1
|
Sinha Roy A, Marohn JA, Freed JH. An analysis of double-quantum coherence ESR in an N-spin system: Analytical expressions and predictions. J Chem Phys 2024; 160:134105. [PMID: 38557852 PMCID: PMC11087869 DOI: 10.1063/5.0200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Electron spin resonance pulsed dipolar spectroscopy (PDS) has become popular in protein 3D structure analysis. PDS studies yield distance distributions between a pair or multiple pairs of spin probes attached to protein molecules, which can be used directly in structural studies or as constraints in theoretical predictions. Double-quantum coherence (DQC) is a highly sensitive and accurate PDS technique to study protein structures in the solid state and under physiologically relevant conditions. In this work, we have derived analytical expressions for the DQC signal for a system with N-dipolar coupled spin-1/2 particles in the solid state. The expressions are integrated over the relevant spatial parameters to obtain closed form DQC signal expressions. These expressions contain the concentration-dependent "instantaneous diffusion" and the background signal. For micromolar and lower concentrations, these effects are negligible. An approximate analysis is provided for cases of finite pulses. The expressions obtained in this work should improve the analysis of DQC experimental data significantly, and the analytical approach could be extended easily to a wide range of magnetic resonance phenomena.
Collapse
Affiliation(s)
| | - John A. Marohn
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
2
|
Brown BP, Stein RA, Meiler J, Mchaourab HS. Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations. J Chem Theory Comput 2024; 20:1434-1447. [PMID: 38215214 PMCID: PMC10867840 DOI: 10.1021/acs.jctc.3c01081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Protein thermodynamics is intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, computational and experimental methods capable of quantifying the energetic determinants of these equilibria are limited to systems of modest size. Recently, it has been demonstrated that the artificial intelligence system AlphaFold2 can be manipulated to produce structurally valid protein conformational ensembles. Here, we extend these studies and explore the extent to which AlphaFold2 contact distance distributions can approximate projections of the conformational Boltzmann distributions. For this purpose, we examine the joint probability distributions of inter-residue contact distances along functionally relevant collective variables of several protein systems. Our studies suggest that AlphaFold2 normalized contact distance distributions can correlate with conformation probabilities obtained with other methods but that they suffer from peak broadening. We also find that the AlphaFold2 contact distance distributions can be sensitive to point mutations. Overall, we anticipate that our findings will be valuable as the community seeks to model the thermodynamics of conformational changes in large biomolecular systems.
Collapse
Affiliation(s)
- Benjamin P. Brown
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Richard A. Stein
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig, SAC 04103, Germany
| | - Hassane S. Mchaourab
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Yang Z, Stein RA, Pink M, Madzelan P, Ngendahimana T, Rajca S, Wilson MA, Eaton SS, Eaton GR, Mchaourab HS, Rajca A. Cucurbit[7]uril Enhances Distance Measurements of Spin-Labeled Proteins. J Am Chem Soc 2023; 145:25726-25736. [PMID: 37963181 PMCID: PMC10961179 DOI: 10.1021/jacs.3c09184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We report complex formation between the chloroacetamide 2,6-diazaadamantane nitroxide radical (ClA-DZD) and cucurbit[7]uril (CB-7), for which the association constant in water, Ka = 1.9 × 106 M-1, is at least 1 order of magnitude higher than the previously studied organic radicals. The radical is highly immobilized by CB-7, as indicated by the increase in the rotational correlation time, τrot, by a factor of 36, relative to that in the buffer solution. The X-ray structure of ClA-DZD@CB-7 shows the encapsulated DZD guest inside the undistorted CB-7 host, with the pendant group protruding outside. Upon addition of CB-7 to T4 Lysozyme (T4L) doubly spin-labeled with the iodoacetamide derivative of DZD, we observe the increase in τrot and electron spin coherence time, Tm, along with the narrowing of interspin distance distributions. Sensitivity of the DEER measurements at 83 K increases by a factor 4-9, compared to the common spin label such as MTSL, which is not affected by CB-7. Interspin distances of 3 nm could be reliably measured in water/glycerol up to temperatures near the glass transition/melting temperature of the matrix at 200 K, thus bringing us closer to the goal of supramolecular recognition-enabled long-distance DEER measurements at near physiological temperatures. The X-ray structure of DZD-T4L 65 at 1.12 Å resolution allows for unambiguous modeling of the DZD label (0.88 occupancy), indicating an undisturbed structure and conformation of the protein.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Richard A. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Peter Madzelan
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
4
|
Mandato A, Hasanbasri Z, Saxena S. Double Quantum Coherence ESR at Q-Band Enhances the Sensitivity of Distance Measurements at Submicromolar Concentrations. J Phys Chem Lett 2023; 14:8909-8915. [PMID: 37768093 PMCID: PMC10577775 DOI: 10.1021/acs.jpclett.3c02372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Recently, there have been remarkable improvements in pulsed ESR sensitivity, paving the way for broader applicability of ESR in the measurement of biological distance constraints, for instance, at physiological concentrations and in more complex systems. Nevertheless, submicromolar distance measurements with the commonly used nitroxide spin label take multiple days. Therefore, there remains a need for rapid and reliable methods of measuring distances between spins at nanomolar concentrations. In this work, we demonstrate the power of double quantum coherence (DQC) experiments at Q-band frequencies. With the help of short and intense pulses, we showcase DQC signals on nitroxide-labeled proteins with modulation depths close to 100%. We show that the deep dipolar modulations aid in the resolution of bimodal distance distributions. Finally, we establish that distance measurements with protein concentrations as low as 25 nM are feasible. This limit is approximately 4-fold lower than previously possible. We anticipate that nanomolar concentration measurements will lead to further advancements in the use of ESR, especially in cellular contexts.
