1
|
Delgado Gonzalez B, Lopez-Blanco R, Parcero-Bouzas S, Barreiro-Piñeiro N, Garcia-Abuin L, Fernandez-Megia E. Dynamic Covalent Boronate Chemistry Accelerates the Screening of Polymeric Gene Delivery Vectors via In Situ Complexation of Nucleic Acids. J Am Chem Soc 2024; 146:17211-17219. [PMID: 38864331 PMCID: PMC11212051 DOI: 10.1021/jacs.4c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Gene therapy provides exciting new therapeutic opportunities beyond the reach of traditional treatments. Despite the tremendous progress of viral vectors, their high cost, complex manufacturing, and side effects have encouraged the development of nonviral alternatives, including cationic polymers. However, these are less efficient in overcoming cellular barriers, resulting in lower transfection efficiencies. Although the exquisite structural tunability of polymers might be envisaged as a versatile tool for improving transfection, the need to fine-tune several structural parameters represents a bottleneck in current screening technologies. By taking advantage of the fast-forming and strong boronate ester bond, an archetypal example of dynamic covalent chemistry, a highly adaptable gene delivery platform is presented, in which the polycation synthesis and pDNA complexation occur in situ. The robustness of the strategy entitles the simultaneous evaluation of several structural parameters at will, enabling the accelerated screening and adaptive optimization of lead polymeric vectors using dynamic covalent libraries.
Collapse
Affiliation(s)
- Bruno Delgado Gonzalez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Roi Lopez-Blanco
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Samuel Parcero-Bouzas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Natalia Barreiro-Piñeiro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Bioquímica
e Bioloxía Molecular, Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Lucas Garcia-Abuin
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Pehlivan Ö, Wojtkowiak K, Jezierska A, Waliczek M, Stefanowicz P. Photochemical Transformations of Peptides Containing the N-(2-Selenoethyl)glycine Moiety. ACS OMEGA 2024; 9:16775-16791. [PMID: 38617632 PMCID: PMC11007844 DOI: 10.1021/acsomega.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The diselenide bond has attracted considerable attention due to its ability to undergo the metathesis reaction in response to visible light. In our previous study, we demonstrated visible-light-induced diselenide metathesis of selenocysteine-containing linear peptides, allowing for the convenient generation of peptide libraries. Here, we investigated the transformation of linear and cyclic peptides containing the N-(2-selenoethyl)glycine moiety. The linear peptides were highly susceptible to the metathesis reaction, whereas the cyclic systems gave only limited conversion yields of the metathesis product. In both cases, side reactions leading to the formation of mono-, di-, and polyselenides were observed upon prolonged irradiation. To confirm the radical mechanism of the reaction, the radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) was tested, and it was found to induce diselenide metathesis without photochemical activation. The data were interpreted in the light of quantum-chemical simulations based on density functional theory (DFT). The simulations were performed at the B3LYP-D3BJ/def2-TZVP level of theory using a continuum solvation model (IEF-PCM) and methanol as a solvent.
Collapse
Affiliation(s)
- Özge Pehlivan
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Faiad S, Laurent Q, Prinzen AL, Asohan J, Saliba D, Toader V, Sleiman HF. Impact of the Core Chemistry of Self-Assembled Spherical Nucleic Acids on their In Vitro Fate. Angew Chem Int Ed Engl 2023; 62:e202315768. [PMID: 37905978 DOI: 10.1002/anie.202315768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Nucleic acid therapeutics (NATs), such as mRNA, small interfering RNA or antisense oligonucleotides are extremely efficient tools to modulate gene expression and tackle otherwise undruggable diseases. Spherical nucleic acids (SNAs) can efficiently deliver small NATs to cells while protecting their payload from nucleases, and have improved biodistribution and muted immune activation. Self-assembled SNAs have emerged as nanostructures made from a single DNA-polymer conjugate with similar favorable properties as well as small molecule encapsulation. However, because they maintain their structure by non-covalent interactions, they might suffer from disassembly in biologically relevant conditions, especially with regard to their interaction with serum proteins. Here, we report a systematic study of the factors that govern the fate of self-assembled SNAs. Varying the core chemistry and using stimuli-responsive disulfide crosslinking, we show that extracellular stability upon binding with serum proteins is important for recognition by membrane receptors, triggering cellular uptake. At the same time, intracellular dissociation is required for efficient therapeutic release. Disulfide-crosslinked SNAs combine these two properties and result in efficient and non-toxic unaided gene silencing therapeutics. We anticipate these investigations will help the translation of promising self-assembled structures towards in vivo gene silencing applications.
Collapse
Affiliation(s)
- Sinan Faiad
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Alexander L Prinzen
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Jathavan Asohan
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Daniel Saliba
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Violeta Toader
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| |
Collapse
|
4
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
5
|
Egorova A, Shtykalova S, Maretina M, Selutin A, Shved N, Deviatkin D, Selkov S, Baranov V, Kiselev A. Polycondensed Peptide Carriers Modified with Cyclic RGD Ligand for Targeted Suicide Gene Delivery to Uterine Fibroid Cells. Int J Mol Sci 2022; 23:1164. [PMID: 35163086 PMCID: PMC8835468 DOI: 10.3390/ijms23031164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Suicide gene therapy was suggested as a possible strategy for the treatment of uterine fibroids (UFs), which are the most common benign tumors inwomen of reproductive age. For successful suicide gene therapy, DNAtherapeutics should be specifically delivered to UF cells. Peptide carriers are promising non-viral gene delivery systems that can be easily modified with ligands and other biomolecules to overcome DNA transfer barriers. Here we designed polycondensed peptide carriers modified with a cyclic RGD moiety for targeted DNA delivery to UF cells. Molecular weights of the resultant polymers were determined, and inclusion of the ligand was confirmed by MALDI-TOF. The physicochemical properties of the polyplexes, as well as cellular DNA transport, toxicity, and transfection efficiency were studied, and the specificity of αvβ3 integrin-expressing cell transfection was proved. The modification with the ligand resulted in a three-fold increase of transfection efficiency. Modeling of the suicide gene therapy by transferring the HSV-TK suicide gene to primary cells obtained from myomatous nodes of uterine leiomyoma patients was carried out. We observed up to a 2.3-fold decrease in proliferative activity after ganciclovir treatment of the transfected cells. Pro- and anti-apoptotic gene expression analysis confirmed our findings that the developed polyplexes stimulate UF cell death in a suicide-specific manner.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.S.); (S.S.)
