1
|
Sizun C. Biophysical Reviews' "Meet the Editors Series": a profile of Christina Sizun. Biophys Rev 2023; 15:301-304. [PMID: 37396447 PMCID: PMC10310629 DOI: 10.1007/s12551-023-01071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
This edition of the continuing "Biophysical Reviews Meet the Editors Series" introduces Dr. Christina Sizun, physical chemist, member of the Biophysical Reviews editorial board and current Treasurer of the International Union for Pure and Applied Biophysics (IUPAB).
Collapse
Affiliation(s)
- Christina Sizun
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Salnikov E, Bechinger B. Effect of lipid saturation on the topology and oligomeric state of helical membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184001. [PMID: 35817122 DOI: 10.1016/j.bbamem.2022.184001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural liquid crystalline membranes are made up of many different lipids carrying a mixture of saturated and unsaturated fatty acyl chains. Whereas in the past considerable attention has been paid to cholesterol content, the phospholipid head groups and the membrane surface charge the detailed fatty acyl composition was often considered less important. However, recent investigations indicate that the detailed fatty acyl chain composition has pronounced effects on the oligomerization of the transmembrane helical anchoring domains of the MHC II receptor or the membrane alignment of the cationic antimicrobial peptide PGLa. In contrast the antimicrobial peptides magainin 2 and alamethicin are less susceptible to lipid saturation. Using histidine-rich LAH4 designer peptides the high energetic contributions of lipid saturation in stabilizing transmembrane helical alignments are quantitatively evaluated. These observations can have important implications for the biological regulation of membrane proteins and should be taken into considerations during biophysical or structural experiments.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
3
|
Marquette A, Leborgne C, Schartner V, Salnikov E, Bechinger B, Kichler A. Peptides derived from the C-terminal domain of HIV-1 Viral Protein R in lipid bilayers: Structure, membrane positioning and gene delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183149. [PMID: 31816324 DOI: 10.1016/j.bbamem.2019.183149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Viral protein R (Vpr) is a small accessory protein of 96 amino acids that is present in Human and simian immunodeficiency viruses. Among the very different properties that Vpr possesses we can find cell penetrating capabilities. Based on this and on its capacity to interact with nucleic acids we previously investigated the DNA transfection properties of Vpr and subfragments thereof. We found that fragments of the C-terminal helical domain of Vpr are able to deliver efficiently plasmid DNA into different cell lines. As the amphipathic helix may play a role in the interactions with membranes, we investigated whether insertion of a proline residue in the α-helix modifies the transfection properties of Vpr. Unexpectedly, we found that the resulting Vpr55-82 Pro70 peptide was even more efficient than wild type Vpr55-82 in the gene delivery assays. Using circular dichroism, light scattering and solid-state NMR techniques, we characterized the secondary structure and interactions of Vpr and several mutants with model membranes. A model is proposed where the proline shifts the dissociation equilibrium of the peptide-cargo complex and thereby its endosomal release.
Collapse
Affiliation(s)
- Arnaud Marquette
- Université de Strasbourg, CNRS, UMR7177, IUF, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | | | - Vanessa Schartner
- Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS - Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Evgeniy Salnikov
- Université de Strasbourg, CNRS, UMR7177, IUF, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg, CNRS, UMR7177, IUF, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS - Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
4
|
Salnikov ES, Aussenac F, Abel S, Purea A, Tordo P, Ouari O, Bechinger B. Dynamic Nuclear Polarization / solid-state NMR of membranes. Thermal effects and sample geometry. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:70-76. [PMID: 30995597 DOI: 10.1016/j.ssnmr.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T1 relaxation, microwave ON versus OFF signal intensities and DNP effect. The data are suggestive that for membranes the speed of cooling has a pronounced effect on the membrane properties and concomitantly the distribution of biradicals within the sample.