Collapse
Affiliation(s)
- Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Scheyer MW, Campbell C, William PL, Hussain M, Begum A, Fonseca SE, Asare IK, Dabney P, Dabney-Smith C, Lorigan GA, Sahu ID. Electron paramagnetic resonance spectroscopic characterization of the human KCNE3 protein in lipodisq nanoparticles for structural dynamics of membrane proteins. Biophys Chem 2023; 301:107080. [PMID: 37531799 DOI: 10.1016/j.bpc.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
One of the major challenges in solubilization of membrane proteins is to find the optimal physiological environment for their biophysical studies. EPR spectroscopy is a powerful biophysical technique for studying the structural and dynamic properties of macromolecules. However, the challenges in the membrane protein sample preparation and flexible motion of the spin label limit the utilization of EPR spectroscopy to a majority of membrane protein systems in a physiological membrane-bound state. Recently, lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have emerged as a membrane mimetic system for investigating the structural studies of membrane proteins. However, its detail characterization for membrane protein studies is still poorly understood. Recently, we characterized the potassium channel membrane protein KCNQ1 voltage sensing domain (KCNQ1-VSD) and KCNE1 reconstituted into lipodisq nanoparticles using EPR spectroscopy. In this study, the potassium channel accessory protein KCNE3 containing flexible N- and C-termini was encapsulated into proteoliposomes and lipodisq nanoparticles and characterized for studying its structural and dynamic properties using nitroxide based site-directed spin labeling EPR spectroscopy. CW-EPR lineshape analysis data indicated an increase in spectral line broadenings with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated an enhanced quality of distance measurements with an increase in the phase memory time (Tm) values upon incorporation of the sample into lipodisq nanoparticles, when compared to proteoliposomes. These results agree with the solution NMR structural structure of the KCNE3 and EPR studies of other membrane proteins in lipodisq nanoparticles. This study along with our earlier studies will provide the reference characterization data that will provide benefit to the membrane protein researchers for studying structural dynamics of challenging membrane proteins.
Collapse
Affiliation(s)
- Matthew W Scheyer
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Conner Campbell
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Patrick L William
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Mustakim Hussain
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Afsana Begum
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | | | - Isaac K Asare
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Peyton Dabney
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA; Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
6
|
Majeed S, Dang L, Islam MM, Ishola O, Borbat PP, Ludtke SJ, Georgieva ER. HIV-1 Vpu protein forms stable oligomers in aqueous solution via its transmembrane domain self-association. Sci Rep 2023; 13:14691. [PMID: 37673923 PMCID: PMC10483038 DOI: 10.1038/s41598-023-41873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key HIV-1 protein. It has been considered exclusively a single-pass membrane protein. Previous observations show that this protein forms stable oligomers in aqueous solution, but details about these oligomers still remain obscure. This is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. In this study we made use of protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy to better elucidate the nature of the soluble oligomers. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM suggests that the oligomeric state most likely is a hexamer/heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distal C-terminal region of Vpu is highly flexible. Our observations are consistent with both the concept of specific interactions among TM helices or the core of the oligomers being stabilized by hydrophobic forces. While this study does not resolve all of the questions about Vpu oligomers or their functional role in HIV-1 it provides new fundamental information about the size and nature of the oligomeric interactions.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lan Dang
- Graduate Program in Quantitative and Computational Biosciences, Graduate School of Biomedical Sciences at Baylor College of Medicine, Houston, TX, USA
| | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Olamide Ishola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY, 14853, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
- Center for Membrane Protein Research, TTU Health Science Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
7
|
Yang Z, Stein RA, Pink M, Madzelan P, Ngendahimana T, Rajca S, Wilson MA, Eaton SS, Eaton GR, Mchaourab HS, Rajca A. Cucurbit[7]uril Enhances Distance Measurements of Spin-Labeled Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554361. [PMID: 37662277 PMCID: PMC10473685 DOI: 10.1101/2023.08.22.554361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We report complex formation between the chloroacetamide 2,6-diazaadamantane nitroxide radical (ClA-DZD) and cucurbit[7]uril (CB-7), for which the association constant in water, Ka = 1.9 × 106 M-1, is at least one order of magnitude higher than the previously studied organic radicals. The radical is highly immobilized by CB-7, as indicated by the increase of the rotational correlation time, τrot, by a factor of 36, relative to that in the buffer solution. The X-ray structure of ClA-DZD@CB-7 shows the encapsulated DZD guest inside the undistorted CB-7 host, with the pendant group protruding outside. Upon addition of CB-7 to T4 Lysozyme (T4L) doubly spin-labeled with the iodoacetamide derivative of DZD, we observe the increase in τrot and electron spin coherence time, Tm, along with the narrowing of inter-spin distance distributions. Sensitivity of the DEER measurements at 83 K increases by a factor 4 - 9, compared to the common spin label such as MTSL, which is not affected by CB-7. Inter-spin distances of 3-nm could be reliably measured in water/glycerol up to temperatures near the glass transition/melting temperature of the matrix at 200 K, thus bringing us closer to the goal of supramolecular recognition-enabled long-distance DEER measurements at near physiological temperatures. The X-ray structure of DZD-T4L 65 at 1.12 Å resolution allows for unambiguous modeling of the DZD label (0.88 occupancy), indicating undisturbed structure and conformation of the protein.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Richard A. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Peter Madzelan
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
8
|
Brown BP, Stein RA, Meiler J, Mchaourab H. Approximating conformational Boltzmann distributions with AlphaFold2 predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552168. [PMID: 37609301 PMCID: PMC10441281 DOI: 10.1101/2023.08.06.552168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Protein dynamics are intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria are evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, the computational and experimental methods capable of quantifying them are limited to systems of modest size. Here, we demonstrate that AlphaFold2 contact distance distributions can approximate conformational Boltzmann distributions, which we evaluate through examination of the joint probability distributions of inter-residue contact distances along functionally relevant collective variables of several protein systems. Further, we show that contact distance probability distributions generated by AlphaFold2 are sensitive to points mutations thus AF2 can predict the structural effects of mutations in some systems. We anticipate that our approach will be a valuable tool to model the thermodynamics of conformational changes in large biomolecular systems.
