1
|
Bogetti X, Hasanbasri Z, Hunter HR, Saxena S. An optimal acquisition scheme for Q-band EPR distance measurements using Cu 2+-based protein labels. Phys Chem Chem Phys 2022; 24:14727-14739. [PMID: 35574729 DOI: 10.1039/d2cp01032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent advances in site-directed Cu2+ labeling of proteins and nucleic acids have added an attractive new methodology to measure the structure-function relationship in biomolecules. Despite the promise, accessing the higher sensitivity of Q-band Double Electron Electron Resonance (DEER) has been challenging for Cu2+ labels designed for proteins. Q-band DEER experiments on this label typically require many measurements at different magnetic fields, since the pulses can excite only a few orientations at a given magnetic field. Herein, we analyze such orientational effects through simulations and show that three DEER measurements, at strategically selected magnetic fields, are generally sufficient to acquire an orientational-averaged DEER time trace for this spin label at Q-band. The modeling results are experimentally verified on Cu2+ labeled human glutathione S-transferase (hGSTA1-1). The DEER distance distribution measured at the Q-band shows good agreement with the distance distribution sampled by molecular dynamics (MD) simulations and X-band experiments. The concordance of MD sampled distances and experimentally measured distances adds growing evidence that MD simulations can accurately predict distances for the Cu2+ labels, which remains a key bottleneck for the commonly used nitroxide label. In all, this minimal collection scheme reduces data collection time by as much as six-fold and is generally applicable to many octahedrally coordinated Cu2+ systems. Furthermore, the concepts presented here may be applied to other metals and pulsed EPR experiments.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
2
|
Bowen AM, Bertran A, Henbest KB, Gobbo M, Timmel CR, Di Valentin M. Orientation-Selective and Frequency-Correlated Light-Induced Pulsed Dipolar Spectroscopy. J Phys Chem Lett 2021; 12:3819-3826. [PMID: 33856805 PMCID: PMC8154851 DOI: 10.1021/acs.jpclett.1c00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
We explore the potential of orientation-resolved pulsed dipolar spectroscopy (PDS) in light-induced versions of the experiment. The use of triplets as spin-active moieties for PDS offers an attractive tool for studying biochemical systems containing optically active cofactors. Cofactors are often rigidly bound within the protein structure, providing an accurate positional marker. The rigidity leads to orientation selection effects in PDS, which can be analyzed to give both distance and mutual orientation information. Herein we present a comprehensive analysis of the orientation selection of a full set of light-induced PDS experiments. We exploit the complementary information provided by the different light-induced techniques to yield atomic-level structural information. For the first time, we measure a 2D frequency-correlated laser-induced magnetic dipolar spectrum, and we are able to monitor the complete orientation dependence of the system in a single experiment. Alternatively, the summed spectrum enables an orientation-independent analysis to determine the distance distribution.
Collapse
Affiliation(s)
- Alice M. Bowen
- Department
of Chemistry, Photon Science Institute and The National EPR Research
Facility, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kevin B. Henbest
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marina Gobbo
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Abdullin D, Schiemann O. Localization of metal ions in biomolecules by means of pulsed dipolar EPR spectroscopy. Dalton Trans 2021; 50:808-815. [PMID: 33416053 DOI: 10.1039/d0dt03596c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions are important for the folding, structure, and function of biomolecules. Thus, knowing where their binding sites are located in proteins or oligonucleotides is a critical objective. X-ray crystallography and nuclear magnetic resonance are powerful methods in this respect, but both have their limitations. Here, a complementary method is highlighted in which paramagnetic metal ions are localized by means of trilateration using a combination of site-directed spin labeling and pulsed dipolar electron paramagnetic resonance spectroscopy. The working principle, the requirements, and the limitations of the method are critically discussed. Several applications of the method are outlined and compared with each other.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany.
| | | |
Collapse
|
4
|
Lockyer SJ, Nawaz S, Brookfield A, Fielding AJ, Vitorica-Yrezabal IJ, Timco GA, Burton NA, Bowen AM, Winpenny REP, McInnes EJL. Conformational Flexibility of Hybrid [3]- and [4]-Rotaxanes. J Am Chem Soc 2020; 142:15941-15949. [PMID: 32820906 PMCID: PMC7605720 DOI: 10.1021/jacs.0c06547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis, structures, and properties of [4]- and [3]-rotaxane complexes are reported where [2]-rotaxanes, formed from heterometallic {Cr7Ni} rings, are bound to a fluoride-centered {CrNi2} triangle. The compounds have been characterized by single-crystal X-ray diffraction and have the formulas [CrNi2(F)(O2CtBu)6]{(BH)[Cr7NiF8(O2CtBu)16]}3 (3) and [CrNi2(F)(O2CtBu)6(THF)]{(BH)[Cr7NiF8(O2CtBu)16]}2 (4), where B = py-CH2CH2NHCH2C6H4SCH3. The [4]-rotaxane 3 is an isosceles triangle of three [2]-rotaxanes bound to the central triangle while the [3]-rotaxane 4 contains only two [2]-rotaxanes bound to the central triangle. Studies of the behavior of 3 and 4 in solution by small-angle X-ray scattering and atomistic molecular dynamic simulations show that the structure of 3 is similar to that found in the crystal but that 4 has a different conformation to the crystal. Continuous wave and pulsed electron paramagnetic resonance spectroscopy was used to study the structures present and demonstrate that in frozen solutions (at 5 K) 4 forms more extended molecules than 3 and with a wider range of conformations.
