1
|
Hwang ET, Orchard KL, Hojo D, Beton J, Lockwood CWJ, Adschiri T, Butt JN, Reisner E, Jeuken LJC. Exploring Step-by-Step Assembly of Nanoparticle:Cytochrome Biohybrid Photoanodes. ChemElectroChem 2017; 4:1959-1968. [PMID: 28920010 PMCID: PMC5573906 DOI: 10.1002/celc.201700030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/07/2022]
Abstract
Coupling light-harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye-sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye-sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer.
Collapse
Affiliation(s)
- Ee Taek Hwang
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| | - Katherine L. Orchard
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Daisuke Hojo
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Joseph Beton
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| | - Colin W. J. Lockwood
- Centre for Molecular and Structural BiochemistrySchool of Chemistry, and School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tadafumi Adschiri
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Julea N. Butt
- Centre for Molecular and Structural BiochemistrySchool of Chemistry, and School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
| | - Lars J. C. Jeuken
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| |
Collapse
|
2
|
Simultaneous true, gated, and coupled electron-transfer reactions and energetics of protein rearrangement. J Inorg Biochem 2012; 106:143-50. [DOI: 10.1016/j.jinorgbio.2011.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022]
|
3
|
Jintoku H, Sagawa T, Takafuji M, Ihara H. Chirally self-assembled porphyrin nanowires assisted by L-glutamide-derived lipid for excitation energy transfer. Org Biomol Chem 2009; 7:2430-4. [DOI: 10.1039/b818358a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Laine DF, McAllister SD, Cheng IF. Electrochemical characterization of oxygen reduction by FeII[ethylenediaminetetraacetate]. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Pagliaro M, Ciriminna R, Palmisano G. The chemical effects of molecular sol–gel entrapment. Chem Soc Rev 2007; 36:932-40. [PMID: 17534479 DOI: 10.1039/b611171h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical conversions within the cages of doped sol-gel porous oxides take place with unique advantages over reactions in solution as the glassy matrix has tremendous effects on the reactivity of the entrapped molecules. The chemical properties of sol-gel materials can be tailored in an immense range of values and chemists are increasingly achieving control on reactions taking place within these matrices, including crucially important photovoltaics. Highlighting recent major advancements, we show in this tutorial review how this is actually taking place.
Collapse
Affiliation(s)
- Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, Cnr, via U. La Malfa 153, 90146 Palermo, Italy.
| | | | | |
Collapse
|
6
|
Wheeler KE, Nocek JM, Hoffman BM. NMR Spectroscopy Can Characterize Proteins Encapsulated in a Sol-Gel Matrix. J Am Chem Soc 2006; 128:14782-3. [PMID: 17105269 DOI: 10.1021/ja066244m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins encapsulated within sol-gel matrices (SG) have the potential to fill many scientific and technological roles, but these applications are hindered by the limited means of probing possible structural consequences of encapsulation. We here present the first demonstration that it is possible to obtain high-resolution, solution NMR measurements of proteins encapsulated within a SG matrix. With the aim of determining the breadth of this approach, we have encapsulated three paramagnetic proteins with different overall charges: the highly acidic human Fe3+ cytochrome b5 (cyt b5); the highly basic horse heart cytochrome c (cyt c); and the nearly neutral, sperm whale cyanomet-myoglobin. The encapsulated anionic and neutral proteins (cyt b5; myoglobin) undergo essentially free rotation, but show minor conformational perturbations as revealed by shifts of contact-shifted peaks associated with the heme and nearby amino acids.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | |
Collapse
|
7
|
Kang SA, Hoke KR, Crane BR. Solvent Isotope Effects on Interfacial Protein Electron Transfer in Crystals and Electrode Films. J Am Chem Soc 2006; 128:2346-55. [PMID: 16478190 DOI: 10.1021/ja0557482] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D(2)O-grown crystals of yeast zinc porphyrin substituted cytochrome c peroxidase (ZnCcP) in complex with yeast iso-1-cytochrome c (yCc) diffract to higher resolution (1.7 A) and pack differently than H(2)O-grown crystals (2.4-3.0 A). Two ZnCcP's bind the same yCc (porphyrin-to-porphyrin separations of 19 and 29 A), with one ZnCcP interacting through the same interface found in the H(2)O crystals. The triplet excited-state of at least one of the two unique ZnCcP's is quenched by electron transfer (ET) to Fe(III)yCc (k(e) = 220 s(-1)). Measurement of thermal recombination ET between Fe(II)yCc and ZnCcP+ in the D(2)O-treated crystals has both slow and fast components that differ by 2 orders of magnitude (k(eb)(1) = 2200 s(-1), k(eb)(2) = 30 s(-1)). Back ET in H(2)O-grown crystals is too fast for observation, but soaking H(2)O-grown crystals in D(2)O for hours generates slower back ET, with kinetics similar to those of the D(2)O-grown crystals (k(eb)(1) = 7000 s(-1), k(eb)(2) = 100 s(-1)). Protein-film voltammetry of yCc adsorbed to mixed alkanethiol monolayers on gold electrodes shows slower ET for D(2)O-grown yCc films than for H(2)O-grown films (k(H) = 800 s(-1); k(D) = 540 s(-1) at 20 degrees C). Soaking H(2)O- or D(2)O-grown films in the counter solvent produces an immediate inverse isotope effect that diminishes over hours until the ET rate reaches that found in the counter solvent. Thus, D(2)O substitution perturbs interactions and ET between yCc and either CcP or electrode films. The effects derive from slow exchanging protons or solvent molecules that in the crystal produce only small structural changes.