Collapse
Affiliation(s)
| | | | - Sebastian Abel
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | | | - Paul Tordo
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | - Olivier Ouari
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg / CNRS, UMR7177, 67070, Strasbourg, France.
| |
Collapse
|
5
|
Salnikov ES, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, Ouari O, Tordo P, Fedotenko I, Engelke F, Bechinger B. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers. J Phys Chem B 2015; 119:14574-83. [PMID: 26487390 DOI: 10.1021/acs.jpcb.5b07341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| | - Hiba Sarrouj
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France.,Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | | | - Christopher Aisenbrey
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| | - Armin Purea
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Fabien Aussenac
- Bruker BioSpin, 34, rue de l'Industrie, 67166 Wissembourg, France
| | - Olivier Ouari
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Paul Tordo
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Illya Fedotenko
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Frank Engelke
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| |
Collapse
|
6
|
Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:48-85. [PMID: 26282196 DOI: 10.1016/j.pnmrs.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Oriented-sample solid-state NMR represents one of few experimental methods capable of characterising the membrane-bound conformation of proteins in the cell membrane. Since the technique was developed 25 years ago, the technique has been applied to study the structure of helix bundle membrane proteins and antimicrobial peptides, characterise protein-lipid interactions, and derive information on dynamics of the membrane anchoring of membrane proteins. We will review the major developments in various aspects of oriented-sample solid-state NMR, including sample-preparation methods, pulse sequences, theory required to interpret the experiments, perspectives for and guidelines to new experiments, and a number of representative applications.
Collapse
Affiliation(s)
- Sara K Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
Hansen SK, Vestergaard M, Thøgersen L, Schiøtt B, Nielsen NC, Vosegaard T. Lipid Dynamics Studied by Calculation of 31P Solid-State NMR Spectra Using Ensembles from Molecular Dynamics Simulations. J Phys Chem B 2014; 118:5119-29. [DOI: 10.1021/jp5000304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sara K. Hansen
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mikkel Vestergaard
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lea Thøgersen
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
- Center
for Membrane Pumps in Cells and Diseases, Bioinformatics Research
Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Birgit Schiøtt
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Niels Chr. Nielsen
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Abstract
Hydramacin-1 (HM1) from the metazoan Hydra exerts antimicrobial activity against a wide range of bacterial strains. Notably, HM1 induces the aggregation of bacterial cells, accompanied by precipitation. To date, the proposed mechanism of peptide-lipid interaction, termed the barnacle model, has not been described on the molecular level. Here, we show by biochemical and biophysical techniques that the lipid-peptide interactions of HM1 are initiated by electrostatic and hydrophobic effects, in particular, by tryptophan and neighboring polar amino acid residues that cause an interfacial localization of the peptide between two self-contained lipid bilayers. The high binding constants of HM1 upon lipid interaction are in the range of other potent antimicrobial peptides, e.g., magainin, and can be reasonably explained by two distinct epitopes on the surface of the peptide's global structure, which both contain SWT(K/R) motifs. The residues of this motif favor localization of the peptide in the head group region of phospholipid bilayers up to a penetration depth of 4 Å and a minor participation of the lipids' hydrocarbon regions. Our results expand the knowledge about the molecular modes of action antimicrobial peptides use to tackle their target cells. Furthermore, the aggregation of living bacteria by HM1 was observed for a broad range of Gram-positive and Gram-negative bacteria. Therefore, the detailed view of peptide-lipid interactions described by the barnacle model consolidates it among the established models.