Collapse
Affiliation(s)
- Selena J Lockyer
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Selina Nawaz
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Alistair J Fielding
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Inigo J Vitorica-Yrezabal
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Grigore A Timco
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Neil A Burton
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Alice M Bowen
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard E P Winpenny
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Eric J L McInnes
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
5
|
Jiang H, Gong S, Xu S, Shi P, Fan J, Cecen V, Xu Q, Min Y. Bimetal composites for photocatalytic reduction of CO2 to CO in the near-infrared region by the SPR effect. Dalton Trans 2020; 49:5074-5086. [DOI: 10.1039/c9dt04935e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major challenge in the field of photocatalytic carbon dioxide (CO2) reduction is to design catalyst systems featuring high selectivity for CO production, long-term stability and a composition of Earth-abundant elements.
Collapse
Affiliation(s)
- Hua Jiang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
| | - Shuaiqi Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
| | - Shu Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
| | - Volkan Cecen
- Department of Chemical Engineering and Biointerfaces Institute
- University of Michigan
- Ann Arbor
- USA
| | - QunJie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
- Shanghai Institute of Pollution Control and Ecological Security
| | - YuLin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P.R. China
- Shanghai Institute of Pollution Control and Ecological Security
| |
Collapse
|
6
|
Spicher S, Abdullin D, Grimme S, Schiemann O. Modeling of spin–spin distance distributions for nitroxide labeled biomacromolecules. Phys Chem Chem Phys 2020; 22:24282-24290. [DOI: 10.1039/d0cp04920d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Combining CREST and MD simulations based on GFN-FF for the automated computation of distance distributions for nitroxide labeled (metallo-) proteins.
Collapse
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
7
|
Abdullin D, Brehm P, Fleck N, Spicher S, Grimme S, Schiemann O. Pulsed EPR Dipolar Spectroscopy on Spin Pairs with one Highly Anisotropic Spin Center: The Low-Spin Fe III Case. Chemistry 2019; 25:14388-14398. [PMID: 31386227 PMCID: PMC6900076 DOI: 10.1002/chem.201902908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Indexed: 02/01/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling constants and thus the distance between electron spin centers. Up to now, PDS measurements have been mostly applied to spin centers whose g-anisotropies are moderate and therefore have a negligible effect on the dipolar coupling constants. In contrast, spin centers with large g-anisotropy yield dipolar coupling constants that depend on the g-values. In this case, the usual methods of extracting distances from the raw PDS data cannot be applied. Here, the effect of the g-anisotropy on PDS data is studied in detail on the example of the low-spin Fe3+ ion. First, this effect is described theoretically, using the work of Bedilo and Maryasov (Appl. Magn. Reson. 2006, 30, 683-702) as a basis. Then, two known Fe3+ /nitroxide compounds and one new Fe3+ /trityl compound were synthesized and PDS measurements were carried out on them using a method called relaxation induced dipolar modulation enhancement (RIDME). Based on the theoretical results, a RIDME data analysis procedure was developed, which facilitated the extraction of the inter-spin distance and the orientation of the inter-spin vector relative to the Fe3+ g-tensor frame from the RIDME data. The accuracy of the determined distances and orientations was confirmed by comparison with MD simulations. This method can thus be applied to the highly relevant class of metalloproteins with, for example, low-spin Fe3+ ions.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Philipp Brehm
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
- Current address: Institute of Inorganic ChemistryUniversity of Bonn53115BonnGermany
| | - Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Sebastian Spicher
- Mulliken Center for Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| |
Collapse
|
8
|
Abdullin D, Matsuoka H, Yulikov M, Fleck N, Klein C, Spicher S, Hagelueken G, Grimme S, Lützen A, Schiemann O. Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. Chemistry 2019; 25:8820-8828. [PMID: 31017706 DOI: 10.1002/chem.201900977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+ /nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006, 30, 683-702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Current address: Graduate School of Science, Osaka City University, Osaka, Japan
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Christoph Klein
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Dal Farra MG, Ciuti S, Gobbo M, Carbonera D, Di Valentin M. Triplet-state spin labels for highly sensitive pulsed dipolar spectroscopy. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. G. Dal Farra
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - S. Ciuti
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - M. Gobbo
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - D. Carbonera
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - M. Di Valentin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| |
Collapse
|
10
|
Xiao K, Zhao Y, Choi M, Liu H, Blanc A, Qian J, Cahill TJ, Li X, Xiao Y, Clark LJ, Li S. Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat Protoc 2018; 13:1403-1428. [PMID: 29844522 DOI: 10.1038/nprot.2018.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many cellular functions necessitate structural assemblies of two or more associated proteins. The structural characterization of protein complexes using standard methods, such as X-ray crystallography, is challenging. Herein, we describe an orthogonal approach using hydrogen-deuterium-exchange mass spectrometry (HDXMS), cross-linking mass spectrometry (CXMS), and disulfide trapping to map interactions within protein complexes. HDXMS measures changes in solvent accessibility and hydrogen bonding upon complex formation; a decrease in HDX rate could account for newly formed intermolecular or intramolecular interactions. To distinguish between inter- and intramolecular interactions, we use a CXMS method to determine the position of direct interface regions by trapping intermolecular residues in close proximity to various cross-linkers (e.g., disuccinimidyl adipate (DSA)) of different lengths and reactive groups. Both MS-based experiments are performed on high-resolution mass spectrometers (e.g., an Orbitrap Elite hybrid mass spectrometer). The physiological relevance of the interactions identified through HDXMS and CXMS is investigated by transiently co-expressing cysteine mutant pairs, one mutant on each protein at the discovered interfaces, in an appropriate cell line, such as HEK293. Disulfide-trapped protein complexes are formed within cells spontaneously or are facilitated by addition of oxidation reagents such as H2O2 or diamide. Western blotting analysis, in the presence and absence of reducing reagents, is used to determine whether the disulfide bonds are formed in the proposed complex interface in physiologically relevant milieus. The procedure described here requires 1-2 months. We demonstrate this approach using the β2-adrenergic receptor-β-arrestin1 complex as the model system.