Collapse
Affiliation(s)
- Benjamin P. Brown
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
| | - Richard A. Stein
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA. Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Hassane Mchaourab
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA. Nashville, TN 37232, USA
| |
Collapse
|
9
|
Roy AS, Freed JH, Srivastava M. Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms. RESEARCH SQUARE 2023:rs.3.rs-3216615. [PMID: 37577617 PMCID: PMC10418556 DOI: 10.21203/rs.3.rs-3216615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- Cornell Atkinson Center for Sustainability, Cornell University, 340 Tower Road, Ithaca, 14853, NY, USA
| |
Collapse
|
10
|
Majeed S, Dang L, Islam MM, Ishola O, Borbat PP, Ludtke SJ, Georgieva ER. HIV-1 Vpu protein forms stable oligomers in aqueous solution via its transmembrane domain self-association. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539839. [PMID: 37214796 PMCID: PMC10197565 DOI: 10.1101/2023.05.08.539839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key to HIV-1 protein. It has been considered exclusively a single-pass membrane protein. However, we revealed that this protein forms stable oligomers in aqueous solution, which is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. Therefore, we undertook a study to characterize these oligomers by utilizing protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM analyses suggest that the oligomeric state most likely is a hexamer or hexamer-to-heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distant C-terminal region of Vpu is highly flexible. To the best of our knowledge, this is the first comprehensive study on soluble Vpu. We propose that these oligomers are stabilized via possibly hydrophobic interactions between Vpu TMs. Our findings contribute valuable information about this protein properties and about protein supramolecular complexes formation. The acquired knowledge could be further used in protein engineering, and could also help to uncover possible physiological function of these Vpu oligomers.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Lan Dang
- Graduate Program in Quantitative and Computational Biosciences, Graduate School of Biomedical Sciences at Baylor College of Medicine, Houston, Texas, USA
| | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Olamide Ishola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY 14853, USA
| | - Steven J. Ludtke
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Center for Membrane Protein Research, TTU Health Science Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Role of membrane mimetics on biophysical EPR studies of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184138. [PMID: 36764474 DOI: 10.1016/j.bbamem.2023.184138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Biological membranes are essential in providing the stability of membrane proteins in a functional state. Functionally stable homogeneous sample is required for biophysical electron paramagnetic resonance (EPR) studies of membrane proteins for obtaining pertinent structural dynamics of the protein. Significant progresses have been made for the optimization of the suitable membrane environments required for biophysical EPR measurements. However, no universal membrane mimetic system is available that can solubilize all membrane proteins suitable for biophysical EPR studies while maintaining the functional integrity. Great efforts are needed to optimize the sample condition to obtain better EPR data quality of membrane proteins that can provide meaningful information on structural dynamics. In this mini-review, we will discuss important aspects of membrane mimetics for biophysical EPR measurements and current progress with some of the recent examples.
Collapse
|
12
|
Mittal S, Dutta S, Shukla D. Reconciling membrane protein simulations with experimental DEER spectroscopy data. Phys Chem Chem Phys 2023; 25:6253-6262. [PMID: 36757376 DOI: 10.1039/d2cp02890e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spectroscopy experiments are crucial to study membrane proteins for which traditional structure determination methods still prove challenging. Double electron-electron resonance (DEER) spectroscopy experiments provide protein residue-pair distance distributions that are indicative of their conformational heterogeneity. Atomistic molecular dynamics (MD) simulations are another tool that have been proven to be vital to study the structural dynamics of membrane proteins such as to identify inward-open, occluded, and outward-open conformations of transporter membrane proteins, among other partially open or closed states of the protein. Yet, studies have reported that there is no direct consensus between the distributional data from DEER experiments and MD simulations, which has challenged validation of structures obtained from long-timescale simulations and using simulations to design experiments. Current coping strategies for comparisons rely on heuristics, such as mapping the nearest matching peaks between two ensembles or biased simulations. Here we examine the differences in residue-pair distance distributions arising due to the choice of membranes around the protein and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments. Through comparing MD simulations of two proteins, PepTSo and LeuT-both of which have been characterized using DEER experiments previously-we show that the proteins' dynamics are similar despite the choice of the detergent micelle as a membrane mimetic in DEER experiments. On the other hand, covalently modified residues show slight local differences in their dynamics and a huge divergence when the oxygen atom pair distances between spin labeled residues are measured rather than protein backbone distances. Given the computational expense associated with pairwise MTSSL labeled MD simulations, we examine the use of biased simulations to explore the conformational dynamics of the spin labels only to reveal that such simulations alter the underlying protein dynamics. Our study identifies the main cause for the mismatch between DEER experiments and MD simulations and will accelerate the development of potential mitigation strategies to improve the match.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
13
|
Gupta P, Dzikovski B, Freed JH. Theory and Least Squares Fitting of CW ESR Saturation Spectra Using the MOMD Model. APPLIED MAGNETIC RESONANCE 2022; 53:699-715. [PMID: 35431460 PMCID: PMC9012167 DOI: 10.1007/s00723-021-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CW saturation experiments are widely used in ESR studies of relaxation processes in proteins and lipids. We develop the theory of saturation in ESR spectra in terms of its close relation with that of 2D-ELDOR. Our treatment of saturation is then based on the microscopic order macroscopic disorder (MOMD) model and can be used to fit the full CW saturation spectrum, rather than fitting just the peak-peak amplitude as a function of microwave field B 1 as is commonly done. This requires fewer experiments to yield effects on T 1, as well as provides a more extensive dynamic structural picture, for example, for scanning experiments on different protein sites. The code is released as a publicly available software package in Python that can be used to fit CW saturation spectra from biological samples of interest.