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| |
Collapse
|
6
|
Thomas J, Punia K, Montclare JK. Peptides as key components in the design of
non‐viral
vectors for gene delivery. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph Thomas
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
- Department of Chemistry New York University New York New York USA
- Department of Biomaterials New York University College of Dentistry New York New York USA
| |
Collapse
|
7
|
Egorova AA, Shtykalova SV, Maretina MA, Selyutin AV, Shved NY, Krylova NV, Ilina AV, Pyankov IA, Freund SA, Selkov SA, Baranov VS, Kiselev AV. Cys-Flanked Cationic Peptides For Cell Delivery of the Herpes Simplex Virus Thymidine Kinase Gene for Suicide Gene Therapy of Uterine Leiomyoma. Mol Biol 2020. [DOI: 10.1134/s0026893320030061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O. Dynamic Covalent Polymers for Biomedical Applications. MATERIALS CHEMISTRY FRONTIERS 2020; 4:489-506. [PMID: 33791102 PMCID: PMC8009197 DOI: 10.1039/c9qm00598f] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rapid development of supramolecular polymer chemistry and constitutional dynamic chemistry over the last decades has made tremendous impact on the emergence of dynamic covalent polymers. These materials are formed through reversible covalent bonds, endowing them with adaptive and responsive features that have resulted in high interest throughout the community. Owing to their intriguing properties, such as self-healing, shape-memory effects, recyclability, degradability, stimuli-responsiveness, etc., the materials have found multiple uses in a wide range of areas. Of special interest is their increasing use for biomedical applications, and many examples have been demonstrated in recent years. These materials have thus been used for the recognition and sensing of biologically active compounds, for the modulation of enzyme activity, for gene delivery, and as materials for cell culture, delivery, and wound-dressing. In this review, some of these endeavors are discussed, highlighting the many advantages and unique properties of dynamic covalent polymers for use in biology and biomedicine.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université of Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
- Department of Chemical and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
9
|
Synthesis of α-cyano hydroxylamines via three-component reactions and its computational mechanistic study. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-019-01688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020; 8:9385-9403. [DOI: 10.1039/d0tb01836h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic covalent polymers have revealed strong potential in gene delivery, thanks to their versatile self-assembly, adaptive and responsive behaviors.
Collapse
Affiliation(s)
- Dandan Su
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| | - Andrei Diaconu
- Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi
- Romania
| | - Mihail Barboiu
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| |
Collapse
|
11
|
Abstract
The optimal clinical exploitation of viruses as gene therapy or oncolytic vectors will require them to be administered intravenously. Strategies must therefore be deployed to enable viruses to survive the harsh neutralizing environment of the bloodstream and achieve deposition within and throughout target tissues or tumor deposits. This chapter describes the genetic and chemical engineering approaches that are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Claudia A P Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Yoo J, Rejinold NS, Lee D, Noh I, Koh WG, Jon S, Kim YC. CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide. ACS Biomater Sci Eng 2019; 6:494-504. [DOI: 10.1021/acsbiomaterials.9b01724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | | | | |
Collapse
|
13
|
Liu S, Gao Y, Zhou D, Zeng M, Alshehri F, Newland B, Lyu J, O'Keeffe-Ahern J, Greiser U, Guo T, Zhang F, Wang W. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat Commun 2019; 10:3307. [PMID: 31341171 PMCID: PMC6656726 DOI: 10.1038/s41467-019-11190-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Current therapies for most neurodegenerative disorders are only symptomatic in nature and do not change the course of the disease. Gene therapy plays an important role in disease modifying therapeutic strategies. Herein, we have designed and optimized a series of highly branched poly(β-amino ester)s (HPAEs) containing biodegradable disulfide units in the HPAE backbone (HPAESS) and guanidine moieties (HPAESG) at the extremities. The optimized polymers are used to deliver minicircle DNA to multipotent adipose derived stem cells (ADSCs) and astrocytes, and high transfection efficiency is achieved (77% in human ADSCs and 52% in primary astrocytes) whilst preserving over 90% cell viability. Furthermore, the top-performing candidate mediates high levels of nerve growth factor (NGF) secretion from astrocytes, causing neurite outgrowth from a model neuron cell line. This synergistic gene delivery system provides a viable method for highly efficient non-viral transfection of ADSCs and astrocytes.