Collapse
Affiliation(s)
- Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Biomedical Mass Spectrometry Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yang Zhao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minjung Choi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adi Blanc
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiang Qian
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas J Cahill
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Xue Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Yunfang Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa J Clark
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sheng Li
- Department of Chemistry, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Bowen AM, Johnson EOD, Mercuri F, Hoskins NJ, Qiao R, McCullagh JSO, Lovett JE, Bell SG, Zhou W, Timmel CR, Wong LL, Harmer JR. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy. J Am Chem Soc 2018; 140:2514-2527. [PMID: 29266939 DOI: 10.1021/jacs.7b11056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.
Collapse
Affiliation(s)
- Alice M Bowen
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Eachan O D Johnson
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Francesco Mercuri
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via P. Gobetti 101, 40129 Bologna, Italy
| | - Nicola J Hoskins
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Ruihong Qiao
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Janet E Lovett
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Stephen G Bell
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Weihong Zhou
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Christiane R Timmel
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Luet Lok Wong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Jeffrey R Harmer
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
12
|
Mathivathanan L, Boudalis AK, Turek P, Pissas M, Sanakis Y, Raptis RG. Interactions between H-bonded [CuII3(μ3-OH)] triangles; a combined magnetic susceptibility and EPR study. Phys Chem Chem Phys 2018; 20:17234-17244. [DOI: 10.1039/c8cp02643b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-band EPR spectroscopy and magnetic susceptibility studies elucidate the magnetic exchange scheme within a triangular CuII3(μ3-OH) complex and the intermolecular dipolar interactions between two H-bonded CuII3(μ3-OH) units.
Collapse
Affiliation(s)
- Logesh Mathivathanan
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Athanassios K. Boudalis
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
- Université de Strasbourg
- F-67081 Strasbourg
- France
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology
- NCSR “Demokritos”
- Athens
- Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology
- NCSR “Demokritos”
- Athens
- Greece
| | - Raphael G. Raptis
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| |
Collapse
|
13
|
Di Valentin M, Albertini M, Dal Farra MG, Zurlo E, Orian L, Polimeno A, Gobbo M, Carbonera D. Light-Induced Porphyrin-Based Spectroscopic Ruler for Nanometer Distance Measurements. Chemistry 2016; 22:17204-17214. [DOI: 10.1002/chem.201603666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Marilena Di Valentin
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Marco Albertini
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Maria Giulia Dal Farra
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Enrico Zurlo
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
- Leiden Institute of Physics; Leiden University; Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Laura Orian
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Marina Gobbo
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| |
Collapse
|
14
|
Collauto A, Feintuch A, Qi M, Godt A, Meade T, Goldfarb D. Gd(III) complexes as paramagnetic tags: Evaluation of the spin delocalization over the nuclei of the ligand. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:156-163. [PMID: 26802219 DOI: 10.1016/j.jmr.2015.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 05/15/2023]
Abstract
Complexes of the Gd(III) ion are currently being established as spin labels for distance determination in biomolecules by pulse dipolar spectroscopy. Because Gd(III) is an f ion, one expects electron spin density to be localized on the Gd(III) ion - an important feature for the mentioned application. Most of the complex ligands have nitrogens as Gd(III) coordinating atoms. Therefore, measurement of the (14)N hyperfine coupling gives access to information on the localization of the electron spin on the Gd(III) ion. We carried out W-band, 1D and 2D (14)N and (1)H ENDOR measurements on the Gd(III) complexes Gd-DOTA, Gd-538, Gd-595, and Gd-PyMTA that serve as spin labels for Gd-Gd distance measurements. The obtained (14)N spectra are particularly well resolved, revealing both the hyperfine and nuclear quadrupole splittings, which were assigned using 2D Mims ENDOR experiments. Additionally, the spectral contributions of the two different types of nitrogen atoms of Gd-PyMTA, the aliphatic N atom and the pyridine N atom, were distinguishable. The (14)N hyperfine interaction was found to have a very small isotropic hyperfine component of -0.25 to -0.37MHz. Furthermore, the anisotropic hyperfine interactions with the (14)N nuclei and with the non-exchangeable protons of the ligands are well described by the point-dipole approximation using distances derived from the crystal structures. We therefore conclude that the spin density is fully localized on the Gd(III) ion and that the spin density distribution over the nuclei of the ligands is rightfully ignored when analyzing distance measurements.
Collapse
Affiliation(s)
- A Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - A Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M Qi
- University Bielefeld, Faculty of Chemistry and Center for Molecular Materials, D-33615 Bielefeld, Germany
| | - A Godt
- University Bielefeld, Faculty of Chemistry and Center for Molecular Materials, D-33615 Bielefeld, Germany
| | - T Meade
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - D Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Ruthstein S, Ji M, Shin BK, Saxena S. A simple double quantum coherence ESR sequence that minimizes nuclear modulations in Cu(2+)-ion based distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:45-50. [PMID: 26057636 DOI: 10.1016/j.jmr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Double quantum coherence (DQC) ESR is a sensitive method to measure magnetic dipolar interactions between spin labels. However, the DQC experiment on Cu(2+) centers presents a challenge at X-band. The Cu(2+) centers are usually coordinated to histidine residues in proteins. The electron-nuclear interaction between the Cu(2+) ion and the remote nitrogen in the imidazole ring can interfere with the electron-electron dipolar interaction. Herein, we report on a modified DQC experiment that has the advantage of reduced contributions from electron-nuclear interactions, which enhances the resolution of the DQC signal to the electron-electron dipolar modulations. The modified pulse-sequence is verified on Cu(2+)-NO system in a polyalanine-based peptide and on a coupled Cu(2+) system in a polyproline-based peptide. The modified DQC data were compared with the DEER data and good agreement was found.