Collapse
Affiliation(s)
- Pranav Gupta
- National Biomedical Center for Advanced ESR Technology and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Boris Dzikovski
- National Biomedical Center for Advanced ESR Technology and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Bruker BioSpin Corp, 15 Fortune Drive, Billerica, MA 01821, USA
| | - Jack H. Freed
- National Biomedical Center for Advanced ESR Technology and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Puthenveetil R, Christenson ET, Vinogradova O. New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. MEMBRANES 2022; 12:227. [PMID: 35207148 PMCID: PMC8877495 DOI: 10.3390/membranes12020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Dr., Bethesda, MD 20892, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
15
|
Ahammad T, Khan RH, Sahu ID, Drew DL, Faul E, Li T, McCarrick RM, Lorigan GA. Pinholin S 21 mutations induce structural topology and conformational changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183771. [PMID: 34499883 DOI: 10.1016/j.bbamem.2021.183771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The bacteriophage infection cycle is terminated at a predefined time to release the progeny virions via a robust lytic system composed of holin, endolysin, and spanin proteins. Holin is the timekeeper of this process. Pinholin S21 is a prototype holin of phage Φ21, which determines the timing of host cell lysis through the coordinated efforts of pinholin and antipinholin. However, mutations in pinholin and antipinholin play a significant role in modulating the timing of lysis depending on adverse or favorable growth conditions. Earlier studies have shown that single point mutations of pinholin S21 alter the cell lysis timing, a proxy for pinholin function as lysis is also dependent on other lytic proteins. In this study, continuous wave electron paramagnetic resonance (CW-EPR) power saturation and double electron-electron resonance (DEER) spectroscopic techniques were used to directly probe the effects of mutations on the structure and conformational changes of pinholin S21 that correlate with pinholin function. DEER and CW-EPR power saturation data clearly demonstrate that increased hydrophilicity induced by residue mutations accelerate the externalization of antipinholin transmembrane domain 1 (TMD1), while increased hydrophobicity prevents the externalization of TMD1. This altered hydrophobicity is potentially accelerating or delaying the activation of pinholin S21. It was also found that mutations can influence intra- or intermolecular interactions in this system, which contribute to the activation of pinholin and modulate the cell lysis timing. This could be a novel approach to analyze the mutational effects on other holin systems, as well as any other membrane protein in which mutation directly leads to structural and conformational changes.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
16
|
Hett T, Zbik T, Mukherjee S, Matsuoka H, Bönigk W, Klose D, Rouillon C, Brenner N, Peuker S, Klement R, Steinhoff HJ, Grubmüller H, Seifert R, Schiemann O, Kaupp UB. Spatiotemporal Resolution of Conformational Changes in Biomolecules by Combining Pulsed Electron-Electron Double Resonance Spectroscopy with Microsecond Freeze-Hyperquenching. J Am Chem Soc 2021; 143:6981-6989. [PMID: 33905249 DOI: 10.1021/jacs.1c01081] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The function of proteins is linked to their conformations that can be resolved with several high-resolution methods. However, only a few methods can provide the temporal order of intermediates and conformational changes, with each having its limitations. Here, we combine pulsed electron-electron double resonance spectroscopy with a microsecond freeze-hyperquenching setup to achieve spatiotemporal resolution in the angstrom range and lower microsecond time scale. We show that the conformational change of the Cα-helix in the cyclic nucleotide-binding domain of the Mesorhizobium loti potassium channel occurs within about 150 μs and can be resolved with angstrom precision. Thus, this approach holds great promise for obtaining 4D landscapes of conformational changes in biomolecules.
Collapse
Affiliation(s)
- Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Tobias Zbik
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Shatanik Mukherjee
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Daniel Klose
- Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany
| | - Christophe Rouillon
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Norbert Brenner
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Sebastian Peuker
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Reinhard Klement
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|
17
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
18
|
Roser P, Weisner J, Stehle J, Rauh D, Drescher M. Conformational selection vs. induced fit: insights into the binding mechanisms of p38α MAP Kinase inhibitors. Chem Commun (Camb) 2021; 56:8818-8821. [PMID: 32749403 DOI: 10.1039/d0cc02539a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The conformational dynamics of a kinase's activation loop have been challenging to assess due to the activation loop's intrinsic flexibility. To directly probe the conformational equilibrium of the activation loop of mitogen-activated protein kinase p38α, we present an approach based on site-directed spin labeling, electron paramagnetic resonance (EPR) distance restraints, and multilateration. We demonstrate that the activation loop of apo p38α resides in a highly flexible equilibrium state and we reveal that binding of small molecules significantly alters this equilibrium and the populated sub-states.
Collapse
Affiliation(s)
- Patrick Roser
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Jörn Weisner
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany.
| | - Juliane Stehle
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany.
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
19
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
20
|
Georgieva ER. Protein Conformational Dynamics upon Association with the Surfaces of Lipid Membranes and Engineered Nanoparticles: Insights from Electron Paramagnetic Resonance Spectroscopy. Molecules 2020; 25:E5393. [PMID: 33218036 PMCID: PMC7698768 DOI: 10.3390/molecules25225393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Detailed study of conformational rearrangements and dynamics of proteins is central to our understanding of their physiological functions and the loss of function. This review outlines the applications of the electron paramagnetic resonance (EPR) technique to study the structural aspects of proteins transitioning from a solution environment to the states in which they are associated with the surfaces of biological membranes or engineered nanoobjects. In the former case these structural transitions generally underlie functional protein states. The latter case is mostly relevant to the application of protein immobilization in biotechnological industries, developing methods for protein purification, etc. Therefore, evaluating the stability of the protein functional state is particularly important. EPR spectroscopy in the form of continuous-wave EPR or pulse EPR distance measurements in conjunction with protein spin labeling provides highly versatile and sensitive tools to characterize the changes in protein local dynamics as well as large conformational rearrangements. The technique can be widely utilized in studies of both protein-membrane and engineered nanoobject-protein complexes.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
21
|
Muok AR, Chua TK, Srivastava M, Yang W, Maschmann Z, Borbat PP, Chong J, Zhang S, Freed JH, Briegel A, Crane BR. Engineered chemotaxis core signaling units indicate a constrained kinase-off state. Sci Signal 2020; 13:13/657/eabc1328. [PMID: 33172954 DOI: 10.1126/scisignal.abc1328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacterial chemoreceptors, the histidine kinase CheA, and the coupling protein CheW form transmembrane molecular arrays with remarkable sensing properties. The receptors inhibit or stimulate CheA kinase activity depending on the presence of attractants or repellants, respectively. We engineered chemoreceptor cytoplasmic regions to assume a trimer of receptor dimers configuration that formed well-defined complexes with CheA and CheW and promoted a CheA kinase-off state. These mimics of core signaling units were assembled to homogeneity and investigated by site-directed spin-labeling with pulse-dipolar electron-spin resonance spectroscopy (PDS), small-angle x-ray scattering, targeted protein cross-linking, and cryo-electron microscopy. The kinase-off state was especially stable, had relatively low domain mobility, and associated the histidine substrate and docking domains with the kinase core, thus preventing catalytic activity. Together, these data provide an experimentally restrained model for the inhibited state of the core signaling unit and suggest that chemoreceptors indirectly sequester the kinase and substrate domains to limit histidine autophosphorylation.