Collapse
|
9
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
10
|
Nomura K, Lintuluoto M, Morigaki K. Hydration and temperature dependence of 13C and 1H NMR spectra of the DMPC phospholipid membrane and complete resonance assignment of its crystalline state. J Phys Chem B 2011; 115:14991-5001. [PMID: 22044314 DOI: 10.1021/jp208958a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhomogeneous line broadening due to conformational distributions of molecules is one of the troublesome problems in solid-state NMR spectroscopy. The best possible way to avoid it is to crystallize the sample. Here, we present a highly resolved (13)C cross-polarization (CP) magic angle spinning (MAS) NMR spectrum of the highly ordered crystalline 1,2-dimyrystoyl-sn-glycero-3-phosphocholine (DMPC) and completely assigned it using two-dimensional (2D) solid-state NMR spectra, dipolar heteronuclear correlation (HETCOR) spectra, scalar heteronuclear J coupling based chemical shift correlation (MAS-J-HMQC) spectra, and Dipolar Assisted Rotational Resonance (DARR) spectra. A comparison between assigned chemical shift values by solid-state NMR in this study and the calculated chemical shift values for X-ray crystal DMPC structures shows good agreement, indicating that the two isomers in the crystalline DMPC take the same conformation as the X-ray crystal structure. The phase diagram of the low hydration level of DMPC (3 ≤ n(W) ≤ 12) determined by (1)H and (13)C NMR spectra indicates that DMPC takes a crystalline state only in a very narrow region around n(W) = 4 and T < 313 K. These findings provide us with conformational information on crystalline DMPC and the physical properties of DMPC at a low hydration level and can possibly help us obtain a highly resolved solid-state NMR spectrum of microcrystalline membrane-associated protein samples.
Collapse
Affiliation(s)
- Kaoru Nomura
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Mishima-Gun, Osaka, Japan.
| | | | | |
Collapse
|
11
|
Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1957-74. [DOI: 10.1016/j.bbamem.2011.03.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
|
12
|
Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B. Solid-State NMR Spectroscopy of Oriented Membrane Polypeptides at 100 K with Signal Enhancement by Dynamic Nuclear Polarization. J Am Chem Soc 2010; 132:5940-1. [DOI: 10.1021/ja1007646] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeniy Salnikov
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Melanie Rosay
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Shane Pawsey
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Olivier Ouari
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Paul Tordo
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Burkhard Bechinger
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| |
Collapse
|
13
|
Aisenbrey C, Bertani P, Bechinger B. Solid-state NMR investigations of membrane-associated antimicrobial peptides. Methods Mol Biol 2010; 618:209-33. [PMID: 20094867 DOI: 10.1007/978-1-60761-594-1_14] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state NMR and other biophysical investigations have revealed many mechanistic details about the interactions of antimicrobial peptides with membranes. These studies have shaped our view on how these peptides cause the killing of bacteria, fungi, or tumour cells and how they permeabilize model membranes. As a result, we better understand the biological activities of these peptides and we are now able to design new and better sequences. Here we present some of the tools that have allowed these solid-state NMR investigations, including detailed protocols on how to reconstitute the peptides into oriented or non-oriented membranes as well as simple set-up procedures for (2)H as well as proton-decoupled (31)P or (15)N solid-state NMR measurements. Static and magic angle spinning experiments are described. Where adequate, the special requirements for or limitations of some of the measurements are discussed. Solid-state NMR spectra of both lipids and peptides have been recorded, and through the ensemble of measurements a detailed picture of these complex peptide-lipid supramolecular systems has finally emerged.
Collapse
|
14
|
Naito A. Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:67-76. [PMID: 19647984 DOI: 10.1016/j.ssnmr.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Solid-state NMR using magnetically oriented bilayer systems provides useful information on the structure and orientation of peptides and proteins bound to lipid bilayers. The ordering of the lipid bilayer along the magnetic field can be achieved in two ways. First, lipid can be macroscopically oriented by pressing lipid-water dispersion between flat glass plates, which is called a mechanically aligned system. Second, lipid molecules themselves can be aligned spontaneously in the magnetic field because of their diamagnetic anisotropy by forming bicelles or magnetically oriented vesicle systems. Structure and orientation of the membrane-associated peptides and proteins can be achieved by analyzing structural constraints obtained from anisotropic chemical shift interactions such as chemical shift oscillation or nuclear dipolar interactions such as dipolar wave and a combination of them such as PISA wheel. Detailed structure elucidation of various kinds of membrane peptides and proteins in such oriented bilayers is presented.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| |
Collapse
|
15
|