Collapse
Affiliation(s)
- Shuai Liu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Ming Zeng
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Fatma Alshehri
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103AT, Cardiff, UK
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Jonathan O'Keeffe-Ahern
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Udo Greiser
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Fengzhi Zhang
- School of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
14
|
Abstract
Delivery remains a major obstacle restricting the potential action of small molecular drugs as well as novel biologics which cannot readily enter cells without the help of a vector. A successful active delivery process involves three steps: (a) tagging the drug with a vector, (b) effective trafficking of this [drug-vector] conjugate through biological barriers, and finally (c) controlled drug release. While covalent bond formation and/or supramolecular association is involved in the making of the [drug-vector] conjugate, the final step requires precisely a controlled dissociation in order to trigger drug release. Therefore, in pursuit of smart, effective, and nontoxic delivery systems, it has become widely recognized that control over dynamic self-assembly could unleash the efficacy of artificial vectors. In this Account, I discuss our endeavors, and those of colleagues, in the recent implementation of Dynamic Covalent Chemistry (DCvC) in delivery applications. DCvC exploits reversible covalent reactions to generate covalent systems that can self-fabricate, adapt, respond, and fall apart in a controlled fashion. A privileged set of reversible covalent reactions has emerged in the community working on delivery applications and is based on condensation reactions (imine, acylhydrazone, oxime), and disulfide and boronate ester formations. The latest developments making this chemistry particularly attractive for such a DCvC approach are discussed. The rational justifying the potential of DCvC in delivery is based on the principle that using such reversible covalent reactions afford transient [drug-vector] conjugates which form spontaneously and chemoselectively, then adapt and self-correct their structure during self-assembly and trafficking thanks to the dynamic nature of the reversible covalent bonds, and finally respond to physicochemical stimuli such as pH and redox changes, thereby enabling controlled dissociation and concomitant drug release. For these reasons, DCvC has recently emerged as a leverage tool with growing prospects for advancing toward smarter delivery systems. The implementation of DCvC can follow three approaches that are discussed herein: (1) dynamic covalent bioconjugates, involving the transient covalent conjugation with a vector, (2) dynamic covalent vectors, involving the controlled dynamic and adaptive assembly and disassembly of vectors that complex drugs through supramolecular association, and (3) dynamic covalent targeting, involving the transient chemoselective formation of covalent bonds with the constituents of cell membranes. While DCvC has already attracted interest in material sciences, the recent results described in this Account showcase the vast potential of DCvC in biological sciences, and in particular in delivery applications where self-fabricated, adaptive, and responsive devices are of utmost importance.
Collapse
Affiliation(s)
- Sébastien Ulrich
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
15
|
Chen WH, Luo GF, Zhang XZ. Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802725. [PMID: 30260521 DOI: 10.1002/adma.201802725] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Indexed: 05/24/2023]
Abstract
Recently, diverse functional materials that take subcellular structures as therapeutic targets are playing increasingly important roles in cancer therapy. Here, particular emphasis is placed on four kinds of therapies, including chemotherapy, gene therapy, photodynamic therapy (PDT), and hyperthermal therapy, which are the most widely used approaches for killing cancer cells by the specific destruction of subcellular organelles. Moreover, some non-drug-loaded nanoformulations (i.e., metal nanoparticles and molecular self-assemblies) with a fatal effect on cells by influencing the subcellular functions without the use of any drug molecules are also included. According to the basic principles and unique performances of each treatment, appropriate strategies are developed to meet task-specific applications by integrating specific materials, ligands, as well as methods. In addition, the combination of two or more therapies based on multifunctional nanostructures, which either directly target specific subcellular organelles or release organelle-targeted therapeutics, is also introduced with the intent of superadditive therapeutic effects. Finally, the related challenges of critical re-evaluation of this emerging field are presented.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
16
|
Xie L, Ding X, Budry R, Mao G. Layer-by-layer DNA films incorporating highly transfecting bioreducible poly(amido amine) and polyethylenimine for sequential gene delivery. Int J Nanomedicine 2018; 13:4943-4960. [PMID: 30214199 PMCID: PMC6124456 DOI: 10.2147/ijn.s162353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The layer-by-layer (LbL) assembly method offers a molecular level control of the amount and spatial distribution of bioactive molecules. However, successful clinical translation of LbL film technology will most certainly require a better understanding and control of not only the film assembly process, but also film disassembly kinetics in physiologic conditions. Purpose This work focuses on the understanding and control of degradation properties of LbL films for localized gene delivery. Methods Bioreducible poly(amido amine)s (PAAs) containing cystaminebisacrylamide (CBA), methylenebisacrylamide, and 5-amino-1-pentanol (APOL) were synthesized by Michael addition polymerization for the construction of bioreducible LbL films capable of sequential gene delivery. Results The synthesized PAAs were screened for desirable buffering capacity, cell transfection, and cytotoxicity characteristics together with 25 kDa branched polyethylenimine (PEI) and cross-linked 800 Da PEI. By screening the various polycations we were able to identify a copolymer of CBA and APOL for the subsequent construction of the LbL films. By incorporating a highly transfecting polycation and a nondiffusing polycation we were able to improve the overall transfection of HEK293 and MC3T3 cells from the bioreducible LbL films. We also demonstrated the dual-stage release and transfection of two different DNAs from the LbL films. Conclusion The results indicate that LbL films consisting of bioreducible PAAs and non-diffusing polyelectrolytes have excellent degradation properties for the development of LbL coating technology for localized gene delivery applications.