Collapse
Affiliation(s)
- Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Byong-Kyu Shin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
16
|
Fernandez A, Moreno Pineda E, Muryn CA, Sproules S, Moro F, Timco GA, McInnes EJL, Winpenny REP. g-Engineering in Hybrid Rotaxanes To Create AB and AB2 Electron Spin Systems: EPR Spectroscopic Studies of Weak Interactions between Dissimilar Electron Spin Qubits. Angew Chem Int Ed Engl 2015. [PMID: 26224489 DOI: 10.1002/anie.201504487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hybrid [2]rotaxanes and pseudorotaxanes are reported where the magnetic interaction between dissimilar spins is controlled to create AB and AB2 electron spin systems, allowing independent control of weakly interacting S=${{ 1/2 }}$ centers.
Collapse
Affiliation(s)
- Antonio Fernandez
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK)
| | - Eufemio Moreno Pineda
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK).,Current address: Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany)
| | - Christopher A Muryn
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK)
| | - Stephen Sproules
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK).,Current address: WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (UK)
| | - Fabrizio Moro
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK).,Current address: School of Physics and Astronomy, The University of Nottingham, University Park, NG7 2RD, Nottingham (UK)
| | - Grigore A Timco
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK)
| | - Eric J L McInnes
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK)
| | - Richard E P Winpenny
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (UK).
| |
Collapse
|
17
|
Fernandez A, Moreno Pineda E, Muryn CA, Sproules S, Moro F, Timco GA, McInnes EJL, Winpenny REP. g-Engineering in Hybrid Rotaxanes To Create AB and AB2Electron Spin Systems: EPR Spectroscopic Studies of Weak Interactions between Dissimilar Electron Spin Qubits. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Livada J, Martinie RJ, Dassama LMK, Krebs C, Bollinger JM, Silakov A. Direct Measurement of the Radical Translocation Distance in the Class I Ribonucleotide Reductase from Chlamydia trachomatis. J Phys Chem B 2015; 119:13777-84. [PMID: 26087051 DOI: 10.1021/acs.jpcb.5b04067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze conversion of ribonucleotides to deoxyribonucleotides in all organisms via a free-radical mechanism that is essentially conserved. In class I RNRs, the reaction is initiated and terminated by radical translocation (RT) between the α and β subunits. In the class Ic RNR from Chlamydia trachomatis (Ct RNR), the initiating event converts the active S = 1 Mn(IV)/Fe(III) cofactor to the S = 1/2 Mn(III)/Fe(III) "RT-product" form in the β subunit and generates a cysteinyl radical in the α active site. The radical can be trapped via the well-described decomposition reaction of the mechanism-based inactivator, 2'-azido-2'-deoxyuridine-5'-diphosphate, resulting in the generation of a long-lived, nitrogen-centered radical (N(•)) in α. In this work, we have determined the distance between the Mn(III)/Fe(III) cofactor in β and N(•) in α to be 43 ± 1 Å by using double electron-electron resonance experiments. This study provides the first structural data on the Ct RNR holoenzyme complex and the first direct experimental measurement of the inter-subunit RT distance in any class I RNR.
Collapse
Affiliation(s)
- Jovan Livada
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ryan J Martinie
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Laura M K Dassama
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Abdullin D, Duthie F, Meyer A, Müller ES, Hagelueken G, Schiemann O. Comparison of PELDOR and RIDME for Distance Measurements between Nitroxides and Low-Spin Fe(III) Ions. J Phys Chem B 2015; 119:13534-42. [DOI: 10.1021/acs.jpcb.5b02118] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Fraser Duthie
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Andreas Meyer
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Elisa S. Müller
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| |
Collapse
|
20
|
Prisner TF, Marko A, Sigurdsson ST. Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:187-98. [PMID: 25701439 DOI: 10.1016/j.jmr.2014.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 05/22/2023]
Abstract
Nucleic acid molecules can adopt a variety of structures and exhibit a large degree of conformational flexibility to fulfill their various functions in cells. Here we describe the use of Pulsed Electron-Electron Double Resonance (PELDOR or DEER) to investigate nucleic acid molecules where two cytosine analogs have been incorporated as spin probes. Because these new types of spin labels are rigid and incorporated into double stranded DNA and RNA molecules, there is no additional flexibility of the spin label itself present. Therefore the magnetic dipole-dipole interaction between both spin labels encodes for the distance as well as for the mutual orientation between the spin labels. All of this information can be extracted by multi-frequency/multi-field PELDOR experiments, which gives very precise and valuable information about the structure and conformational flexibility of the nucleic acid molecules. We describe in detail our procedure to obtain the conformational ensembles and show the accuracy and limitations with test examples and application to double-stranded DNA.
Collapse
Affiliation(s)
- T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany.