de Planque MRR, Killian JA. Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review). Mol Membr Biol 2009; 20:271-84. [PMID: 14578043 DOI: 10.1080/09687680310001605352] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Biological membranes are characterized by a heterogeneous composition, which is not only manifested in the wide variety of their components, but also in aspects like the lateral organization, topology, and conformation of proteins and lipids. In bringing about the correct membrane structure, protein-lipid interactions can be expected to play a prominent role. The extent of hydrophobic matching between transmembrane protein segments and lipids potentially constitutes a versatile director of membrane organization, because a tendency to avoid hydrophobic mismatch could result in compensating adaptations such as tilt of the transmembrane segment or segregation into distinct domains. Also, interfacial interactions between lipid headgroups and the aromatic and charged residues that typically flank transmembrane domains may act as an organizing element. In this review, we discuss the numerous model studies that have systematically explored the influence of hydrophobic matching and interfacial anchoring on membrane structure. Designed peptides consisting of a polyleucine or polyleucine/alanine hydrophobic stretch, which is flanked on both sides by tryptophan or lysine residues, reflect the general layout of transmembrane protein segments. It is shown for phosphatidylcholine bilayers and for other model membranes that these peptides adapt a transmembrane topology without extensive peptide or lipid adaptations under conditions of hydrophobic matching, but that significant rearrangements can result from hydrophobic mismatch. Moreover, these effects depend on the nature of the flanking residues, implying a modulation of the mismatch response by interfacial interactions of the flanking residues. The implications of these model studies for the organization of biomembranes are discussed in the context of recent experiments with more complex systems.
Collapse
Affiliation(s)
- Maurits R R de Planque
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
16
|
Kouzayha A, Wattraint O, Sarazin C. Interactions of two transmembrane peptides in supported lipid bilayers studied by a 31P and 15N MAOSS NMR strategy. Biochimie 2009; 91:774-8. [DOI: 10.1016/j.biochi.2009.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Magic-angle-spinning NMR spectroscopy applied to small molecules and peptides in lipid bilayers. Biochem Soc Trans 2007; 35:991-5. [DOI: 10.1042/bst0350991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ssNMR (solid-state NMR) spectroscopy provides increasing possibilities to study the structural and dynamic aspects of biological membranes. Here, we review recent ssNMR experiments that are based on MAS (magic angle spinning) and that provide insight into the structure and dynamics of membrane systems at the atomic level. Such methods can be used to study membrane architecture, domain formation or molecular complexation in a way that is highly complementary to other biophysical methods such as imaging or calorimetry.
Collapse
|
18
|
Baldus M. Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36 Suppl 1:S37-48. [PMID: 17541576 DOI: 10.1007/s00249-007-0174-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 05/08/2007] [Indexed: 11/25/2022]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) represents a spectroscopic method to study non-crystalline molecules at atomic resolution. Advancements in spectroscopy and biochemistry provide increasing possibilities to study structure and dynamics of complex biomolecular systems by ssNMR. Here, methodological aspects and applications in the context of protein folding and aggregation are discussed. In addition, studies involving membrane proteins are considered.
Collapse
Affiliation(s)
- Marc Baldus
- Solid-state NMR, Max-Planck-Institut für Biophysikalische Chemie, 37077 Göttingen, Germany.
| |
Collapse
|
19
|
Lopez JJ, Mason AJ, Kaiser C, Glaubitz C. Separated local field NMR experiments on oriented samples rotating at the magic angle. JOURNAL OF BIOMOLECULAR NMR 2007; 37:97-111. [PMID: 17180549 DOI: 10.1007/s10858-006-9109-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/04/2006] [Accepted: 10/13/2006] [Indexed: 05/13/2023]
Abstract
Biophysical studies on membrane proteins by solid state NMR (SSNMR) can be carried out directly in a membrane environment. Samples are usually prepared in form of multi-lamellar dispersions for magic angle sample spinning or as aligned multi-layers for orientation dependent NMR experiments without sample rotation. A new development is the application of MAS NMR to aligned samples (MAOSS; Magic Angle Oriented Sample Spinning). In combination with separated local field (SLF) experiments, size and orientation of heteronuclear dipolar couplings may be extracted from two-dimensional experiments which correlate dipolar couplings with isotropic chemical shifts. The orientation of these (1)H-X dipolar couplings can be directly related to the orientation of molecular groups in the sample. Here, we demonstrate the feasibility of these experiments on highly ordered polyethylene fibers which serve as model compound. Based on these data, the experiment is also applied to ordered multi-layers of bacteriorhodopsin (purple membrane) which is used as a model for aligned membrane proteins. We present a detailed analysis of different experimental designs with respect to angular sensitivity and the influence of residual sample disorder ("mosaic spread"). The results of the MAOSS-SLF experiment are discussed within the context of established solid state NMR experiments which are usually performed without sample rotation and we compare the data to orientation information obtained from X-ray diffraction.