Collapse
Affiliation(s)
- Lingxiao Xie
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| | - Xiong Ding
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| | - Rachel Budry
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
17
|
Chen G, Wang K, Wang Y, Wu P, Sun M, Oupický D. Fluorination Enhances Serum Stability of Bioreducible Poly(amido amine) Polyplexes and Enables Efficient Intravenous siRNA Delivery. Adv Healthc Mater 2018; 7. [PMID: 29280311 DOI: 10.1002/adhm.201700978] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/04/2017] [Indexed: 01/09/2023]
Abstract
The use of small interfering RNA (siRNA) in cancer treatment has been limited by the lack of effective systemic delivery methods. Although synthetic polycations have been widely explored in siRNA delivery, polycation/siRNA polyplexes often suffer from insufficient stability in vivo. Here, rationally designed siRNA delivery systems that meet the requirements for systemic siRNA delivery to distant tumors are reported. The hypothesis that modular design of delivery systems based on poly(amido amine)s that combine fluorination for systemic stability with bioreducibility for easy intracellular siRNA release, and PEGylation for improved safety and colloidal stability will overcome problems with contradicting siRNA delivery demands is tested. PEGylated, fluorinated, and bioreducible copolymers (PEG-PCD-F) with different degree of fluorination are thus synthesized. The fluorinated copolymers readily formed polyplexes with siRNA and achieved greatly improved gene silencing efficacy in multiple cell lines in vitro when compared with nonfluorinated controls. The results show fluorination-induced enhancement of stability, cellular uptake, and endosomal escape of the polyplexes, while exhibiting efficient siRNA release in reducing intracellular environment. PEG-PCD-F polyplexes with siRNA against Bcl2 inhibit breast tumor growth following systemic intravenous administration. The results provide strong evidence of successful combination of bioreducibility with fluorination and PEGylation to achieve systemic siRNA polyplex delivery.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Natural Medicines; Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines; Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Yixin Wang
- State Key Laboratory of Natural Medicines; Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Pengkai Wu
- State Key Laboratory of Natural Medicines; Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines; Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - David Oupický
- State Key Laboratory of Natural Medicines; Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
- Center for Drug Delivery and Nanomedicine; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198 USA
| |
Collapse
|
18
|
Deen GR, Loh XJ. Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. Gels 2018; 4:E13. [PMID: 30674789 PMCID: PMC6318685 DOI: 10.3390/gels4010013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Stimuli-responsive, smart, intelligent, or environmentally sensitive polymers respond to changes in external stimuli such as pH, temperature, ionic strength, surfactants, pressure, light, biomolecules, and magnetic field. These materials are developed in various network architectures such as block copolymers, crosslinked hydrogels, nanogels, inter-penetrating networks, and dendrimers. Stimuli-responsive cationic polymers and hydrogels are an interesting class of "smart" materials that respond reversibly to changes in external pH. These materials have the ability to swell extensively in solutions of acidic pH and de-swell or shrink in solutions of alkaline pH. This reversible swelling-shrinking property brought about by changes in external pH conditions makes these materials useful in a wide range of applications such as drug delivery systems and chemical sensors. This article focuses mainly on the properties of these interesting materials and their applications in drug delivery systems.
Collapse
Affiliation(s)
- G Roshan Deen
- Soft Materials Laboratory, Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1-Nanyang Walk, Singapore 637616, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2-Fusionopolis Way, Singapore 138634, Singapore.
| |
Collapse
|
19
|
Chen Y, Li J, Oupický D. Conjugate Polyplexes with Anti-Invasive Properties and Improved siRNA Delivery In Vivo. Bioconjug Chem 2018; 29:296-305. [PMID: 29338191 DOI: 10.1021/acs.bioconjchem.7b00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study reports on a simple method to prepare siRNA-polycation conjugate polyplexes by in situ thiol-disulfide exchange reaction. The conjugate polyplexes are prepared using thiol-terminated siRNA and a bioreducible branched polycationic inhibitor of the CXCR4 chemokine receptor (rPAMD). The rPAMD-SS-siRNA conjugate polyplexes exhibit improved colloidal stability and resistance against disassembly with heparin, serum, and physiological salt concentrations when compared with control conventional rPAMD/siRNA polyplexes. Coating the polyplexes with human serum albumin masks the positive surface charge and contributes to the enhanced in vitro gene silencing and improved safety in vivo. The conjugate polyplexes display improved in vivo reporter gene silencing following intravenous injection in tumor-bearing mice. Because the conjugate polyplexes retained the ability of rPAMD to inhibit CXCR4 and restrict cancer cell invasion, the developed systems show promise for future combination anti-metastatic siRNA therapies of cancer.
Collapse
Affiliation(s)
- Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
20
|
Xu C, Guan X, Lin L, Wang Q, Gao B, Zhang S, Li Y, Tian H. pH-Responsive Natural Polymeric Gene Delivery Shielding System Based on Dynamic Covalent Chemistry. ACS Biomater Sci Eng 2017; 4:193-199. [PMID: 33418689 DOI: 10.1021/acsbiomaterials.7b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel pH-responsive system based on aldehyde-bearing dextran derivatives (ODEX or FDEX) was designed to use as gene carrier shielding. Through pH sensitive Schiff base bonds between amino groups of PEI (in PEI/DNA polyplex) and aldehyde groups of dextran derivatives, PEI/DNA polyplex could be shielded and further condensed to obtain an effectively decreasing ζ-potential with smaller size. Schiff base bonds were pH-responsive, which were relatively stable in neutral environment but were deformed in slightly acidic and acidic environments. Through use of this characteristic, the PEI/DNA polyplex was effectively shielded during circulation in the body, and upon arrival at the tumor, the slightly acid pH triggered the breaking of Schiff base bonds to expose the positive PEI/DNA polyplex, which further interacted with tumor cell membranes, achieving efficient gene expression. Use of such characteristics could effectively address the high transfection efficiency versus stability dilemma of gene carriers. FDEX/PEI/DNA nanoparticles not only mediate higher cellular uptake and transfection efficiency in vitro but also effectively accumulate in tumors with gene expression in vivo higher than that of the ODEX analogues. As a result, this pH-responsive system is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Chang Xu
- Changchun University of Science and Technology, WeiXing Road 7989, Changchun 130022, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Xiuwen Guan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Qing Wang
- Changchun University of Science and Technology, WeiXing Road 7989, Changchun 130022, China
| | - Bo Gao
- Changchun University of Science and Technology, WeiXing Road 7989, Changchun 130022, China
| | - Shuhua Zhang
- Changchun University of Science and Technology, WeiXing Road 7989, Changchun 130022, China
| | - Yanhui Li
- Changchun University of Science and Technology, WeiXing Road 7989, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| |
Collapse
|
21
|
Wang S, Wang F, Zhang Q, Cheng Y. A core–shell structured polyplex for efficient and non-toxic gene delivery. J Mater Chem B 2017; 5:5101-5108. [DOI: 10.1039/c7tb00690j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We developed a core–shell polyplex with minimal high generation dendrimer to condense DNA and low-molecular-weight linear polyethylenimine coated on the core. The polyplex represented both high transfection efficacy and low toxicity.