Collapse
Affiliation(s)
- Alise R Muok
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Wen Yang
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Zach Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Petr P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Jenna Chong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
23
|
Sahu ID, Dixit G, Reynolds WD, Kaplevatsky R, Harding BD, Jaycox CK, McCarrick RM, Lorigan GA. Characterization of the Human KCNQ1 Voltage Sensing Domain (VSD) in Lipodisq Nanoparticles for Electron Paramagnetic Resonance (EPR) Spectroscopic Studies of Membrane Proteins. J Phys Chem B 2020; 124:2331-2342. [PMID: 32130007 DOI: 10.1021/acs.jpcb.9b11506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane proteins are responsible for conducting essential biological functions that are necessary for the survival of living organisms. In spite of their physiological importance, limited structural information is currently available as a result of challenges in applying biophysical techniques for studying these protein systems. Electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study the structural and dynamic properties of membrane proteins. However, the application of EPR spectroscopy to membrane proteins in a native membrane-bound state is extremely challenging due to the complexity observed in inhomogeneity sample preparation and the dynamic motion of the spin label. Detergent micelles are very popular membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is important to test whether the protein structure in a micelle environment is the same as that of its membrane-bound state. Lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have been introduced as a potentially good membrane-mimetic system for structural studies of membrane proteins. Recently, we reported on the EPR characterization of the KCNE1 membrane protein having a single transmembrane incorporated into lipodisq nanoparticles. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the more complicated membrane protein system human KCNQ1 voltage sensing domain (Q1-VSD) having four transmembrane helices using site-directed spin-labeling EPR spectroscopy. Characterization of spin-labeled Q1-VSD incorporated into lipodisq nanoparticles was carried out using CW-EPR spectral line shape analysis and pulsed EPR double-electron electron resonance (DEER) measurements. The CW-EPR spectra indicate an increase in spectral line broadening with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated a superior quality of distance measurement with an increase in the phase memory time (Tm) values upon incorporation of the sample into lipodisq nanoparticles when compared to proteoliposomes. These results are consistent with the solution NMR structural studies on the Q1-VSD. This study will be beneficial for researchers working on investigating the structural and dynamic properties of more complicated membrane protein systems using lipodisq nanoparticles.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Gunjan Dixit
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Warren D Reynolds
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ryan Kaplevatsky
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Colleen K Jaycox
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
24
|
Tormyshev VM, Chubarov AS, Krumkacheva OA, Trukhin DV, Rogozhnikova OY, Spitsyna AS, Kuzhelev AA, Koval VV, Fedin MV, Godovikova TS, Bowman MK, Bagryanskaya EG. Methanethiosulfonate Derivative of OX063 Trityl: A Promising and Efficient Reagent for Side-Directed Spin Labeling of Proteins. Chemistry 2020; 26:2705-2712. [PMID: 31851392 DOI: 10.1002/chem.201904587] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Indexed: 12/20/2022]
Abstract
Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self-aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 μs at 50 K, the longest yet obtained with a TAM-based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.
Collapse
Affiliation(s)
- Victor M Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Olesya A Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Dmitry V Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Olga Yu Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Anna S Spitsyna
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Andrey A Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Michael K Bowman
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama, 35487-0336, USA
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| |
Collapse
|
25
|
Arata T. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Int J Mol Sci 2020; 21:E672. [PMID: 31968570 PMCID: PMC7014194 DOI: 10.3390/ijms21020672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this article was to document the energy-transducing and regulatory interactions in supramolecular complexes such as motor, pump, and clock ATPases. The dynamics and structural features were characterized by motion and distance measurements using spin-labeling electron paramagnetic resonance (EPR) spectroscopy. In particular, we focused on myosin ATPase with actin-troponin-tropomyosin, neural kinesin ATPase with microtubule, P-type ion-motive ATPase, and cyanobacterial clock ATPase. Finally, we have described the relationships or common principles among the molecular mechanisms of various energy-transducing systems and how the large-scale thermal structural transition of flexible elements from one state to the other precedes the subsequent irreversible chemical reactions.
Collapse
Affiliation(s)
- Toshiaki Arata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
26
|
Spicher S, Abdullin D, Grimme S, Schiemann O. Modeling of spin–spin distance distributions for nitroxide labeled biomacromolecules. Phys Chem Chem Phys 2020; 22:24282-24290. [DOI: 10.1039/d0cp04920d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Combining CREST and MD simulations based on GFN-FF for the automated computation of distance distributions for nitroxide labeled (metallo-) proteins.
Collapse
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
27
|
Sun Q, Pan Y, Wang X, Li H, Farmakes J, Aguila B, Yang Z, Ma S. Mapping out the Degree of Freedom of Hosted Enzymes in Confined Spatial Environments. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers WK, Müllen K, Feng X, Bogani L. Quantum units from the topological engineering of molecular graphenoids. Science 2019; 366:1107-1110. [DOI: 10.1126/science.aay7203] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp2-carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.
