1
|
Zhou X, Hao A, Xing P. Pnictogen Bond-Mediated Coassemblies for Noncovalent Molecular Glass. NANO LETTERS 2025; 25:905-913. [PMID: 39763276 DOI: 10.1021/acs.nanolett.4c05968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors. Steric effect and electronic properties determined the exposure and strength of σ-holes that direct the complexation between components. PnB complexation leads to profound property and self-assembly behavior evolutions compared to the pristine assembly, including crystallinity, photophysical, morphological, and chiroptical properties. The PnB complexes exhibited an accelerated photoisomerization. Ascribed to the multiple σ-holes in Sb donors, amorphous structures were generated, enabling the formation of glassy materials.
Collapse
Affiliation(s)
- Xinde Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
2
|
Kato K, Uchida Y, Kaneda T, Tachibana T, Ohtani S, Ogoshi T. Alkoxylated Fluoranthene-Fused [3.3.3]Propellanes: Facile Film Formation against High π-Core Content. Chem Asian J 2024; 19:e202400080. [PMID: 38380847 DOI: 10.1002/asia.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Solid-state assembling modes are as crucial as the chemical structures of single molecules for real applications. In this work, solid-state structures and phase-transition temperatures are investigated for a series of fluoranthene-fused [3.3.3]propellanes consisting of a rigid three-dimensional (3D) π-core and varying lengths of alkoxy groups. Compounds in this series with n-butoxy or longer alkoxy groups take an amorphous state at room temperature. In these molecules, rotatable biaryl-type bonds are not incorporated and high D3h molecular symmetry is retained. Therefore, π-fused [3.3.3]propellanes present a unique platform for amorphous molecular materials with low ratios of flexible alkoxy atoms to rigid π-core ones.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Uchida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
3
|
Jung SH, Park SH, Kwon NY, Park JY, Kang MJ, Koh CW, Cho MJ, Park S, Choi DH. Novel π-Extended Indolocarbazole-Based Deep-Blue Fluorescent Emitter with Remarkably Narrow Bandwidth for Solution-Processed Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56106-56115. [PMID: 37994594 DOI: 10.1021/acsami.3c11702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In solution-processed organic light-emitting diodes (OLEDs), achieving high color purity and efficiency is as important as that in vacuum processes. Emitters suitable for solution processing must have excellent solubility in organic solvents, high molecular weight, and compatibility with the host materials. In this study, we synthesized a deep-blue emitter that satisfies the above conditions by introducing a 1,4-bis(indolo[3,2,1-jk]carbazol-2-yl)benzene-based planar emitting core (DICz) structure and four 3,6-di-tert-butyl-9-phenyl-9H-carbazole (tCz) peripheral units, namely, 4tCz-DICz. A comparative compound, 4Hex-DICz, incorporating hexyl phenyl groups was synthesized. In contrast to 4Hex-DICz, 4tCz-DICz exhibited exceptional solubility in organic solvents and superior film-forming properties attributed to the presence of tCz units. Additionally, in the film state, the effective encapsulation of the emitting core (DICz) by the tCz units in 4tCz-DICz helps prevent undesirable molecular aggregation. The solution-processed OLEDs employing the CH-2D1 film, doped with 5 wt % 4tCz-DICz as the emitting layer, exhibited a deep-blue emission at 424 nm, characterized by a narrow bandwidth of 22 nm, and achieved a maximum external quantum efficiency (EQE) of approximately 4.0%. In contrast, the 4Hex-DICz-based device demonstrated an EQE of 2.91%. Consequently, we have successfully demonstrated that the introduction of four bulky tCz units into the DICz core is a promising molecular design strategy for the development of soluble indolocarbazole-based emitters, especially those used in high-performance deep-blue fluorescent OLEDs.