Collapse
Affiliation(s)
- Saisai Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Fei Wang
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine
- Ruijin Hospital
- Jiao Tong University School of Medicine
- Shanghai 200025
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
22
|
Ahmed M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater Sci 2017; 5:2188-2211. [DOI: 10.1039/c7bm00584a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptide, polypeptide and polymer–peptide hybrid based nucleic acid therapeutics (NAT).
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Chemistry & School of Sustainable Design and Engineering
- University of Prince Edward Island
- Charlottetown
- Canada
| |
Collapse
|
23
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
DeRosa F, Guild B, Karve S, Smith L, Love K, Dorkin JR, Kauffman KJ, Zhang J, Yahalom B, Anderson DG, Heartlein MW. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 2016; 23:699-707. [PMID: 27356951 PMCID: PMC5059749 DOI: 10.1038/gt.2016.46] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice.
Collapse
Affiliation(s)
- F DeRosa
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Guild
- Shire Pharmaceuticals, Lexington, MA, USA
| | - S Karve
- Shire Pharmaceuticals, Lexington, MA, USA
| | - L Smith
- Shire Pharmaceuticals, Lexington, MA, USA
| | - K Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Zhang
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Yahalom
- Biomedical Research Models, Inc., Worcester, MA, USA
| | - D G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
25
|
Wang LH, Wu T, Wu DC, You YZ. Bioreducible Gene Delivery Vector Capable of Self-Scavenging the Intracellular-Generated ROS Exhibiting High Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19238-19244. [PMID: 27420138 DOI: 10.1021/acsami.6b04327] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic polymer vectors have received increasing attention for gene delivery in biotechnology over the past 2 decades, but few polymer vectors were used in clinical applications due to their low gene transfection efficacy. One of the major reasons is that the conventional cationic polymers can induce the increasing of intracellular reactive oxygen species (ROS) concentration and oxidative stress, which reduces the gene transfection efficacy. Here, we create a novel class of thioether dendron-branched polymer conjugate and self-assemble this conjugate into bioreducible cationic nanomicelles with disulfide bond connecting the thioether core to the cationic shell. The obtained nanomicelles have a unique ROS self-scavenging ability, thereby dramatically improving gene transfection efficacy.
Collapse
Affiliation(s)
- Long-Hai Wang
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Ting Wu
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - De-Cheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Ye-Zi You
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Zhang W, Müller K, Kessel E, Reinhard S, He D, Klein PM, Höhn M, Rödl W, Kempter S, Wagner E. Targeted siRNA Delivery Using a Lipo-Oligoaminoamide Nanocore with an Influenza Peptide and Transferrin Shell. Adv Healthc Mater 2016; 5:1493-504. [PMID: 27109317 DOI: 10.1002/adhm.201600057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Developing RNA-interference-based therapeutic approaches with efficient and targeted cytosolic delivery of small interfering RNA (siRNA) is remaining a critical challenge since two decades. Herein, a multifunctional transferrin receptor (TfR)-targeted siRNA delivery system (Tf&INF7) is designed based on siRNA complexes formed with the cationic lipo-oligoamino amide 454, sequentially surface-modified with polyethylene glycol-linked transferrin (Tf) for receptor targeting and the endosomolytic peptide INF7 for efficient cytosolic release of the siRNA. Effective Tf&INF7 polyplex internalization and target gene silencing are demonstrated for the TfR overexpressing tumor cell lines (K562, D145, and N2a). Treatment with antitumoral EG5 siRNA results in a block of tumor cell growth and triggered apoptosis. Tf-modified polyplexes are far more effective than the corresponding albumin- (Alb) or nonmodified 454 polyplexes. Competition experiments with excess of Tf demonstrate TfR target specificity. As alternative to the ligand Tf, an anti-murine TfR antibody is incorporated into the polyplexes for specific targeting and gene silencing in the murine N2a cell line. In vivo distribution studies not only demonstrate an enhanced tumor residence of siRNA in N2a tumor-bearing mice with the Tf&INF7 as compared to the 454 polyplex group but also a reduced siRNA nanoparticle stability limiting the in vivo performance.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Sören Reinhard
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Susanne Kempter
- Department of Physics Ludwig‐Maximilians‐Universität München Geschwister‐Scholl‐Platz 1 80539 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| |
Collapse
|
27
|
Yoo J, Lee D, Gujrati V, Rejinold NS, Lekshmi KM, Uthaman S, Jeong C, Park IK, Jon S, Kim YC. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. J Control Release 2016; 246:142-154. [PMID: 27170226 DOI: 10.1016/j.jconrel.2016.04.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/23/2016] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
Cell-penetrating peptides (CPPs) have been widely used to deliver nucleic acid molecules. Generally, CPPs consisting of short amino acid sequences have a linear structure, resulting in a weak complexation and low transfection efficacy. To overcome these drawbacks, a novel type of CPP is required to enhance the delivery efficacy while maintaining its safe use at the same time. Herein, we report that a bioreducible branched poly-CPP structure capable of responding to reducing conditions attained both outstanding delivery effectiveness and selective gene release in carcinoma cells. Branched structures provide unusually strong electrostatic attraction between DNA and siRNA molecules, thereby improving the transfection capability through a tightly condensed form. We designed a modified type of nona-arginine (mR9) and synthesized a branched-mR9 (B-mR9) using disulfide bonds. A novel B-mR9/pDNA polyplex exhibited redox-cleavability and high transfection efficacy compared to conventional CPPs, with higher cell viability as well. B-mR9/VEGF siRNA polyplex exhibited significant serum stability and high gene-silencing effects in vitro. Furthermore, the B-mR9 polyplex showed outstanding tumor accumulation and inhibition ability in vivo. The results suggest that the bioreducible branched poly CPP has great potential as a gene delivery platform.