Collapse
Affiliation(s)
- Jakob J Lopez
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, J.W. Goethe University, 60438, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
20
|
Raap J, Hollander J, Ovchinnikova TV, Swischeva NV, Skladnev D, Kiihne S. Trans and surface membrane bound zervamicin IIB: 13C-MAOSS-NMR at high spinning speed. JOURNAL OF BIOMOLECULAR NMR 2006; 35:285-93. [PMID: 16937243 DOI: 10.1007/s10858-006-9045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 06/21/2006] [Indexed: 05/11/2023]
Abstract
Interactions between (15)N-labelled peptides or proteins and lipids can be investigated using membranes aligned on a thin polymer film, which is rolled into a cylinder and inserted into the MAS-NMR rotor. This can be spun at high speed, which is often useful at high field strengths. Unfortuantely, substrate films like commercially available polycarbonate or PEEK produce severe overlap with peptide and protein signals in (13)C-MAOSS NMR spectra. We show that a simple house hold foil support allows clear observation of the carbonyl, aromatic and C(alpha) signals of peptides and proteins as well as the ester carbonyl and choline signals of phosphocholine lipids. The utility of the new substrate is validated in applications to the membrane active peptide zervamicin IIB. The stability and macroscopic ordering of thin PC10 bilayers was compared with that of thicker POPC bilayers, both supported on the household foil. Sidebands in the (31)P-spectra showed a high degree of alignment of both the supported POPC and PC10 lipid molecules. Compared with POPC, the PC10 lipids are slightly more disordered, most likely due to the increased mobilities of the shorter lipid molecules. This mobility prevents PC10 from forming stable vesicles for MAS studies. The (13)C-peptide peaks were selectively detected in a (13)C-detected (1)H-spin diffusion experiment. Qualitative analysis of build-up curves obtained for different mixing times allowed the transmembrane peptide in PC10 to be distinguished from the surface bound topology in POPC. The (13)C-MAOSS results thus independently confirms previous findings from (15)N spectroscopy [Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O'Neil, J.D.J. and Raap, J. (2001) Biochemistry, 40, 9428-9437]. In summary, application of house hold foil opens the possibility of measuring high resolution (13)C-NMR spectra of peptides and proteins in well ordered membranes, which are required to determine the secondary and supramolecular structures of membrane active peptides, proteins and aggregates.
Collapse
Affiliation(s)
- J Raap
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Chekmenev EY, Gor'kov PL, Cross TA, Alaouie AM, Smirnov AI. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy. Biophys J 2006; 91:3076-84. [PMID: 16861277 PMCID: PMC1578476 DOI: 10.1529/biophysj.106.085191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- The Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | | | | | | | | |
Collapse
|
22
|
Wattraint O, Sarazin C. Études par RMN des solides de bicouches phospholipidiques supportées dans les nanopores cylindriques d'un oxyde d'aluminium. CR CHIM 2006. [DOI: 10.1016/j.crci.2005.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wattraint O, Sarazin C. Diffusion measurements of water, ubiquinone and lipid bilayer inside a cylindrical nanoporous support: A stimulated echo pulsed-field gradient MAS-NMR investigation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1713:65-72. [PMID: 15975548 DOI: 10.1016/j.bbamem.2005.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Stimulated echo pulsed-field gradient 1H magic angle spinning NMR has been used to investigate the mobility of water, ubiquinone and tethered phospholipids, components of a biomimetic model membrane. The diffusion constant of water corresponds to an isotropic motion in a cylinder. When the lipid bilayer is obtained after the fusion of small unilamellar vesicles, the extracted value of lipid diffusion indicates unrestricted motion. The cylindrical arrangement of the lipids permits a simplification of data analysis since the normal bilayer is perpendicular to the gradient axis. This feature leads to a linear relation between the logarithm of the attenuation of the signal intensity and a factor depending on the gradient strength, for lipids covering the inner wall of aluminium oxide nanopores as well as for lipids adsorbed on a polymer sheet rolled into a cylinder. The effect of the bilayer formation on water diffusion has also been observed. The lateral diffusion coefficient of ubiquinone is in the same order of magnitude as the lipid lateral diffusion coefficient, in agreement with its localization within the bilayer.