Collapse
Affiliation(s)
- Sung Hoon Jung
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ji Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Arunlimsawat S, Funchien P, Chasing P, Saenubol A, Sudyoadsuk T, Promarak V. A deep-red fluorophore based on naphthothiadiazole as emitter with hybridized local and charge transfer and ambipolar transporting properties for electroluminescent devices. Beilstein J Org Chem 2023; 19:1664-1676. [PMID: 37942020 PMCID: PMC10630680 DOI: 10.3762/bjoc.19.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Herein, we report the synthesis and characterization of an efficient ambipolar charge-carrier-transporting deep-red fluorophore (TPECNz) based on a donor-acceptor-donor (D-A-D)-type molecule and its application as a non-doped emitter in an organic light-emitting diode (OLED). The fluorophore TPECNz contains naphtho[2,3-c][1,2,5]thiadiazole (Nz) as a strong acceptor unit symmetrically functionalized with N-(4-(1,2,2-triphenylvinyl)phenyl)carbazole as a donor and aggregation-induced emission (AIE) luminogen. The experimental (solvatochromic and emission in THF/water mixtures studies) and theoretical investigations prove that TPECNz retains cooperative hybridized local and charge transfer (HLCT) and weak AIE features. Thanks to its D-A-D-type structure with a proper twist angle between the D and A units, a strong electron deficiency of the Nz unit, and electron-donating and hole-transporting natures of carbazole, TPECNz exhibits a strong deep red emission (λem = 648 nm) with a high fluorescence quantum yield of 96%, outstanding thermal property (Tg = 236 °C), and ambipolar charge-carrier-transporting property with a decent balance of mobility of electrons (1.50 × 10-5 cm2 V-1 s-1) and holes (4.42 × 10-6 cm2 V-1 s-1). TPECNz is successfully employed as a non-doped emitter in an OLED which displays deep red electroluminescent emission peaked at 659 nm with CIE coordinates of (0.664, 0.335)), an EQEmax of 3.32% and exciton utilization efficiency (EUE) of 47%.
Collapse
Affiliation(s)
- Suangsiri Arunlimsawat
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Patteera Funchien
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Atthapon Saenubol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Taweesak Sudyoadsuk
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
5
|
Siddiqui I, Kumar S, Tsai YF, Gautam P, Shahnawaz, Kesavan K, Lin JT, Khai L, Chou KH, Choudhury A, Grigalevicius S, Jou JH. Status and Challenges of Blue OLEDs: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2521. [PMID: 37764550 PMCID: PMC10536903 DOI: 10.3390/nano13182521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi-Fang Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shahnawaz
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kiran Kesavan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jin-Ting Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luke Khai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-Hsien Chou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhijeet Choudhury
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Nie F, Wang KZ, Yan D. Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal-organic complexes. Nat Commun 2023; 14:1654. [PMID: 36964159 PMCID: PMC10039082 DOI: 10.1038/s41467-023-37331-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
The fabrication of chiral molecules into macroscopic systems has many valuable applications, especially in the fields of optical displays, data encryption, information storage, and so on. Here, we design and prepare a serious of supramolecular glasses (SGs) based on Zn-L-Histidine complexes, via an evaporation-induced self-assembly (EISA) strategy. Metal-ligand interactions between the zinc(II) ion and chiral L-Histidine endow the SGs with interesting circularly polarized afterglow (CPA). Multicolored CPA emissions from blue to red with dissymmetry factor as high as 9.5 × 10-3 and excited-state lifetime up to 356.7 ms are achieved under ambient conditions. Therefore, this work not only communicates the bulk SGs with wide-tunable afterglow and large circular polarization, but also provides an EISA method for the macroscopic self-assembly of chiral metal-organic hybrids toward photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
7
|
Kumar K, Kesavan KK, Kumar S, Banik S, Jayakumar J, Hong LY, Hung LY, Nagar MR, Jou JH, Ghosh S. Decorated pyridine as hole transporting material (HTM) for solution-processed OLEDs. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Wang Y, Chen J, Zeng Y, Yu T, Guo X, Wang S, Allenet T, Vockenhuber M, Ekinci Y, Zhao J, Yang S, Wu Y, Yang G, Li Y. Molecular Glass Resists Based on Tetraphenylsilane Derivatives: Effect of Protecting Ratios on Advanced Lithography. ACS OMEGA 2022; 7:29266-29273. [PMID: 36033723 PMCID: PMC9404489 DOI: 10.1021/acsomega.2c03445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 05/27/2023]
Abstract
A series of t-butyloxycarbonyl (t-Boc) protected tetraphenylsilane derivatives (TPSi-Boc x , x = 60, 70, 85, 100%) were synthesized and used as resist materials to investigate the effect of t-Boc protecting ratio on advanced lithography. The physical properties such as solubility, film-forming ability, and thermal stability of TPSi-Boc x were examined to assess the suitability for application as candidates for positive-tone molecular glass resist materials. The effects of t-Boc protecting ratio had been studied in detail by electron beam lithography. The results suggest that the TPSi-Boc x resist with different t-Boc protecting ratios exhibit a significant change in contrast, pattern blur, and the density of bridge defect. The TPSi-Boc70% resist achieves the most excellent patterning capability. The extreme ultraviolet (EUV) lithography performance on TPSi-Boc70% was evaluated by using the soft X-ray interference lithography. The results demonstrate that the TPSi-Boc70% resist can achieve excellent patterning capability down to 20 nm isolated lines at 8.7 mJ/cm2 and 25 nm dense lines at 14.5 mJ/cm2. This study will help us to understand the relationship between the t-Boc protecting ratio and the patterning ability and supply useful guidelines for designing molecular resists.