Collapse
Affiliation(s)
- Jisang Yoo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - DaeYong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Vipul Gujrati
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - N Sanoj Rejinold
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kamali Manickavasagam Lekshmi
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 501-746, Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 501-746, Republic of Korea
| | - Chanuk Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 501-746, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
28
|
Chen S, Rong L, Lei Q, Cao PX, Qin SY, Zheng DW, Jia HZ, Zhu JY, Cheng SX, Zhuo RX, Zhang XZ. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2015; 77:149-63. [PMID: 26599622 DOI: 10.1016/j.biomaterials.2015.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
To improve the tumor therapeutic efficiency and reduce undesirable side effects, ternary FK/p53/PEG-PLL(DA) complexes with a detachable surface shielding layer were designed. The FK/p53/PEG-PLL(DA) complexes were fabricated by coating the folate incorporated positively charged FK/p53 complexes with charge-switchable PEG-shield (PEG-PLL(DA)) through electrostatic interaction. At the physiological pH 7.4 in the bloodstream, PEG-PLL(DA) could extend the circulating time by shielding the positively charged FK/p53 complexes. After the accumulation of the FK/p53/PEG-PLL(DA) complexes in tumor sites, tumor-acidity-triggered charge switch led to the detachment of PEG-PLL(DA) from the FK/p53 complexes, and resulted in efficient tumor cell entry by folate-mediated uptake and electrostatic attraction. Stimulated by the high content glutathione (GSH) in cytoplasm, the cleavage of disulfide bond resulted in the liberation of proapoptosis peptide C-KLA(TPP) and the p53 gene, which exerted the combined tumor therapy by regulating both intrinsic and extrinsic apoptotic pathways. Both in vitro and in vivo studies confirmed that the ternary detachable complexes FK/p53/PEG-PLL(DA) could enhance antitumor efficacy and reduce adverse effects to normal cells. These findings indicate that the tumor-triggered decomplexation of FK/p53/PEG-PLL(DA) supplies a useful strategy for targeting delivery of different therapeutic agents in synergetic anticancer therapy.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Lei Rong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Peng-Xi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Yong Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
29
|
Sawant RT, Stevens MY, Odell LR. Rapid Access to Polyfunctionalized 3,4-Dihydroquinazolinones through a SequentialN-Acyliminium Ion Mannich Reaction Cascade. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration. Biotechnol J 2015; 10:1370-89. [DOI: 10.1002/biot.201400841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
31
|
Chen S, Rong L, Jia HZ, Qin SY, Zeng X, Zhuo RX, Zhang XZ. Co-delivery of proapoptotic peptide and p53 DNA by reduction-sensitive polypeptides for cancer therapy. Biomater Sci 2015. [DOI: 10.1039/c5bm00046g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The xPolyR8–KLA(TPP)/p53 complex releases the p53 gene and C-KLA(TPP) in the cytoplasm, and initiates a more efficient cell apoptosis due to the regulation of both apoptotic pathways through p53 and C-KLA(TPP).
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Lei Rong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Si-Yong Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| |
Collapse
|
32
|
Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M. Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra07424j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Facile synthesis of physically cross-linked, pH responsive hydrogels as potential carriers for controlled drug delivery.