Collapse
Affiliation(s)
- Seong A Kang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
8
|
Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of sol–gel materials. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b512706h] [Citation(s) in RCA: 629] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Astuti Y, Palomares E, Haque SA, Durrant JR. Triplet State Photosensitization of Nanocrystalline Metal Oxide Electrodes by Zinc-Substituted Cytochromec: Application to Hydrogen Evolution. J Am Chem Soc 2005; 127:15120-6. [PMID: 16248652 DOI: 10.1021/ja0533444] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interfacing of nanostructured semiconductor photoelectrodes with redox proteins is an innovative approach to the development of artificial photosynthetic systems. In this paper, we have investigated the photoinduced electron-transfer reactions of zinc-substituted cytochrome c, ZnCyt-c, immobilized on mesoporous, nanocrystalline metal oxide electrodes. Efficient electron injection from the triplet state of ZnCyt-c is observed into TiO(2) electrodes (t(50%) approximately 100 micros) resulting in a long-lived charge-separated state (lifetime of up to 0.4 s). Further studies were undertaken as a function of electrolyte pH and metal oxide employed. Optimum yield of a long-lived charge-separated state was observed employing TiO(2) electrodes at pH 5, consistent with our previous studies of analogous dye-sensitized metal oxide electrodes. The addition of EDTA as a sacrificial electron donor to the electrolyte resulted in efficient photogeneration of molecular hydrogen, with a quantum yield per one absorbed photon of 10 +/- 5%.
Collapse
Affiliation(s)
- Yeni Astuti
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
10
|
Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 2005; 105:2647-94. [PMID: 15941225 DOI: 10.1021/cr030707e] [Citation(s) in RCA: 561] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Renugopalakrishnan V, Ortiz-Lombardía M, Verma C. Electrostatics of Cytochrome-c assemblies. J Mol Model 2005; 11:265-70. [PMID: 15868153 DOI: 10.1007/s00894-005-0244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Electrostatic potentials along with computational mutagenesis are used to obtain atomic level insights into Cytochrome-c in order to design efficient bionanosensors. The electrostatic properties of wild type and mutant Cytochrome-c are examined in the context of their assembly, i.e. are examined in the absence and presence of neighboring molecules from the assembly. An intense increase in the positive potential ensues when the neighboring molecules are taken into account. This suggests that in the extrapolation of electric field effects upon the design of assemblies, considering the properties of only the central molecule may not be sufficient. Additionally, the influence of the uncharged residues becomes quite diminished when the molecule is considered in an assembly. This could pave the way for making mutants that might be more soluble in different media used in the construction of devices. [Figure: see text]. The electrostatic potential, calculated using the program DELPHI mapped on to the surface of Cytochrome-c when it is considered by itself (in the left column) and in the presence of the electrostatic field generated by the presence of the surrounding 4 molecules on the right. The potentials range from -10kT in red to +10kT in blue. The central figure shows the regions that have been mutated to positively charged residues by placing a unit positive charge at the terminal atom of the respective side chain. The figures range from the wild type in the first row, followed by the Gln12, Asn70, Asp50, Glu90 and Ala83 mutants.