Collapse
Affiliation(s)
- Yake Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Chen
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianjun Yu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Xudong Guo
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangqing Wang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Timothée Allenet
- Paul Scherrer
Institute, Laboratory for
Micro and Nanotechnology, CH-5232 Villigen, Switzerland
| | - Michaela Vockenhuber
- Paul Scherrer
Institute, Laboratory for
Micro and Nanotechnology, CH-5232 Villigen, Switzerland
| | - Yasin Ekinci
- Paul Scherrer
Institute, Laboratory for
Micro and Nanotechnology, CH-5232 Villigen, Switzerland
| | - Jun Zhao
- Shanghai
Synchrotron Radiation Facility, Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shumin Yang
- Shanghai
Synchrotron Radiation Facility, Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yanqing Wu
- Shanghai
Synchrotron Radiation Facility, Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Guoqiang Yang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Hybrid white organic light‐emitting diodes based on platinum complex. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Onishi K, Ohtani S, Kato K, Fa S, Sakata Y, Akine S, Ogasawara M, Asakawa H, Nagano S, Takashima Y, Mizuno M, Ogoshi T. State- and water repellency-controllable molecular glass of pillar[5]arenes with fluoroalkyl groups by guest vapors. Chem Sci 2022; 13:4082-4087. [PMID: 35440984 PMCID: PMC8985507 DOI: 10.1039/d2sc00828a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 01/29/2023] Open
Abstract
Molecular glasses are low-molecular-weight organic compounds that are stable in the amorphous state at room temperature. Herein, we report a state- and water repellency-controllable molecular glass by n-alkane guest vapors. We observed that a macrocyclic host compound pillar[5]arene with the C2F5 fluoroalkyl groups changes from the crystalline to the amorphous state (molecular glass) by heating above its melting point and then cooling to room temperature. The pillar[5]arene molecular glass shows reversible transitions between amorphous and crystalline states by uptake and release of the n-alkane guest vapors, respectively. Furthermore, the n-alkane guest vapor-induced reversible changes in the water contact angle were also observed: water contact angles increased and then reverted back to the original state by the uptake and release of the n-alkane guest vapors, respectively, along with the changes in the chemical structure and roughness on the surface of the molecular glass. The water repellency of the molecular glass could be controlled by tuning the uptake ratio of the n-alkane guest vapor. Pillar[5]arenes with C2F5 substituents showed reversible amorphous–crystal transitions by uptake and release of n-alkane vapors. The amorphous–crystal transitions triggered macroscopic property change such as water repellency.![]()
Collapse
Affiliation(s)
- Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Moe Ogasawara
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hitoshi Asakawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan.,Nanomaterials Research Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima Tokyo 171-8501 Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science and Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan.,Institute for Advanced Co-Creation Studies, Osaka University Suita Osaka 565-0871 Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan.,Nanomaterials Research Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan .,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
11
|
Miura Y, Murai K, Yamada K, Yoshioka N. 4-Arylethynyl-5-fluorobenzoyl-1-methylimidazole Exhibiting Self-Recovering Mechanofluorochromism and Forming Fluorescence Molecular Glass. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Youhei Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuki Murai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Kazufumi Yamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Naoki Yoshioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
|
13
|
Deng G, Zhong R, Song J, Choy PY, Kwong FY. Assembly of Furazan-Fused Quinolines via an Expeditious Metal-Free [2+2+1] Radical Tandem Cyclization Process. Org Lett 2021; 23:6520-6524. [PMID: 34369777 DOI: 10.1021/acs.orglett.1c02326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A [2+2+1]-NO-segment-incorporating heteroannulative cascade is described. This versatile method, particularly using modular cyanoarylated ketimine substrates, allows efficient access to structurally diversified quinolines embedded with an oxadiazole core. This metal-free protocol proceeds smoothly at 30 °C, offers easy manipulation of substituents on the quinoline moiety, and tolerates a spectrum of functional groups. Density functional theory calculation revealed that the cyano moiety is crucial to facilitate the early cyclization step in this heteroannulation process and is different from the previously established late cyclization mechanistic interpretation.