Collapse
Affiliation(s)
- Olivier Wattraint
- Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens cedex, France.
| | | |
Collapse
|
24
|
Heise H, Luca S, de Groot BL, Grubmüller H, Baldus M. Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 2005; 89:2113-20. [PMID: 15994900 PMCID: PMC1366713 DOI: 10.1529/biophysj.105.059964] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An approach is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic level using two-dimensional solid-state NMR data and their combination with molecular dynamics simulations. For neurotensin, a peptide that binds with high affinity to a G-protein coupled receptor, this method permits the investigation of the changes in conformational preferences of a neurotransmitter transferred from a frozen aqueous solution via a lipid model phase to the receptor-bound form. The results speak against a conformational pre-organization of the ligand in detergents in which the receptor has been shown to be functional. Further extensions to the study of protein folding are possible.
Collapse
Affiliation(s)
- Henrike Heise
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
25
|
Luca S, Heise H, Lange A, Baldus M. Investigation of Ligand-Receptor Systems by High-Resolution Solid-State NMR: Recent Progress and Perspectives. Arch Pharm (Weinheim) 2005; 338:217-28. [PMID: 15938000 DOI: 10.1002/ardp.200400991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to construct 3D molecular structures from solid-state NMR data obtained under magic-angle-spinning conditions. As shown for the neurotensin/NTS-1 system, these methods can be readily applied to the investigation of ligand-binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- Sorin Luca
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
26
|
Bleile DW, Scott WRP, Straus SK. Can PISEMA experiments be used to extract structural parameters for mobile beta-barrels? JOURNAL OF BIOMOLECULAR NMR 2005; 32:101-11. [PMID: 16034662 DOI: 10.1007/s10858-005-5094-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of mobility on 15N chemical shift/15N-(1)H dipolar coupling (PISEMA) solid state NMR experiments applied to macroscopically oriented beta-barrels is assessed using molecular dynamics simulation data of the NalP autotransporter domain embedded in a DMPC bilayer. In agreement with previous findings for alpha-helices, the fast librational motion of the peptide planes is found to have a considerable effect on the calculated PISEMA spectra. In addition, the dependence of the chemical shift anisotropy (CSA) and dipolar coupling parameters on the calculated spectra is evaluated specifically for the beta-barrel case. It is found that the precise choice of the value of the CSA parameters sigma11, sigma22 and sigma33 has only a minor effect, whereas the choice of the CSA parameter theta shifts the position of the peaks by up to 20 ppm and changes the overall shape of the spectrum significantly. As was found for alpha-helices, the choice of the NH bond distance has a large effect on the dipolar coupling constant used for the calculations. Overall, it is found that the alternating beta-strands in the barrel occupy distinct regions of the PISEMA spectra, forming patterns which may prove useful in peak assignment.
Collapse
Affiliation(s)
- Dustin W Bleile
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada
| | | | | |
Collapse
|
27
|
Wattraint O, Warschawski DE, Sarazin C. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:3226-3228. [PMID: 15807556 DOI: 10.1021/la0469147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum oxide, either by direct adsorption on the support or by tethering through a streptavidin/biotin linker. The results support that the quality of the lipid bilayers alignment is clearly in favor of the tethering rather than an adsorbed strategy.