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany
| | - S Th Sigurdsson
- Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
21
|
|
22
|
Akhmetzyanov D, Plackmeyer J, Endeward B, Denysenkov V, Prisner TF. Pulsed electron–electron double resonance spectroscopy between a high-spin Mn2+ ion and a nitroxide spin label. Phys Chem Chem Phys 2015; 17:6760-6. [DOI: 10.1039/c4cp05362a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PELDOR experiments on a Mn2+–nitroxide complex were performed. At 1.2 T the Mn2+–nitroxide distance was determined by probing both spins. PELDOR obtained at 6.4 T provided as well the orientation of the nitroxide with respect to the dipolar vector connecting the spins.
Collapse
Affiliation(s)
- D. Akhmetzyanov
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - J. Plackmeyer
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - B. Endeward
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - V. Denysenkov
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - T. F. Prisner
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
23
|
Kaminker I, Bye M, Mendelman N, Gislason K, Sigurdsson ST, Goldfarb D. Distance measurements between manganese(ii) and nitroxide spin-labels by DEER determine a binding site of Mn2+ in the HP92 loop of ribosomal RNA. Phys Chem Chem Phys 2015; 17:15098-102. [DOI: 10.1039/c5cp01624j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
W-band (95 GHz) double electron–electron resonance (DEER) distance measurements between Mn2+ and nitroxide spin labels were used to determine the location of a Mn2+ binding site within an RNA molecule.
Collapse
Affiliation(s)
- Ilia Kaminker
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Morgan Bye
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Natanel Mendelman
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Kristmann Gislason
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Snorri Th. Sigurdsson
- University of Iceland
- Department of Chemistry
- Science Institute Dunhaga 3
- 107 Reykjavik
- Iceland
| | - Daniella Goldfarb
- University of Iceland
- Department of Chemistry
- Science Institute Dunhaga 3
- 107 Reykjavik
- Iceland
| |
Collapse
|
24
|
Valera S, Bode BE. Strategies for the synthesis of yardsticks and abaci for nanometre distance measurements by pulsed EPR. Molecules 2014; 19:20227-56. [PMID: 25479188 PMCID: PMC6271543 DOI: 10.3390/molecules191220227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 01/18/2023] Open
Abstract
Pulsed electron paramagnetic resonance (EPR) techniques have been found to be efficient tools for the elucidation of structure in complex biological systems as they give access to distances in the nanometre range. These measurements can provide additional structural information such as relative orientations, structural flexibility or aggregation states. A wide variety of model systems for calibration and optimisation of pulsed experiments has been synthesised. Their design is based on mimicking biological systems or materials in specific properties such as the distances themselves and the distance distributions. Here, we review selected approaches to the synthesis of chemical systems bearing two or more spin centres, such as nitroxide or trityl radicals, metal ions or combinations thereof and outline their application in pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Silvia Valera
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK.
| |
Collapse
|
25
|
New developments in spin labels for pulsed dipolar EPR. Molecules 2014; 19:16998-7025. [PMID: 25342554 PMCID: PMC6271499 DOI: 10.3390/molecules191016998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Collapse
|
26
|
Abdullin D, Hagelueken G, Hunter RI, Smith GM, Schiemann O. Geometric model-based fitting algorithm for orientation-selective PELDOR data. Mol Phys 2014. [DOI: 10.1080/00268976.2014.960494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | | | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Di Valentin M, Albertini M, Zurlo E, Gobbo M, Carbonera D. Porphyrin triplet state as a potential spin label for nanometer distance measurements by PELDOR spectroscopy. J Am Chem Soc 2014; 136:6582-5. [PMID: 24735449 DOI: 10.1021/ja502615n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work demonstrates, for the first time, the feasibility of applying pulsed electron-electron double resonance (PELDOR/DEER) to determine the interspin distance between a photoexcited porphyrin triplet state (S = 1) and a nitroxide spin label chemically incorporated into a small helical peptide. The PELDOR trace shows deep envelope modulation induced by electron-electron dipole interaction between the partners in the pair, providing an accurate distance measurement. This new labeling approach has a high potential for measuring nanometer distances in more complex biological systems due to the sensitivity acquired from the spin polarization of the photoexcited triplet state spectrum.
Collapse
Affiliation(s)
- Marilena Di Valentin
- Dipartimento di Scienze Chimiche, Università di Padova , via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Ji M, Ruthstein S, Saxena S. Paramagnetic metal ions in pulsed ESR distance distribution measurements. Acc Chem Res 2014; 47:688-95. [PMID: 24289139 DOI: 10.1021/ar400245z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of pulsed electron spin resonance (ESR) to measure interspin distance distributions has advanced biophysical research. The three major techniques that use pulsed ESR are relaxation rate based distance measurements, double quantum coherence (DQC), and double electron electron resonance (DEER). Among these methods, the DEER technique has become particularly popular largely because it is easy to implement on commercial instruments and because programs are available to analyze experimental data. Researchers have widely used DEER to measure the structure and conformational dynamics of molecules labeled with the methanethiosulfonate spin label (MTSSL). Recently, researchers have exploited endogenously bound paramagnetic metal ions as spin probes as a way to determine structural constraints in metalloproteins. In this context Cu(2+) has served as a useful paramagnetic metal probe at X-band for DEER based distance measurements. Sample preparation is simple, and a coordinated-Cu(2+) ion offers limited spatial flexibility, making it an attractive probe for DEER experiments. On the other hand, Cu(2+) has a broad absorption ESR spectrum at low temperature, which leads to two potential complications. First, the Cu(2+)-based DEER time domain data has lower signal to noise ratio compared with MTSSL. Second, accurate distance distribution analysis often requires high-quality experimental data at different external magnetic fields or with different frequency offsets. In this Account, we summarize characteristics of Cu(2+)-based DEER distance distribution measurements and data analysis methods. We highlight a novel application of such measurements in a protein-DNA complex to identify the metal ion binding site and to elucidate its chemical mechanism of function. We also survey the progress of research on other metal ions in high frequency DEER experiments.