Collapse
Affiliation(s)
- Guobo Deng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Ronglin Zhong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
Zhao J, Ren J, Zhang G, Zhao Z, Liu S, Zhang W, Chen L. Donor-Acceptor Type Covalent Organic Frameworks. Chemistry 2021; 27:10781-10797. [PMID: 34002911 DOI: 10.1002/chem.202101135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Intermolecular charge transfer (ICT) effect has been widely studied in both small molecules and linear polymers. Covalently-bonded donor-acceptor pairs with tunable bandgaps and photoelectric properties endow these materials with potential applications in optoelectronics, fluorescent bioimaging, and sensors, etc. However, owing to the lack of charge transfer pathway or effective separation of charge carriers, unfavorable charge recombination gives rise to inevitable energy loss. Covalent organic frameworks (COFs) can be mediated with various geometry- and property-tailored building blocks, where donor (D) and acceptor (A) segments are connected by covalent bonds and can be finely arranged to form highly ordered networks (namely D-A COFs). The unique structural features of D-A COFs render the formation of segregated D-A stacks, thus provides pathways and channels for effective charge carriers transport. This review highlights the significant progress on D-A COFs over the past decade with emphasis on design principles, growing structural diversities, and promising application potentials.
Collapse
Affiliation(s)
- Jinwei Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Junyu Ren
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ziqiang Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.,Institute of Molecules Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyong Liu
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wandong Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
15
|
BASAPPA VAGISHCHANNA, PENUBOLU SUDEEP, ACHUTHA DILEEPKUMAR, KARIYAPPA AJAYKUMAR. Synthesis, characterization and antioxidant activity studies of new coumarin tethered 1,3,4-oxadiazole analogues. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01914-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Devibala P, Balambiga B, Noureen S, Nagarajan S. Hexaarylbenzene based high-performance p-channel molecules for electronic applications. RSC Adv 2021; 11:11672-11701. [PMID: 35423632 PMCID: PMC8696071 DOI: 10.1039/d1ra00217a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 01/20/2023] Open
Abstract
Hexaarylbenzene-based molecules find potential applications in organic electronics due to wider energy gap, high HOMO level, higher photoconductivity, electron-rich nature, and high hole-transporting property. Due to the unique propeller structure, these molecules show low susceptibility towards self-aggregation. This property can be tailored by proper molecular engineering by the incorporation of appropriate groups. Therefore, hexaarylbenzene chromophores are widely used as the materials for high-efficiency light-emitting materials, charge transport materials, host materials, redox materials, photochemical switches, and molecular receptors. This review highlights the diverse structural modification techniques used for the synthesis of symmetrical and unsymmetrical structures. Also, the potential applications of these molecules in organic light-emitting diodes, organic field-effect transistors, organic photovoltaics, organic memory devices, and logic circuits are discussed.
Collapse
Affiliation(s)
- Panneerselvam Devibala
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu Thiruvarur 610 005 India
| | - Balu Balambiga
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu Thiruvarur 610 005 India
| | - Shana Noureen
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu Thiruvarur 610 005 India
| | - Samuthira Nagarajan
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu Thiruvarur 610 005 India
| |
Collapse
|
17
|
Lu F, Gong F, Li L, Zhang K, Li Z, Zhang X, Yin Y, Wang Y, Gao Z, Zhang H, Lei A. Electrochemical Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles from α-Keto Acids and Acylhydrazines Under Mild Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fangling Lu
- College of Chemistry and Chemical Engineering; Shaanxi Normal University Xi'an; 710119 Xi'an Shaanxi P.R.China
| | - Fengping Gong
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
| | - Liangsen Li
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
| | - Kan Zhang
- College of Chemistry and Chemical Engineering; Shaanxi Normal University Xi'an; 710119 Xi'an Shaanxi P.R.China
| | - Zhen Li
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
| | - Xinwei Zhang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
| | - Ying Yin
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
| | - Ying Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
| | - Ziwei Gao