Collapse
Affiliation(s)
- Federico Lombardi
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| | - Alessandro Lodi
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Junzhi Liu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Michael Slota
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| | - Akimitsu Narita
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - William K. Myers
- Inorganic Chemistry, University of Oxford, South Parks Road, OX1 3QR Oxford, UK
| | - Klaus Müllen
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Lapo Bogani
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| |
Collapse
|
29
|
Goldfarb D. Pulse EPR in biological systems - Beyond the expert's courtyard. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:102-108. [PMID: 31337564 DOI: 10.1016/j.jmr.2019.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 05/14/2023]
Abstract
Application of EPR to biological systems includes many techniques and applications. In this short perspective, which dares to look into the future, I focus on pulse EPR, which is my field of expertise. Generally, pulse EPR techniques can be divided into two main groups: (1) hyperfine spectroscopy, which explores electron-nuclear interactions, and (2) pulse-dipolar (PD) EPR spectroscopy, which is based on electron-electron spin interactions. Here I focus on PD-EPR because it has a better chance of becoming a widely applied, easy-to-use table-top method to study the structural and dynamic aspects of bio-molecules. I will briefly introduce this technique, its current state of the art, the challenges it is facing, and finally I will describe futuristic scenarios of low-cost PD-EPR approaches that can cross the diffusion barrier from the core of experts to the bulk of the scientific community.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Kachooei E, Cordina NM, Brown LJ. Constructing a structural model of troponin using site-directed spin labeling: EPR and PRE-NMR. Biophys Rev 2019; 11:621-639. [PMID: 31321733 PMCID: PMC6682194 DOI: 10.1007/s12551-019-00568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
The relative ease of introducing a paramagnetic species onto a protein, and advances in electron paramagnetic resonance (EPR) over the past two decades, have established spin labeling as a vital structural biology technique for revealing the functional workings of the troponin muscle regulatory complex-an ~80 kDa heterotrimeric protein switch for turning on striated muscle contraction. Through the site-directed spin labeling (SDSL) of cysteine residues at key sites in troponin, a molecular-level understanding of the troponin muscle regulatory system across all levels of structural hierarchy has been achieved. Through the application of EPR, mobility and accessibility trends in the EPR signals of the spin labels attached to consecutive residues can reveal the secondary structure of troponin elements and also help map the interaction between subunits. Distance restraints calculated from the interspin interactions between spin label pairs have helped with building a structural model of the troponin complex. Further, when SDSL is paired with NMR, paramagnetic relaxation enhancement (PRE)-NMR has been used to obtain high-resolution structural detail for both intra- and interdomain interactions in troponin and revealed details of protein conformational changes and dynamics accompanying troponin function. In this review, we provide an overview of the SDSL labeling methodology and its application towards building a dynamic structural model of the multi-subunit troponin complex which details the calcium-induced conformational changes intimately linked to muscle regulation. We also describe how the SDSL method, in conjunction with EPR or NMR, can be used to obtain insights into structural perturbations to troponin caused by disease-causing mutations.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Nicole M Cordina
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
| |
Collapse
|
31
|
CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores. Methods Mol Biol 2018. [PMID: 30536012 DOI: 10.1007/978-1-4939-8861-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The continuous wave (CW) and pulse electron paramagnetic resonance (EPR) methods enable the measurement of distances between spin-labeled residues in biopolymers including proteins, providing structural information. Here we describe the CW EPR deconvolution/convolution method and the four-pulse double electron-electron resonance (DEER) approach for distance determination, which were applied to elucidate the organization of the BAK apoptotic pores formed in the lipid bilayers.
Collapse
|
32
|
Muok AR, Chua TK, Le H, Crane BR. Nucleotide Spin Labeling for ESR Spectroscopy of ATP-Binding Proteins. APPLIED MAGNETIC RESONANCE 2018; 49:1385-1395. [PMID: 30686862 PMCID: PMC6342010 DOI: 10.1007/s00723-018-1070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Site-directed spin labeling of proteins by chemical modification of engineered cysteine residues with the molecule MTSSL (1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate) has been an invaluable tool for conducting double electron electron resonance (DEER) spectroscopy experiments. However, this method is generally limited to recombinant proteins with a limited number of reactive Cys residues that when modified will not impair protein function. Here we present a method that allows for spin-labeling of protein nucleotide binding sites by adenosine diphosphate (ADP) modified with a nitroxide moiety on the β-phosphate (ADP-β-S-SL). The synthesis of this ADP analog is straightforward and isolation of pure product is readily achieved on a standard reverse-phase high-performance liquid chromatography (HPLC) system. Furthermore, analyses of isolated ADP-β-S-SL by LC-mass spectrometry confirm that the molecule is extremely stable under ambient conditions. The crystal structure of ADP-β-S-SL bound to the ATP pocket of the histidine kinase CheA reveals specific targeting of the probe, whose nitroxide moiety is mobile on the protein surface. Continuous wave and pulsed ESR measurements demonstrate the capability of ADP-β-S-SL to report on active site environment and provide reliable DEER distance constraints.
Collapse
|
33
|
Saha S, Hetzke T, Prisner TF, Sigurdsson ST. Noncovalent spin-labeling of RNA: the aptamer approach. Chem Commun (Camb) 2018; 54:11749-11752. [PMID: 30276367 DOI: 10.1039/c8cc05597a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the first example of site-directed spin-labeling of unmodified RNA, a pyrrolidine-nitroxide derivative of tetramethylrosamine (TMR) was shown to bind with high affinity to the malachite green (MG) aptamer, as determined by continuous-wave (CW) electron paramagnetic resonance (EPR), pulsed electron-electron double resonance (PELDOR) and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Subham Saha
- Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | | | | |
Collapse
|
34
|
Merz GE, Borbat PP, Muok AR, Srivastava M, Bunck DN, Freed JH, Crane BR. Site-Specific Incorporation of a Cu 2+ Spin Label into Proteins for Measuring Distances by Pulsed Dipolar Electron Spin Resonance Spectroscopy. J Phys Chem B 2018; 122:9443-9451. [PMID: 30222354 DOI: 10.1021/acs.jpcb.8b05619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulsed dipolar electron spin resonance spectroscopy (PDS) is a powerful tool for measuring distances in solution-state macromolecules. Paramagnetic metal ions, such as Cu2+, are used as spin probes because they can report on metalloprotein features and can be spectroscopically distinguished from traditional nitroxide (NO)-based labels. Here, we demonstrate site-specific incorporation of Cu2+ into non-metalloproteins through the use of a genetically encodable non-natural amino acid, 3-pyrazolyltyrosine (PyTyr). We first incorporate PyTyr in cyan fluorescent protein to measure Cu2+-to-NO distances and examine the effects of solvent conditions on Cu2+ binding and protein aggregation. We then apply the method to characterize the complex formed by the histidine kinase CheA and its target response regulator CheY. The X-ray structure of CheY-PyTyr confirms Cu labeling at PyTyr but also reveals a secondary Cu site. Cu2+-to-NO and Cu2+-to-Cu2+ PDS measurements of CheY-PyTyr with nitroxide-labeled CheA provide new insights into the conformational landscape of the phosphotransfer complex and have implications for kinase regulation.