Collapse
Affiliation(s)
- Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
30
|
Roy A, Sarrou I, Vaughn MD, Astashkin AV, Ghirlanda G. De Novo Design of an Artificial Bis[4Fe-4S] Binding Protein. Biochemistry 2013; 52:7586-94. [DOI: 10.1021/bi401199s] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anindya Roy
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Iosifina Sarrou
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Michael D. Vaughn
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Andrei V. Astashkin
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Giovanna Ghirlanda
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
31
|
Kunjir NC, Reginsson GW, Schiemann O, Sigurdsson ST. Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR. Phys Chem Chem Phys 2013; 15:19673-85. [PMID: 24135783 DOI: 10.1039/c3cp52789a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trityl based spin labels are emerging as a complement to nitroxides in nanometer distance measurements using EPR methods. The narrow spectral width of the trityl radicals prompts us to ask the question at which distance between these spin centers, the pseudo-secular part of the dipolar coupling and spin density delocalization have to be taken into account. For this, two trityl-trityl and one trityl-nitroxide model compounds were synthesized with well-defined interspin distances. Continuous wave (CW) EPR, double quantum coherence (DQC) and pulsed electron-electron double resonance (PELDOR) spectra were acquired from these compounds at commercial X-band frequencies. The data analysis shows that two of the compounds, with distances of up to 25 Å, fall into the strong coupling regime and that precise distances can only be obtained if both the spin density delocalization and the pseudo-secular part of the dipolar coupling are included in the analysis.
Collapse
Affiliation(s)
- Nitin C Kunjir
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavík, Iceland.
| | | | | | | |
Collapse
|
32
|
Giannoulis A, Ward R, Branigan E, Naismith JH, Bode BE. PELDOR in rotationally symmetric homo-oligomers. Mol Phys 2013; 111:2845-2854. [PMID: 24954956 PMCID: PMC4056887 DOI: 10.1080/00268976.2013.798697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/12/2013] [Indexed: 12/24/2022]
Abstract
Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Richard Ward
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Emma Branigan
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| |
Collapse
|
33
|
|
34
|
Ruthstein S, Ji M, Mehta P, Jen-Jacobson L, Saxena S. Sensitive Cu2+-Cu2+ distance measurements in a protein-DNA complex by double-quantum coherence ESR. J Phys Chem B 2013; 117:6227-30. [PMID: 23631829 DOI: 10.1021/jp4037149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double quantum coherence (DQC) ESR spectroscopy is applied to measure the Cu(2+)-Cu(2+) distance in the EcoRI-DNA complex. A simple method is proposed to reduce the contribution of nuclear hyperfine and quadrupole interactions to such data. The effects of such interactions between the electron spin of Cu(2+) and neighboring nuclei on the DQC data make it difficult to measure the nanometer range interspin distance. The DQC data is in good agreement with results obtained by double electron electron resonance (DEER) spectroscopy. At the same time, the signal-to-noise ratio per shot in DQC is high. Taken together, these results provide impetus for further development of paramagnetic metal ion-based DQC techniques.
Collapse
Affiliation(s)
- Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
35
|
Spindler PE, Glaser SJ, Skinner TE, Prisner TF. Broadband Inversion PELDOR Spectroscopy with Partially Adiabatic Shaped Pulses. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Spindler PE, Glaser SJ, Skinner TE, Prisner TF. Broadband inversion PELDOR spectroscopy with partially adiabatic shaped pulses. Angew Chem Int Ed Engl 2013; 52:3425-9. [PMID: 23424088 DOI: 10.1002/anie.201207777] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp E Spindler
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum, Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
37
|
Orientation-Selective DEER Using Rigid Spin Labels, Cofactors, Metals, and Clusters. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2013_115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Borbat PP, Freed JH. Pulse Dipolar Electron Spin Resonance: Distance Measurements. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_82] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Lovett JE, Lovett BW, Harmer J. DEER-Stitch: combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:98-106. [PMID: 22975240 DOI: 10.1016/j.jmr.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Over approximately the last 15 years the electron paramagnetic resonance (EPR) technique of double electron electron resonance (DEER) has attracted considerable attention since it allows for the precise measurement of the dipole-dipole coupling between radicals and thus can lead to distance information between pairs of radicals separated by up to ca. 8 nm. The "deadtime free" 4-pulse DEER sequence is widely used but can suffer from poor sensitivity if the electron spin-echo decays too quickly to allow collection of a sufficiently long time trace. In this paper we present a method which takes advantage of the much greater sensitivity that the 3-pulse sequence offers over the 4-pulse sequence since the measured electron spin-echo intensity (for equal sequence lengths) is greater. By combining 3- and 4-pulse DEER time traces using a method coined DEER-Stitch (DEERS) accurate dipole-dipole coupling measurements can be made which combine the sensitivity of the 3-pulse DEER sequence with the deadtime free advantage of the 4-pulse DEER sequence. To develop the DEER-Stitch method three systems were measured: a semi-rigid bis-nitroxide labeled nanowire, the bis-nitroxide labeled protein CD55 with a distance between labels of almost 8 nm and a dimeric copper amine oxidase from Arthrobacter globiformis (AGAO).