- College of Chemistry and Chemical Engineering; Shaanxi Normal University Xi'an; 710119 Xi'an Shaanxi P.R.China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences; the Institute for Advanced Studies (IAS); Wuhan University; 430072 Wuhan Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang Jiangxi P. R. China
- College of Chemistry and Molecular Sciences; the Institute for Advanced Studies (IAS); Wuhan University; 430072 Wuhan Hubei P. R. China
| |
Collapse
|
18
|
Chen M, Zhao Y, Tang Z, Zhang B, Wei B. Multifunctional Organic Emitters for High‐Performance and Low‐Cost Organic Light‐Emitting Didoes. CHEM REC 2019; 19:1768-1778. [DOI: 10.1002/tcr.201900005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Minyu Chen
- Microelectronic R&D Center, School of Mechatronic Engineering and AutomationShanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| | - Yi Zhao
- Microelectronic R&D Center, School of Mechatronic Engineering and AutomationShanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| | - Zhenyu Tang
- Microelectronic R&D Center, School of Mechatronic Engineering and AutomationShanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| | - Bin Zhang
- College of Chemistry and Molecular EngineeringZhengzhou University No.100 Science Avenue Zhengzhou 450001 P. R. China
| | - Bin Wei
- Microelectronic R&D Center, School of Mechatronic Engineering and AutomationShanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| |
Collapse
|
19
|
Bhujabal YB, Vadagaonkar KS, Kapdi AR. Pd/PTABS: Catalyst for Efficient C−H (Hetero)Arylation of 1,3,4-Oxadiazoles Using Bromo(Hetero)Arenes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuvraj B. Bhujabal
- Department of Chemistry; Institute of Chemical Technology Matunga; Mumbai- 400019 India
| | | | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology Matunga; Mumbai- 400019 India
| |
Collapse
|
20
|
Du P, Zhao J. Comparative DFT study of metal-free Lewis acid-catalyzed C–H and N–H silylation of (hetero)arenes: mechanistic studies and expansion of catalyst and substrate scope. RSC Adv 2019; 9:37675-37685. [PMID: 35542279 PMCID: PMC9075773 DOI: 10.1039/c9ra07985h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
Direct selective dehydrogenative silylation of thiophenes, pyridines, indoles and anilines to synthesize silyl-substituted aromatic compounds catalyzed by metal-free Lewis acids was achieved recently. However, there is still insufficient mechanistic data for these transformations. Using density functional theory calculations, we conducted a detailed investigation of the mechanism of the B(C6F5)3-catalyzed dehydrogenative silylation of N-methylindole, N,N-dimethylaniline and N-methylaniline. We successfully located the most favourable reaction pathways that can explain the experimental observations notably well. The most favourable pathway for B(C6F5)3-catalyzed C–H silylation of N-methylindole includes nucleophilic attack, proton abstraction and hydride migration. The C–H silylation of N,N-dimethylaniline follows a similar pathway to N-methylindole rather than that proposed by Hou's group. Our mechanism successfully explains that the transformations of N-methylindoline to N-methylindole produce different products at different temperatures. For N-methylaniline bearing both N–H and para-phenyl C–H bonds, the N–H silylation reaction is more facile than the C–H silylation reaction. Our proposed mechanism of N–H silylation of N-methylaniline is different from that proposed by the groups of Paradies and Stephan. Lewis acids Al(C6F5)3, Ga(C6F5)3 and B(2,6-Cl2C6H3)(p-HC6F4)2 can also catalyze the C–H silylation of N-methylindole like B(C6F5)3, but the most favourable pathways are those promoted by N-methylindoline. Furthermore, we also found several other types of substrates that would undergo C–H or N–H silylation reactions under moderate conditions. These findings may facilitate the design of new catalysts for the dehydrogenative silylation of inactivated (hetero)arenes. We investigated the mechanism of the dehydrosilylation of (hetero)arenes and extended the scope of the silylation catalysts and substrates.![]()
Collapse
Affiliation(s)
- Pan Du
- School of Life Science and Chemistry
- Jiangsu Second Normal University
- Nanjing 210013
- China
| | - Jiyang Zhao
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- China
| |
Collapse
|
21
|
Yu L, Li SS, Li W, Yu S, Liu Q, Xiao J. Fluorinated Alcohol-Promoted Reaction of Chlorohydrocarbons with Diverse Nucleophiles for the Synthesis of Triarylmethanes and Tetraarylmethanes. J Org Chem 2018; 83:15277-15283. [PMID: 30450905 DOI: 10.1021/acs.joc.8b02549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article reports an efficient synthesis of triarylmethanes and tetraarylmethanes from chlorohydrocarbons with miscellaneous nucleophiles in fluorinated alcohols, featuring metal-free, wide substrate scope, excellent functional group tolerance, and mild reaction conditions.