Collapse
Affiliation(s)
- Deepa Suhag
- Biomimetic and Nanostructured Materials Research Laboratory
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Rohan Bhatia
- Biomimetic and Nanostructured Materials Research Laboratory
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Souvik Das
- Biomimetic and Nanostructured Materials Research Laboratory
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Adeeba Shakeel
- Biomimetic and Nanostructured Materials Research Laboratory
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Abhisek Ghosh
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | - Anirudha Singh
- Faculty of Translational Tissue Engineering Centre
- Dept. of Urology
- Johns Hopkins School of Medicine
- Baltimore
- USA
| | - O. P. Sinha
- Amity Institute of Nanotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Monalisa Mukherjee
- Biomimetic and Nanostructured Materials Research Laboratory
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| |
Collapse
|
33
|
Kostka L, Šubr V, Laga R, Chytil P, Ulbrich K, Seymour LW, Etrych T. Nanotherapeutics shielded with a pH responsive polymeric layer. Physiol Res 2015; 64:S29-40. [PMID: 26447593 DOI: 10.33549/physiolres.933139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efficient intravenous delivery is the greatest single hurdle, with most nanotherapeutics frequently found to be unstable in the harsh conditions of the bloodstream. In the case of nanotherapeutics for gene delivery, viral vectors are often avidly recognized by both the innate and the adaptive immune systems. So, most modern delivery systems have benefited from being coated with hydrophilic polymers. Self-assembling delivery systems can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly, gene delivery viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Polymers that start degrading under acidic conditions are increasingly investigated as a pathway to trigger the release of drugs or genes once the carrier reaches a slightly acidic tumor environment or after the carrier has been taken up by cells, resulting in the localization of the polymer in acidic endosomes and lysosomes. Advances in the design of acid-degradable drug and gene delivery systems have been focused and discussed in this article with stress placed on HPMA-based copolymers. We designed a system that is able to "throw away" the polymer coat after successful transport of the vector into a target cell. Initial biological studies were performed and it was demonstrated that this principle is applicable for real adenoviral vectors. It was shown that the transfection ability of coated virus at pH 7.4 is 75 times lower then transfection at pH 5.4.
Collapse
Affiliation(s)
- L Kostka
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhou J, Li Y, Dong H, Yuan H, Ren T, Li Y. Effect of monomer sequence of poly(histidine/lysine) catiomers on gene packing capacity and delivery efficiency. RSC Adv 2015. [DOI: 10.1039/c4ra13785j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This work presents a novel method to synthesize reducible polycations with specific monomer sequence, and provides new insight on how a monomer sequence of the polymeric catiomer will affect its gene packing capacity and delivery efficiency.
Collapse
Affiliation(s)
- Jiashan Zhou
- School of Materials and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Yan Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering and Nano Science
- Tongji University School of Medicine
- Shanghai 200120
- China
| | - Haiqing Dong
- Shanghai East Hospital
- The Institute for Biomedical Engineering and Nano Science
- Tongji University School of Medicine
- Shanghai 200120
- China
| | - Hua Yuan
- School of Materials and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Tianbin Ren
- School of Materials and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Yongyong Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering and Nano Science
- Tongji University School of Medicine
- Shanghai 200120
- China
| |
Collapse
|
35
|
Chen X, Tian H, Guan X. Polymeric Gene Carriers. BIOINSPIRED AND BIOMIMETIC POLYMER SYSTEMS FOR DRUG AND GENE DELIVERY 2014:171-202. [DOI: 10.1002/9783527672752.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Menon S, Ongungal RM, Das S. Photoresponsive Glycopolymer Aggregates as Controlled Release Systems. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sajith Menon
- Photosciences and Photonics Section, Chemical Sciences and Technology Division; National Institute for Interdisciplinary Science and Technology (NIIST), CSIR; Trivandrum 695 019 Kerala India
| | - Rahul M. Ongungal
- Photosciences and Photonics Section, Chemical Sciences and Technology Division; National Institute for Interdisciplinary Science and Technology (NIIST), CSIR; Trivandrum 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110001 India
| | - Suresh Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division; National Institute for Interdisciplinary Science and Technology (NIIST), CSIR; Trivandrum 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110001 India
| |
Collapse
|
37
|
Ji R, Cheng J, Yang T, Song C, Li L, Du FS, Li ZC. Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules 2014; 15:3531-9. [DOI: 10.1021/bm500711c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ran Ji
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Cheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Yang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng−Cheng Song
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem 2014. [DOI: 10.1039/c4py00631c] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Oupický D, Li J. Bioreducible polycations in nucleic acid delivery: past, present, and future trends. Macromol Biosci 2014; 14:908-22. [PMID: 24678057 PMCID: PMC4410047 DOI: 10.1002/mabi.201400061] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Polycations that are degradable by reduction of disulfide bonds are developed for applications in delivery of nucleic acids. This Feature Article surveys methods of synthesis of bioreducible polycations and discusses current understanding of the mechanism of action of bioreducible polyplexes. Emphasis is placed on the relationship between the biological redox environment and toxicity, trafficking, transfection activity, and in vivo behavior of bioreducible polycations and polyplexes.
Collapse
Affiliation(s)
- David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Durham Research Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| | | |
Collapse
|
40
|
Sharma R, Nisakar D, Shivpuri S, Ganguli M. Contrasting effects of cysteine modification on the transfection efficiency of amphipathic peptides. Biomaterials 2014; 35:6563-75. [PMID: 24816284 DOI: 10.1016/j.biomaterials.2014.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
Delivery of DNA to cells remains a key challenge towards development of gene therapy. A better understanding of the properties involved in stability and transfection efficiency of the vector could critically contribute to the improvement of delivery vehicles. In the present work we have chosen two peptides differing only in amphipathicity and explored how presence of cysteine affects DNA uptake and transfection efficiency. We report an unusual observation that addition of cysteine selectively increases transfection efficiency of secondary amphipathic peptide (Mgpe-9) and causes a drop in the primary amphipathic peptide (Mgpe-10). Our results point the effect of cysteine is dictated by the importance of physicochemical properties of the carrier peptide. We also report a DNA delivery agent Mgpe-9 exhibiting high transfection efficiency in multiple cell lines (including hard-to-transfect cell lines) with minimal cytotoxicity which can be further explored for in vivo applications.