Collapse
Affiliation(s)
- J E Lovett
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
40
|
Astashkin AV, Rajapakshe A, Cornelison MJ, Johnson-Winters K, Enemark JH. Determination of the distance between the Mo(V) and Fe(III) heme centers of wild type human sulfite oxidase by pulsed EPR spectroscopy. J Phys Chem B 2012; 116:1942-50. [PMID: 22229742 DOI: 10.1021/jp210578f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intramolecular electron transfer (IET) between the molybdenum and heme centers of vertebrate sulfite oxidase (SO) is proposed to be a key step in the catalytic cycle of the enzyme. However, the X-ray crystallographic distance between these centers, R(MoFe) = 32.3 Å, appears to be too long for the rapid IET rates observed in liquid solution. The Mo and heme domains are linked by a flexible tether, and it has been proposed that dynamic interdomain motion brings the two metal centers closer together and thereby facilitates rapid IET. To date, there have been no direct distance measurements for SO in solution that would support or contradict this model. In this work, pulsed electron-electron double resonance (ELDOR) and relaxation induced dipolar modulation enhancement (RIDME) techniques were used to obtain information about R(MoFe) in the Mo(V)Fe(III) state of wild type recombinant human SO in frozen glassy solution. Surprisingly, the data obtained suggest a fixed structure with R(MoFe) = 32 Å, similar to that determined by X-ray crystallography for chicken SO, although the orientation of the R(MoFe) radius-vector with respect to the heme center was found to be somewhat different. The implications of these findings for the flexible tether model are discussed.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Distance distributions between paramagnetic centers in the range of 1.8 to 6 nm in membrane proteins and up to 10 nm in deuterated soluble proteins can be measured by the DEER technique. The number of paramagnetic centers and their relative orientation can be characterized. DEER does not require crystallization and is not limited with respect to the size of the protein or protein complex. Diamagnetic proteins are accessible by site-directed spin labeling. To characterize structure or structural changes, experimental protocols were optimized and techniques for artifact suppression were introduced. Data analysis programs were developed, and it was realized that interpretation of the distance distributions must take into account the conformational distribution of spin labels. First methods have appeared for deriving structural models from a small number of distance constraints. The present scope and limitations of the technique are illustrated.
Collapse
Affiliation(s)
- Gunnar Jeschke
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Switzerland.
| |
Collapse
|
42
|
Metal-Based Spin Labeling for Distance Determination. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2012. [DOI: 10.1007/430_2011_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Yulikov M, Lueders P, Farooq Warsi M, Chechik V, Jeschke G. Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd3+–DTPA chelate complexes. Phys Chem Chem Phys 2012; 14:10732-46. [DOI: 10.1039/c2cp40282c] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Pulsed electron-electron double resonance: beyond nanometre distance measurements on biomacromolecules. Biochem J 2011; 434:353-63. [PMID: 21348855 DOI: 10.1042/bj20101871] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PELDOR (or DEER; pulsed electron-electron double resonance) is an EPR (electron paramagnetic resonance) method that measures via the dipolar electron-electron coupling distances in the nanometre range, currently 1.5-8 nm, with high precision and reliability. Depending on the quality of the data, the error can be as small as 0.1 nm. Beyond mere mean distances, PELDOR yields distance distributions, which provide access to conformational distributions and dynamics. It can also be used to count the number of monomers in a complex and allows determination of the orientations of spin centres with respect to each other. If, in addition to the dipolar through-space coupling, a through-bond exchange coupling mechanism contributes to the overall coupling both mechanisms can be separated and quantified. Over the last 10 years PELDOR has emerged as a powerful new biophysical method without size restriction to the biomolecule to be studied, and has been applied to a large variety of nucleic acids as well as proteins and protein complexes in solution or within membranes. Small nitroxide spin labels, paramagnetic metal ions, amino acid radicals or intrinsic clusters and cofactor radicals have been used as spin centres.
Collapse
|
45
|
Chrysina M, Zahariou G, Sanakis Y, Ioannidis N, Petrouleas V. Conformational changes of the S2YZ* intermediate of the S2 to S3 transition in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:72-9. [PMID: 21377376 DOI: 10.1016/j.jphotobiol.2011.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 01/02/2023]
Abstract
The paper extends earlier studies on the S(2)Y(Z)* intermediate that is trapped by illumination in the temperature range 77 K to 190 K of untreated samples poised in the S(2)...Q(A) state. X-band EPR experiments on untreated and glycerol (50% v/v) treated samples at 10 K indicate that the intermediate consists of two components. A wide one with a splitting of ca 170 G, and a narrow one characterized by a splitting of ca 120 G (untreated), or 124 G (glycerol-treated samples). Lower temperatures of illumination in the above temperature range favor the wide component, which at 10 K decays faster than the narrow one. Re-illumination at 10 K after decay of the signal trapped at 77-190 K induces only the narrow component. Rapid scan experiments in the temperature range 77-190 K reveal high resolution spectra of the isolated tyz Z* radical and no evidence of alternative radicals. The two split signals are accordingly assigned to different conformations of the S(2)Y(Z)* intermediate A point-dipole simulation of the spectra yields "effective distances" between the spin densities of Y(Z)* and the Mn(4)Ca center of 5.7 Å for the wide and 6.4 Å for the narrow component. The results are discussed on the basis of a molecular model assuming two sequential proton transfers during oxidation of tyr Z. The wide component is assigned to a transient S(2)Y(Z)* conformation, that forms during the primary proton transfer.