Collapse
Affiliation(s)
- Liping Yu
- College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Shuai-Shuai Li
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Weina Li
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Shitao Yu
- College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Qing Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , China
| | - Jian Xiao
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| |
Collapse
|
22
|
Mohan M, Pangannaya S, Satyanarayan MN, Trivedi DR. Multicoloured Thiophene Based AIEgens: Single Crystal Structure Elucidation, Spectral Behaviour and DFT Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201800252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory; Department of Physics; National Institute of Technology Karnataka (NITK) Surathkal; Mangalore - 575025
| | - Srikala Pangannaya
- Supramolecular Chemistry Laboratory; Department of Chemistry; National Institute of Technology Karnataka (NITK) Surathkal; Mangalore - 575025
| | - M. N. Satyanarayan
- Optoelectronics Laboratory; Department of Physics; National Institute of Technology Karnataka (NITK) Surathkal; Mangalore - 575025
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory; Department of Chemistry; National Institute of Technology Karnataka (NITK) Surathkal; Mangalore - 575025
| |
Collapse
|
23
|
Itoi H, Jang T, Kanehashi S, Shimomura T, Ogino K. Cyclic Emitter with Tetraphenylsilane and Tetraphenylethene Units Exhibiting Tunable Color Emissions. CHEM LETT 2017. [DOI: 10.1246/cl.170636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Itoi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Taehee Jang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Shinji Kanehashi
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Takeshi Shimomura
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| |
Collapse
|
24
|
Chalke RM, Patil VR. Novel methoxy spirobifluorene and alkyl substituted diphenylacene based organic blue light emitting polymers for application in organic electronics. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Chalke RM, Patil VR. New approaches towards the synthesis and characterization of alkoxy substituted spirobifluorenes and spirosilabifluorenes for organic optoelectronics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1309249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Liu L, Feng S. Ligand-free Cu(ii)-mediated aerobic oxidations of aldehyde hydrazones leading to N,N'-diacylhydrazines and 1,3,4-oxadiazoles. Org Biomol Chem 2017; 15:2585-2592. [PMID: 28266668 DOI: 10.1039/c7ob00042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A Cu(ii)-mediated synthesis of N,N'-diacylhydrazines and 1,3,4-oxadiazoles from aldehyde hydrazones has been developed. This is the first time that the synthesis of N,N'-diacylhydrazines and 1,3,4-oxadiazoles using N,N-dimethylamides as the acylation reagent and O2 in air as the oxidation reagent is reported. These reactions offered several advantages including simple workups, ligand-free inexpensive metal salts as mediators, high yields, and wide scope of substrates.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China.
| | - Suliu Feng
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China.
| |
Collapse
|
27
|
Wang H, Wang Y, Ye X, Hayama H, Sugino H, Nakano H, Nakano T. π-Stacked poly(vinyl ketone)s with accumulated push–pull triphenylamine moieties in the side chain. Polym Chem 2017. [DOI: 10.1039/c6py01737a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(vinyl ketone)s bearing push–pull triphenyamine moiety indicated remarkable absorption hypochromism, reduced redox potentials, and emission red shifts due to a π-stacked conformation.
Collapse
Affiliation(s)
- Heng Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Yue Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Xichong Ye
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Haruka Hayama
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroyoshi Sugino
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hideyuki Nakano
- Department of Applied Chemistry
- Muroran Institute of Technology
- Muroran
- Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS)
| |
Collapse
|
28
|
Ruan Z, Li L, Wang C, Xie Y, Hu Q, Peng Q, Ye S, Li Q, Li Z. Tetraphenylcyclopentadiene Derivatives: Aggregation-Induced Emission, Adjustable Luminescence from Green to Blue, Efficient Undoped OLED Performance and Good Mechanochromic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6623-6632. [PMID: 27671549 DOI: 10.1002/smll.201602285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Silole derivatives, the first reported and famous AIEgens, are a series of Si-containing conjugated rings with the σ*-π* conjugation, and this unique electronic structure imparts them high electron affinity and fast electron mobility, but not ideal blue luminogens due to their relatively long conjugation length. By replacing the Si atom with the C one, six new AIEgens without the σ*-π* conjugation effect are successfully synthesized based on a tetraphenylcyclopentadiene core. In addition to the sky-blue emission (λEL = 492 nm) with Lmax , ηC,max , and ηP,max up to 24 096 cd m-2 , 6.80 cd A-1 , and 4.07 lm W-1 , respectively, the careful control of the conjugation degree by changing the linkage mode, results in the blue one (λEL = 440 nm) with relatively good performance (Lmax : 8721 cd m-2 and ηC,max : 3.40 cd A-1 ), indicating that the replacement of the Si atom by C one is an alternative design strategy to yield blue even deep-blue AIEgens with good device performance. Meanwhile, their reversible mechanochromic properties are realized with apparent fluorescence changes between deep-blue and green emissive colors, offering them additional promising applications in optoelectronic devices.