Collapse
Affiliation(s)
- Gregory E Merz
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Alise R Muok
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - David N Bunck
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
35
|
Selmke B, Borbat PP, Nickolaus C, Varadarajan R, Freed JH, Trommer WE. Open and Closed Form of Maltose Binding Protein in Its Native and Molten Globule State As Studied by Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:5507-5512. [PMID: 30004675 PMCID: PMC6211580 DOI: 10.1021/acs.biochem.8b00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intensively investigated intermediate state of protein folding is the molten globule (MG) state, which contains secondary but hardly any tertiary structure. In previous work, we have determined the distances between interacting spins within maltose binding protein (MBP) in its native state using continuous wave and double electron-electron resonance (DEER) electron paramagnetic resonance (EPR) spectroscopy. Seven double mutants had been employed to investigate the structure within the two domains of MBP. DEER data nicely corroborated the previously available X-ray data. Even in its MG state, MBP is known to still bind its ligand maltose. We therefore hypothesized that there must be a defined structure around the binding pocket of MBP already in the absence of tertiary structure. Here we have investigated the functional and structural difference between native and MG state in the open and closed form with a new set of MBP mutants. In these, the spin-label positions were placed near the active site. Binding of its ligands leads to a conformational change from open to closed state, where the two domains are more closely together. The complete set of MBP mutants was analyzed at pH 3.2 (MG) and pH 7.4 (native state) using double-quantum coherence EPR. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structures of MBP in open and closed form and were found to be in excellent agreement. Measurements show a defined structure around the binding pocket of MBP in MG, which explains maltose binding. A new and important finding is that in both states ligand-free MBP can be found in open and closed form, while ligand-bound MBP appears only in closed form because of maltose binding.
Collapse
Affiliation(s)
- Benjamin Selmke
- Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853-1301, USA
| | - Chen Nickolaus
- Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| | | | - Jack H. Freed
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853-1301, USA
| | - Wolfgang E. Trommer
- Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
36
|
Gränz M, Erlenbach N, Spindler P, Gophane DB, Stelzl LS, Sigurdsson ST, Prisner TF. Dynamics of Nucleic Acids at Room Temperature Revealed by Pulsed EPR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Markus Gränz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Philipp Spindler
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of Iceland Dunhaga 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of Biophysics Max-von-Laue-Straße 3 60438 Frankfurt am Main Germany
| | - Snorri Th. Sigurdsson
- Department of ChemistryScience InstituteUniversity of Iceland Dunhaga 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| |
Collapse
|
37
|
Gränz M, Erlenbach N, Spindler P, Gophane DB, Stelzl LS, Sigurdsson ST, Prisner TF. Dynamics of Nucleic Acids at Room Temperature Revealed by Pulsed EPR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:10540-10543. [PMID: 29858557 DOI: 10.1002/anie.201803682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/06/2018] [Indexed: 12/16/2022]
Abstract
The investigation of the structure and conformational dynamics of biomolecules under physiological conditions is challenging for structural biology. Although pulsed electron paramagnetic resonance (like PELDOR) techniques provide long-range distance and orientation information with high accuracy, such studies are usually performed at cryogenic temperatures. At room temperature (RT) PELDOR studies are seemingly impossible due to short electronic relaxation times and loss of dipolar interactions through rotational averaging. We incorporated the rigid nitroxide spin label Ç into a DNA duplex and immobilized the sample on a solid support to overcome this limitation. This enabled orientation-selective PELDOR measurements at RT. A comparison with data recorded at 50 K revealed averaging of internal dynamics, which occur on the ns time range at RT. Thus, our approach adds a new method to study structural and dynamical processes at physiological temperature in the <10 μs time range with atomistic resolution.
Collapse
Affiliation(s)
- Markus Gränz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Philipp Spindler
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Dnyaneshwar B Gophane
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavík, Iceland
| | - Lukas S Stelzl
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavík, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
38
|
New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:841-853. [DOI: 10.1016/j.bbamem.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/27/2023]
|
39
|
Fedin MV, Shevelev GY, Pyshnyi DV, Tormyshev VM, Jeschke G, Yulikov M, Bagryanskaya EG. Interaction of triarylmethyl radicals with DNA termini revealed by orientation-selective W-band double electron-electron resonance spectroscopy. Phys Chem Chem Phys 2018; 18:29549-29554. [PMID: 27748488 DOI: 10.1039/c6cp05904j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spin labels selectively attached to biomolecules allow high-accuracy nanoscale distance measurements using pulsed electron paramagnetic resonance (EPR), in many cases providing the only access to the structure of complex biosystems. Triarylmethyl (TAM) radicals have recently emerged as a new class of spin labels expanding the applicability of the method to physiological temperatures. Along with other factors, the accuracy of the obtained distances crucially relies on the understanding of interactions between biomolecules and spin labels. In this work, we consider such crucial interactions and their impact on pulsed EPR distance measurements in TAM-labeled DNAs. Using orientation-selective high-frequency (94 GHz) double electron-electron resonance (DEER) we demonstrate strong specific interactions between DNA termini and TAM labels, leading to a significant restriction of their conformational mobility. An understanding of such interactions guides the way to select optimum TAM-labeling strategies, thus refining nanoscale EPR distance measurements in nucleic acids and their complexes under physiological conditions.
Collapse
Affiliation(s)
- Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia. and Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Georgiy Yu Shevelev
- Novosibirsk State University, Novosibirsk, 630090, Russia and Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitrii V Pyshnyi
- Novosibirsk State University, Novosibirsk, 630090, Russia and Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Victor M Tormyshev
- Novosibirsk State University, Novosibirsk, 630090, Russia and N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland.