Collapse
Affiliation(s)
- Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Shivangi Shivpuri
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India.
| |
Collapse
|
41
|
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190:424-39. [PMID: 24746626 DOI: 10.1016/j.jconrel.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/18/2023]
Abstract
Most currently available cationic polymers have significant acute toxicity concerns such as cellular toxicity, aggregation of erythrocytes, and entrapment in the lung capillary bed, largely due to their poor biocompatibility and non-degradability under physiological conditions. To develop more intelligent polymers, disulfide bonds are introduced in the design of biodegradable polymers. Herein, the sustained innovations of biomimetic nano-sized constructs with bioreducible poly(disulfide amine)s demonstrate a viable clinical tool for the treatment of cardiovascular disease, anemia, diabetes, and cancer.
Collapse
Affiliation(s)
- Young Sook Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA.
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA; Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Adsorption and desorption of DNA on bovine serum albumin modified gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Park H, Nichols JW, Kang HC, Bae YH. Bioreducible polyspermine as less toxic and efficient gene carrier. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongsuk Park
- Department of Bioengineering; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
| | - Joseph W. Nichols
- Department of Bioengineering; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
| | - Han Chang Kang
- Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy; The Catholic University of Korea; 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - You Han Bae
- Department of Bioengineering; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
- Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center; 7-50 Songdo-dong Yeonsu-gu Incheon 406-840 Republic of Korea
| |
Collapse
|
44
|
Chen J, Shi M, Liu P, Ko A, Zhong W, Liao W, Xing MM. Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 2014; 35:1240-8. [DOI: 10.1016/j.biomaterials.2013.10.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/19/2013] [Indexed: 01/21/2023]
|
45
|
Barnard A, Posocco P, Fermeglia M, Tschiche A, Calderon M, Pricl S, Smith DK. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA. Org Biomol Chem 2013; 12:446-55. [PMID: 24263553 DOI: 10.1039/c3ob42202j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity--demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
A photo-degradable gene delivery system for enhanced nuclear gene transcription. Biomaterials 2013; 35:1040-9. [PMID: 24172855 DOI: 10.1016/j.biomaterials.2013.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/08/2013] [Indexed: 11/21/2022]
Abstract
There currently exists a significant gap in our understanding of how the detailed chemical characteristics of polycation gene carriers influence their delivery performances in overcoming an important cellular-level transport barrier, i.e., intranuclear gene transcription. In this study, a UV-degradable gene carrier material (ENE4-1) was synthesized by crosslinking low molecular weight branched polyethylenimine (bPEI-2k) molecules using UV-cleavable o-nitrobenzyl urethane (NBU) as the linker molecule. NBU degrades upon exposure to mild UV irradiation. Therefore, this UV-degradable carrier allows us to control the chemical characteristics of the polymer/DNA complex (polyplex) particles at desired locations within the intracellular environment. By using this photolytic DNA carrier, we found that the exact timing of the UV degradation significantly influences the gene transfection efficiencies of ENE4-1/DNA(pGL2) polyplexes in HeLa cells. Interestingly, even if the polyplexes were UV-degraded at different intracellular locations/times, their nuclear entry efficiency was not influenced by the location/timing of UV degradation. The UV treatment did not influence the size or binding strength of the polyplexes. However, we confirmed that the degradation of the carrier molecules impacts the chemical characteristics of the polyplexes (it produces carbamic acid and nitrosobenzyl aldehyde groups on ENE4-1). We believe that these anionic acid groups enhance the interaction of the polyplexes with nuclear transcription proteins and thus the final gene expression levels; this effect was found to occur, even though UV irradiation itself has a general effect of reducing transfection efficiencies. Excess (uncomplexed) ENE4-1 polymers appear to not play any role in the UV-enhanced gene transcription phenomenon.
Collapse
|
47
|
An S, Park JS. Nonviral Gene Delivery by a Novel Protein Transduction Domain. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.9.2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Cass P, Knower W, Hinton T, Shi S, Grusche F, Tizard M, Gunatillake P. Synthesis and evaluation of degradable polyurea block copolymers as siRNA delivery agents. Acta Biomater 2013; 9:8299-307. [PMID: 23684725 DOI: 10.1016/j.actbio.2013.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/01/2013] [Accepted: 05/09/2013] [Indexed: 01/08/2023]
Abstract
Chain extension by diisocyanate condensation provides a versatile and convenient means for preparing block copolymers. We have utilized this chemistry to prepare reducible multiblock polycations for siRNA delivery. This approach, an alternative to oxidative coupling, was suitable for preparing multiblock polycations with defined molecular weight and architecture. The polymer, PEG-b-multi-(polyhexylurea-co-oligo-L-lysine)-b-PEG, was capable of electrostatically condensing siRNA to form nano-sized polyplexes across a broad compositional range. We demonstrated that the polyplexes enter the cells via endocytosis and interact with the endosome membrane leading to destabilization and hence endosome escape. Another feature of these polymers is their multiple intra-chain disulfide linkages. This enables weakening of the polyplex via chain scission within the cytosol's reductive environment. In addition to the controlled preparation of the polymer, the polyplexes were capable of delivering siRNA in vitro to silence greater than 50% green fluorescent protein expression with negligible toxicity.
Collapse
|
49
|
Supramolecular pseudo-block gene carriers based on bioreducible star polycations. Biomaterials 2013; 34:5411-22. [DOI: 10.1016/j.biomaterials.2013.03.092] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
|
50
|
Qu W, Chen S, Ren S, Jiang XJ, Zhuo RX, Zhang XZ. A bioreducible polypeptide for efficient gene transfection both in vitro and in vivo. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1270-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|