Collapse
Affiliation(s)
- Zhijun Ruan
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Le Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Can Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yujun Xie
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Quanyuan Hu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shanghui Ye
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Qianqian Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
29
|
Vij V, Bhalla V, Kumar M. Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold. Chem Rev 2016; 116:9565-627. [DOI: 10.1021/acs.chemrev.6b00144] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Varun Vij
- Department of Chemistry,
UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vandana Bhalla
- Department of Chemistry,
UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar
- Department of Chemistry,
UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
30
|
Platonova ЕО, Kovylina ТА, Baranov ЕV, Arapova АV, Bochkarev LN. Functionalized polynorbornenes with organosilicon groups in the side chains. Synthesis and photophysical properties. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216010205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs. J Fluoresc 2015; 26:307-16. [PMID: 26585347 DOI: 10.1007/s10895-015-1715-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
Efficient hole transport materials based on novel fused methoxynaphthyl phenanthrimidazole core structure were synthesised and characterized. Their device performances in phosphorescent organic light emitting diodes were investigated. The high thermal stability in combination with the reversible oxidation process made promising candidates as hole-transporting materials for organic light-emitting devices. Highly efficient Alq3-based organic light emitting devices have been developed using phenanthrimidazoles as functional layers between NPB [4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl] and Alq3 [tris(8-hydroxyquinoline)aluminium] layers. Using the device of ITO/NPB/4/Alq3/LiF/Al, a maximum luminous efficiency of 5.99 cd A(-1) was obtained with a maximum brightness of 40,623 cd m(-2) and a power efficiency of 5.25 lm W(-1).
Collapse
|
32
|
Li Z, Wang L. Palladium-Catalyzed Aminocarbonylation Reaction to Access 1,3,4-Oxadiazoles using Chloroform as the Carbon Monoxide Source. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Cao J, Wang L. Organocatalytic Oxidative Amidation of Aldehydes with Tetrazoles to Construct 2,5-Diaryl 1,3,4-Oxadiazoles. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Wang L, Cao J, Chen Q, He M. One-Pot Synthesis of 2,5-Diaryl 1,3,4-Oxadiazoles via Di-tert-butyl Peroxide Promoted N-Acylation of Aryl Tetrazoles with Aldehydes. J Org Chem 2015; 80:4743-8. [DOI: 10.1021/acs.joc.5b00207] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Wang
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Jing Cao
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Qun Chen
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Mingyang He
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
35
|
Ligand-free copper(0) catalyzed direct C–H arylation of 1,2,4-triazoles and 1,3,4-oxadiazoles with aryl iodides in PEG-400. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Huang J, Yang M, Yang J, Tang R, Ye S, Li Q, Li Z. Blue AIE luminogens bearing methyl groups: different linkage position, different number of methyl groups, and different intramolecular conjugation. Org Chem Front 2015. [DOI: 10.1039/c5qo00274e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By changing the linkage position and linked number of the methyl group, the resultant AIE luminogens demonstrated adjustable intramolecular conjugation.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan 430072
- China
| | - Min Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 211023
- China
| | - Jie Yang
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan 430072
- China
| | - Runli Tang
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan 430072
- China
| | - Shanghui Ye
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 211023
- China
| | - Qianqian Li
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan 430072
- China
| | - Zhen Li
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
37
|
Sangchart T, Niroram A, Kaewpuang T, Prachumrak N, Namuangruk S, Sudyoadsuk T, Keawin T, Saengsuwan S, Jungsuttiwong S, Maensiri S, Kungwan N, Promarak V. Synthesis, physical and electroluminescence properties of 3,6-dipyrenylcarbazole end capped oligofluorenes. RSC Adv 2015. [DOI: 10.1039/c5ra02382c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of oligofluorenes bearing 3,6-dipyrenylcarbazoles as the terminal substituents showed strong blue emission with good solubility, and thermally stable amorphous and excellent film-forming properties. OLEDs using these materials exhibited excellent device performance.