Collapse
|
28
|
Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:322-327. [PMID: 15780925 DOI: 10.1016/j.jmr.2004.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/18/2004] [Indexed: 05/24/2023]
Abstract
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- The Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL 32310, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bechinger B, Aisenbrey C, Bertani P. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:190-204. [PMID: 15519315 DOI: 10.1016/j.bbamem.2004.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Faculté de chimie, Institut le Bel, 4, rue Blaise Pascal, 67000 Strasbourg, France.
| | | | | |
Collapse
|
30
|
Wattraint O, Arnold A, Auger M, Bourdillon C, Sarazin C. Lipid bilayer tethered inside a nanoporous support: a solid-state nuclear magnetic resonance investigation. Anal Biochem 2005; 336:253-61. [PMID: 15620890 DOI: 10.1016/j.ab.2004.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Indexed: 11/16/2022]
Abstract
(31)P and (1)H solid-state nuclear magnetic resonance (NMR) experiments have been designed with the aim of studying directly the formation of supported bilayers tethered inside nanoporous aluminum oxide supports as a model of biomimetic membranes. The static and magic angle spinning (31)P NMR spectra of the supported bilayers have been compared with the experimental and simulated spectra of a simpler model with cylindrical geometry, namely a phospholipid bilayer adsorbed on an oriented polymer sheet. The broadening observed for the nanoporous model is most likely due to the presence of paramagnetic ions in the aluminum oxide. A phospholipid lateral diffusion coefficient of (2.8 +/- 0.4) x 10(-8) cm(2)/s has been measured for the tethered bilayer on a spherical support, indicating a good fluidity as compared with adsorbed membrane models.
Collapse
Affiliation(s)
- Olivier Wattraint
- Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France
| | | | | | | | | |
Collapse
|
31
|
Andronesi OC, Pfeifer JR, Al-Momani L, Ozdirekcan S, Rijkers DTS, Angerstein B, Luca S, Koert U, Killian JA, Baldus M. Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2004; 30:253-265. [PMID: 15754053 DOI: 10.1007/s10858-004-3452-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 09/02/2004] [Indexed: 05/24/2023]
Abstract
One and two-dimensional solid-state NMR experiments are discussed that permit probing local structure and overall molecular conformation of membrane-embedded polypeptides under Magic Angle Spinning. The functional dependence of a series of anisotropic recoupling schemes is analyzed using theoretical and numerical methods. These studies lead to the construction of a set of polarization dephasing or transfer units that probe local backbone conformation and overall molecular orientation within the same NMR experiment. Experimental results are shown for a randomly oriented peptide and for two model membrane-peptides reconstituted into lipid bilayers and oriented on polymer films according to a method proposed by Bechinger et al.
Collapse
Affiliation(s)
- O C Andronesi
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bechinger B, Sizun C. Alignment and structural analysis of membrane polypeptides by15N and31P solid-state NMR spectroscopy. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/cmr.a.10070] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Abstract
Historically, the task of determining the structure of membrane proteins has been hindered by experimental difficulties associated with their lipid-embedded domains. Here, we provide an overview of recently developed experimental and predictive tools that are changing our view of this largely unexplored territory - the 'Wild West' of structural biology. Crystallography, single-particle methods and atomic force microscopy are being used to study huge membrane proteins with increasing detail. Solid-state nuclear magnetic resonance strategies provide orientational constraints for structure determination of transmembrane (TM) alpha-helices and accurate measurements of intramolecular distances, even in very complex systems. Longer distance constraints are determined by site-directed spin-labelling electron paramagnetic resonance, but current labelling strategies still constitute some limitation. Other methods, such as site-specific infrared dichroism, enable orientational analysis of TM alpha-helices in aligned bilayers and, combined with novel computational and predictive tools that use evolutionary conservation data, are being used to analyze TM alpha-helical bundles.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 637616, Singapore.
| | | | | |
Collapse
|