABA and with the Antiepilepsy Drug Vigabatrin. J Biol Chem 2004; 279:363-73. [PMID: 14534310 DOI: 10.1074/jbc.m305884200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate-dependent enzyme responsible for the degradation of the inhibitory neurotransmitter GABA. GABA-AT is a validated target for antiepilepsy drugs because its selective inhibition raises GABA concentrations in brain. The antiepilepsy drug, gamma-vinyl-GABA (vigabatrin) has been investigated in the past by various biochemical methods and resulted in several proposals for its mechanisms of inactivation. In this study we solved and compared the crystal structures of pig liver GABA-AT in its native form (to 2.3-A resolution) and in complex with vigabatrin as well as with the close analogue gamma-ethynyl-GABA (to 2.3 and 2.8 A, respectively). Both inactivators form a covalent ternary adduct with the active site Lys-329 and the pyridoxal 5'-phosphate (PLP) cofactor. The crystal structures provide direct support for specific inactivation mechanisms proposed earlier on the basis of radio-labeling experiments. The reactivity of GABA-AT crystals with the two GABA analogues was also investigated by polarized absorption microspectrophotometry. The spectral data are discussed in relation to the proposed mechanism. Intriguingly, all three structures revealed a [2Fe-2S] cluster of yet unknown function at the center of the dimeric molecule in the vicinity of the PLP cofactors.
Collapse
Affiliation(s)
- Paola Storici
- Division of Structural Biology, Biozentrum, University of Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|