Collapse
|
38
|
Wang L, Wang D, Wang H, Feng S. New cyano functionalized silanes: Synthesis, characterization and diphenylamine detection. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Wu CS, Fang SW, Chen Y. Solution-processable hole-transporting material containing fluorenyl core and triple-carbazolyl terminals: synthesis and application to enhancement of electroluminescence. Phys Chem Chem Phys 2014; 15:15121-7. [PMID: 23925249 DOI: 10.1039/c3cp52087k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel solution-processable, efficient hole-transporting material 2,4,7-tri[2-(9-hexylcarbazole)ethenyl]-9,9-dihexylfluorene (FC), composed of a fluorenyl core and triple-carbazolyl terminals, is successfully synthesized and well characterized. The FC is a thermally stable, amorphous material because of its aromatic and asymmetric structure. The highest occupied molecular orbital (HOMO) level of FC is -5.21 eV, as determined by cyclic voltammetry, implying its applicability as a hole-transporting layer (HTL) to promote hole injection. Furthermore, the FC could be deposited by a spin-coating process to obtain a homogeneous HTL film, more convenient and cost-effective than conventional NPB which must be deposited by vacuum vapor deposition. When fabricated as multi-layer OLED [ITO/PEDOT:PSS/HTL(25 nm)/Alq3(50 nm)/LiF(0.5 nm)/Al(100 nm)], the maximum brightness (21,400 cd m(-2)) and current efficiency (3.20 cd A(-1)) based on the FC are superior to those using conventional NPB as the hole-transporting layer. In addition, a homogeneous FC film is readily prepared by simple wet processes (spin-coating). Our results indicate that the FC is a promising optoelectronic material which is readily processed by wet methods such as spin-coating.
Collapse
Affiliation(s)
- Chia-Shing Wu
- National Cheng Kung University, Department of Chemical Engineering, Tainan 701, Taiwan.
| | | | | |
Collapse
|
40
|
Huang J, Tang R, Zhang T, Li Q, Yu G, Xie S, Liu Y, Ye S, Qin J, Li Z. A New Approach to Prepare Efficient Blue AIE Emitters for Undoped OLEDs. Chemistry 2014; 20:5317-26. [DOI: 10.1002/chem.201303522] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/15/2014] [Indexed: 11/08/2022]
|
41
|
Wang H, Liang Y, Wang Y, Xie H, Feng L, Lu H, Feng S. The strategy to improve thermal and optical properties of diphenylfluoranthene based on silicon-cored derivatives. RSC Adv 2014. [DOI: 10.1039/c3ra47751g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Majji G, Rout SK, Guin S, Gogoi A, Patel BK. Iodine-catalysed oxidative cyclisation of acylhydrazones to 2,5-substituted 1,3,4-oxadiazoles. RSC Adv 2014. [DOI: 10.1039/c3ra44897e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
43
|
Chiang CL, Wen YJ, Wen YS, Shu CF, Chen CT. Synthesis and Characterization of Donor-Acceptor-Substituted Fluorene Fluorophores for Non-Doped Red Organic Light Emitting Diodes. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Wang L, Wang D, Lu H, Wang H, Xue L, Feng S. New cyano functionalized silanes: aggregation-induced emission enhancement properties and detection of 2,4,6-trinitrotoluene. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.3025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Linlin Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Dengxu Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Haifeng Lu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Hua Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Lei Xue
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| |
Collapse
|
45
|
Tetrahedral silicon-based luminescent molecules: Synthesis and comparison of thermal and photophysical properties by various effect factors. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Sensitivity boosting in solid-state NMR of thin organic semiconductors by a paramagnetic dopant of copper phthalocyanine. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Bhalla V, Singh G, Kumar M, Singh C, Rawat M, Anand RS. Carbazole-based linear conjugated molecules: structure–property relationships and device properties. RSC Adv 2013. [DOI: 10.1039/c3ra42318b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
48
|
Liu TH, Cheng WT, Lin JJ. Effect of Photo-initiator on Photosensitive Emission Polymer. J PHOTOPOLYM SCI TEC 2013. [DOI: 10.2494/photopolymer.26.757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Synthesis and Characterization of Carbazole–Fluorene–Silole Copolymers as Efficient Green Light Emitting Diodes. J Inorg Organomet Polym Mater 2012. [DOI: 10.1007/s10904-012-9773-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Zhao Z, Jiang T, Guo Y, Ding L, He B, Chang Z, Lam JWY, Liu J, Chan CYK, Lu P, Xu L, Qiu H, Tang BZ. Silole-containing poly(silylenevinylene)s: Synthesis, characterization, aggregation-enhanced emission, and explosive detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|