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland.
| | - Elena G Bagryanskaya
- Novosibirsk State University, Novosibirsk, 630090, Russia and N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
40
|
Li B, Fooksa M, Heinze S, Meiler J. Finding the needle in the haystack: towards solving the protein-folding problem computationally. Crit Rev Biochem Mol Biol 2018; 53:1-28. [PMID: 28976219 PMCID: PMC6790072 DOI: 10.1080/10409238.2017.1380596] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
Prediction of protein tertiary structures from amino acid sequence and understanding the mechanisms of how proteins fold, collectively known as "the protein folding problem," has been a grand challenge in molecular biology for over half a century. Theories have been developed that provide us with an unprecedented understanding of protein folding mechanisms. However, computational simulation of protein folding is still difficult, and prediction of protein tertiary structure from amino acid sequence is an unsolved problem. Progress toward a satisfying solution has been slow due to challenges in sampling the vast conformational space and deriving sufficiently accurate energy functions. Nevertheless, several techniques and algorithms have been adopted to overcome these challenges, and the last two decades have seen exciting advances in enhanced sampling algorithms, computational power and tertiary structure prediction methodologies. This review aims at summarizing these computational techniques, specifically conformational sampling algorithms and energy approximations that have been frequently used to study protein-folding mechanisms or to de novo predict protein tertiary structures. We hope that this review can serve as an overview on how the protein-folding problem can be studied computationally and, in cases where experimental approaches are prohibitive, help the researcher choose the most relevant computational approach for the problem at hand. We conclude with a summary of current challenges faced and an outlook on potential future directions.
Collapse
Affiliation(s)
- Bian Li
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Michaela Fooksa
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Sten Heinze
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
41
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
42
|
Ghosh S, Lawless MJ, Rule GS, Saxena S. The Cu 2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:163-171. [PMID: 29272745 DOI: 10.1016/j.jmr.2017.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/09/2023]
Abstract
Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
43
|
Srivastava M, Freed JH. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance. J Phys Chem Lett 2017; 8:5648-5655. [PMID: 29099190 PMCID: PMC5708871 DOI: 10.1021/acs.jpclett.7b02379] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.
Collapse
Affiliation(s)
- Madhur Srivastava
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jack H. Freed
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Corresponding Author:
| |
Collapse
|
44
|
Sahu ID, Craig AF, Dunagum MM, McCarrick RM, Lorigan GA. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy. J Phys Chem B 2017; 121:9185-9195. [PMID: 28877443 DOI: 10.1021/acs.jpcb.7b07631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a distance of 17 Å. This study demonstrates the utility of investigating the structural and dynamic properties of membrane proteins in physiologically relevant membrane mimetics using BSLs.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Megan M Dunagum
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
45
|
Mittal S, Shukla D. Predicting Optimal DEER Label Positions to Study Protein Conformational Heterogeneity. J Phys Chem B 2017; 121:9761-9770. [DOI: 10.1021/acs.jpcb.7b04785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shriyaa Mittal
- Center
for Biophysics and Quantitative Biology and ‡Department of Chemical and Biomolecular
Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Center
for Biophysics and Quantitative Biology and ‡Department of Chemical and Biomolecular
Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Krumkacheva O, Bagryanskaya E. EPR-based distance measurements at ambient temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:117-126. [PMID: 28579097 DOI: 10.1016/j.jmr.2017.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.
Collapse
Affiliation(s)
- Olesya Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; International Tomography Center SB RAS, Institutskaya 3A, Novosibirsk 630090, Russian Federation.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
47
|
Sahu ID, Zhang R, Dunagan MM, Craig AF, Lorigan GA. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins. J Phys Chem B 2017; 121:5312-5321. [DOI: 10.1021/acs.jpcb.7b01705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rongfu Zhang
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Megan M. Dunagan
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Andrew F. Craig
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
48
|
Lawless MJ, Shimshi A, Cunningham TF, Kinde MN, Tang P, Saxena S. Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy. Chemphyschem 2017; 18:1653-1660. [PMID: 28295910 DOI: 10.1002/cphc.201700115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 11/10/2022]
Abstract
Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Amit Shimshi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.,Current address: Department of Chemistry, Hanover College, 484 Ball Dr, Hanover, IN, 47243, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA.,Current address: Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 2901 St. John's Blvd., Joplin, MO, 64804, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
49
|
Chang KJ, Kuo YH, Chiang YW. Study of Protein Dynamics under Nanoconfinement by Spin-Label ESR: A Case of T4 Lysozyme Protein. J Phys Chem B 2017; 121:4355-4363. [DOI: 10.1021/acs.jpcb.7b00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuo-Jung Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Hsuan Kuo
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
50
|
Srivastava M, Georgieva ER, Freed JH. A New Wavelet Denoising Method for Experimental Time-Domain Signals: Pulsed Dipolar Electron Spin Resonance. J Phys Chem A 2017; 121:2452-2465. [PMID: 28257206 DOI: 10.1021/acs.jpca.7b00183] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We adapt a new wavelet-transform-based method of denoising experimental signals to pulse-dipolar electron-spin resonance spectroscopy (PDS). We show that signal averaging times of the time-domain signals can be reduced by as much as 2 orders of magnitude, while retaining the fidelity of the underlying signals, in comparison with noiseless reference signals. We have achieved excellent signal recovery when the initial noisy signal has an SNR ≳ 3. This approach is robust and is expected to be applicable to other time-domain spectroscopies. In PDS, these time-domain signals representing the dipolar interaction between two electron spin labels are converted into their distance distribution functions P(r), usually by regularization methods such as Tikhonov regularization. The significant improvements achieved by using denoised signals for this regularization are described. We show that they yield P(r)'s with more accurate detail and yield clearer separations of respective distances, which is especially important when the P(r)'s are complex. Also, longer distance P(r)'s, requiring longer dipolar evolution times, become accessible after denoising. In comparison to standard wavelet denoising approaches, it is clearly shown that the new method (WavPDS) is superior.
Collapse
Affiliation(s)
- Madhur Srivastava
- National Biomedical Center for Advanced ESR Technology, ‡Meinig School of Biomedical Engineering, and §Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Elka R Georgieva
- National Biomedical Center for Advanced ESR Technology, ‡Meinig School of Biomedical Engineering, and §Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Jack H Freed
- National Biomedical Center for Advanced ESR Technology, ‡Meinig School of Biomedical Engineering, and §Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|