Collapse
Affiliation(s)
- V Renugopalakrishnan
- Bionanotechnology Group, Department of Biomedical Engineering, College of Engineering, Florida International University, Miami, FL 33174, USA
| | | | | |
Collapse
|
12
|
Cai P, Li MX, Duan CY, Lu F, Guo D, Meng QJ. Syntheses, crystal structure and electrochemical properties of dinuclear ruthenium complexes containing saturated and unsaturated spacers. NEW J CHEM 2005. [DOI: 10.1039/b502656c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Laia CAT, Costa SMB. Interactions of a Sulfonated Aluminum Phthalocyanine and Cytochrome c in Micellar Systems: Binding and Electron-Transfer Kinetics. J Phys Chem B 2004. [DOI: 10.1021/jp047616l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- César A. T. Laia
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Sílvia M. B. Costa
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
Wheeler KE, Lees NS, Gurbiel RJ, Hatch SL, Nocek JM, Hoffman BM. Electrostatic Influence on Rotational Mobilities of Sol−Gel-Encapsulated Solutes by NMR and EPR Spectroscopies. J Am Chem Soc 2004; 126:13459-63. [PMID: 15479102 DOI: 10.1021/ja046659c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rotational mobilities of small solute molecules encapsulated in tetramethyl orthosilicate (TMOS) sol-gels have been investigated by EPR spectroscopy of encapsulated nitroxide probes and by high-resolution NMR spectroscopic measurements of transferred NOE's (trNOE's), of T(1)'s, and of T(1)'s in the rotating frame (T(1)rho). The two spectroscopic methods are sensitive to motions on different time scales and hence, are nicely complementary. Suites of neutral, positively, and negatively charged nitroxide probes (EPR) and of simple diamagnetic small molecules (NMR) were selected to disclose influences of electrostatic interactions with the sol-gel walls and to probe the presence of multiple populations of molecules in distinct regions of the sol-gel pores. For neutral and negatively charged solute probes, both techniques disclose a single population with a significantly increased average rotational correlation time, which we interpret at least in part as resulting from exchange between free-volume and transiently immobilized surface populations. The electrostatic attraction between cationic probes and the negatively charged sol-gel walls causes the positively charged probes to be more effectively immobilized and/or causes a greater percentage of probes to undergo this transient immobilization. The EPR spectra directly disclose a population of cationic probes which are immobilized on the X-band EPR time scale: tau(c) greater than or approximately equal 10(-7) s. However, NMR measurements of trNOE's and of T(1)rho demonstrate that this population does exchange with the free-volume probes on the slower time scale of NMR. This approach is equally applicable to the study of solutes within other types of confined spaces, as well.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | | | | | | | | | |
Collapse
|
15
|
Laia CAT, Costa SMB, Phillips D, Beeby A. Electron-Transfer Kinetics in Sulfonated Aluminum Phthalocyanines/Cytochrome c Complexes. J Phys Chem B 2004. [DOI: 10.1021/jp036675g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- César A. T. Laia
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 LISBOA, Portugal, Department of Chemistry, Imperial College, Exhibition Road, London SW7 2AY, U.K., and Chemistry Department, University of Durham, South Road, Durham DH1 3LE, U.K
| | - Sílvia M. B. Costa
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 LISBOA, Portugal, Department of Chemistry, Imperial College, Exhibition Road, London SW7 2AY, U.K., and Chemistry Department, University of Durham, South Road, Durham DH1 3LE, U.K
| | - David Phillips
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 LISBOA, Portugal, Department of Chemistry, Imperial College, Exhibition Road, London SW7 2AY, U.K., and Chemistry Department, University of Durham, South Road, Durham DH1 3LE, U.K
| | - Andrew Beeby
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 LISBOA, Portugal, Department of Chemistry, Imperial College, Exhibition Road, London SW7 2AY, U.K., and Chemistry Department, University of Durham, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
16
|
Grove TZ, Kostić NM. Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c(6) from Chlamydomonas reinhardtii. J Am Chem Soc 2003; 125:10598-607. [PMID: 12940743 DOI: 10.1021/ja036009t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noninvasive reconstitution of the heme in cytochrome c(6) with zinc(II) ions allowed us to study the photoinduced electron-transfer reaction (3)Zncyt c(6) + cyt f(III) --> Zncyt c(6)(+) + cyt f(II) between physiological partners cytochrome c(6) and cytochrome f, both from Chlamydomonas reinhardtii. The reaction kinetics was analyzed in terms of protein docking and electron transfer. In contrast to various protein pairs studied before, both the unimolecular and the bimolecular reactions of this oxidative quenching take place at all ionic strengths from 2.5 through 700 mM. The respective intracomplex rate constants are k(uni) (1.2 +/- 0.1) x 10(4) s(-1) for persistent and k(bi) (9 +/- 4) x 10(2) s(-1) for the transient protein complex. The former reaction seems to be true electron transfer, and the latter seems to be electron transfer gated by a structural rearrangement. Remarkably, these reactions occur simultaneously, and both rate constants are invariant with ionic strength. The association constant K(a) for zinc cytochrome c(6) and cytochrome f(III) remains (5 +/- 3) x 10(5) M(-1) in the ionic strength range from 700 to 10 mM and then rises slightly to (7 +/- 2) x 10(6) M(-1), as ionic strength is lowered to 2.5 mM. Evidently, docking of these proteins from C. reinhardtii is due to hydrophobic interaction, slightly augmented by weak electrostatic attraction. Kinetics, chromatography, and cross-linking consistently show that cytochrome f self-dimerizes at ionic strengths of 200 mM and higher. Cytochrome f(III) quenches triplet state (3)Zncyt c(6), but its dimer does not. Formation of this unreactive dimer is an important step in the mechanism of electron transfer. Not only association between the reacting proteins, but also their self-association, should be considered when analyzing reaction mechanisms.
Collapse
Affiliation(s)
- Tijana Z Grove
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|