Collapse
Affiliation(s)
- Maria Chrysina
- Institute of Materials Science, NCSR Demokritos, Athens 15310, Greece
| | | | | | | | | |
Collapse
|
46
|
Studying biomolecular complexes with pulsed electron–electron double resonance spectroscopy. Biochem Soc Trans 2011; 39:128-39. [DOI: 10.1042/bst0390128] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The function of biomolecules is intrinsically linked to their structure and the complexes they form during function. Techniques for the determination of structures and dynamics of these nanometre assemblies are therefore important for an understanding on the molecular level. PELDOR (pulsed electron–electron double resonance) is a pulsed EPR method that can be used to reliably and precisely measure distances in the range 1.5–8 nm, to unravel orientations and to determine the number of monomers in complexes. In conjunction with site-directed spin labelling, it can be applied to biomolecules of all sizes in aqueous solutions or membranes. PELDOR is therefore complementary to the methods of X-ray crystallography, NMR and FRET (fluorescence resonance energy transfer) and is becoming a powerful method for structural determination of biomolecules. In the present review, the methods of PELDOR are discussed and examples where PELDOR has been used to obtain structural information on biomolecules are summarized.
Collapse
|
47
|
Pandelia ME, Ogata H, Lubitz W. Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. Chemphyschem 2010; 11:1127-40. [PMID: 20301175 DOI: 10.1002/cphc.200900950] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The [NiFe] hydrogenase from the anaerobic sulphate reducing bacterium Desulfovibrio vulgaris Miyazaki F is an excellent model for constructing a mechanism for the function of the so-called 'oxygen-sensitive' hydrogenases. The present review focuses on spectroscopic investigations of the active site intermediates playing a role in the activation/deactivation and catalytic cycle of this enzyme as well as in the inhibition by carbon monoxide or molecular oxygen and the light-sensitivity of the hydrogenase. The methods employed include magnetic resonance and vibrational (FTIR) techniques combined with electrochemistry that deliver information about details of the geometrical and electronic structure of the intermediates and their redox behaviour. Based on these data a mechanistic scheme is developed.
Collapse
Affiliation(s)
- Maria-Eirini Pandelia
- Max-Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
48
|
Yang Z, Kise D, Saxena S. An Approach towards the Measurement of Nanometer Range Distances Based on Cu2+ Ions and ESR. J Phys Chem B 2010; 114:6165-74. [DOI: 10.1021/jp911637s] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongyu Yang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Drew Kise
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
49
|
Lyubenova S, Maly T, Zwicker K, Brandt U, Ludwig B, Prisner T. Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Acc Chem Res 2010; 43:181-9. [PMID: 19842617 DOI: 10.1021/ar900050d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloproteins often contain metal centers that are paramagnetic in some functional state of the protein; hence electron paramagnetic resonance (EPR) spectroscopy can be a powerful tool for studying protein structure and function. Dipolar spectroscopy allows the determination of the dipole-dipole interactions between metal centers in protein complexes, revealing the structural arrangement of different paramagnetic centers at distances of up to 8 nm. Hyperfine spectroscopy can be used to measure the interaction between an unpaired electron spin and nuclear spins within a distance of 0.8 nm; it therefore permits the characterization of the local structure of the paramagnetic center's ligand sphere with very high precision. In this Account, we review our laboratory's recent applications of both dipolar and hyperfine pulsed EPR methods to metalloproteins. We used pulsed dipolar relaxation methods to investigate the complex of cytochrome c and cytochrome c oxidase, a noncovalent protein-protein complex involved in mitochondrial electron-transfer reactions. Hyperfine sublevel correlation spectroscopy (HYSCORE) was used to study the ligand sphere of iron-sulfur clusters in complex I of the mitochondrial respiratory chain and substrate binding to the molybdenum enzyme polysulfide reductase. These examples demonstrate the potential of the two techniques; however, they also highlight the difficulties of data interpretation when several paramagnetic species with overlapping spectra are present in the protein. In such cases, further approaches and data are very useful to enhance the information content. Relaxation filtered hyperfine spectroscopy (REFINE) can be used to separate the individual components of overlapping paramagnetic species on the basis of differences in their longitudinal relaxation rates; it is applicable to any kind of pulsed hyperfine or dipolar spectroscopy. Here, we show that the spectra of the iron-sulfur clusters in complex I can be separated by this method, allowing us to obtain hyperfine (and dipolar) information from the individual species. Furthermore, performing pulsed EPR experiments at different magnetic fields is another important tool to disentangle the spectral components in such complex systems. Despite the fact that high magnetic fields do not usually lead to better spectral separation for metal centers, they provide additional information about the relative orientation of different paramagnetic centers. Our high-field EPR studies on cytochrome c oxidase reveal essential information regarding the structural arrangement of the binuclear Cu(A) center with respect to both the manganese ion within the enzyme and the cytochrome in the protein-protein complex with cytochrome c.
Collapse
Affiliation(s)
- Sevdalina Lyubenova
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten Maly
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Zwicker
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Ulrich Brandt
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Bernd Ludwig
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thomas Prisner
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
50
|
Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J. Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance. Proc Natl Acad Sci U S A 2010; 107:1930-5. [PMID: 20133838 PMCID: PMC2808219 DOI: 10.1073/pnas.0908050107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In oxidative phosphorylation, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. Complex I contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters, in several subunits, to transfer the electrons to quinone. Understanding coupled electron transfer in complex I requires a detailed knowledge of the properties of individual clusters and of the cluster ensemble, and so it requires the correlation of spectroscopic and structural data: This has proved a challenging task. EPR studies on complex I from Bos taurus have established that EPR signals N1b, N2 and N3 arise, respectively, from the 2Fe cluster in the 75 kDa subunit, and from 4Fe clusters in the PSST and 51 kDa subunits (positions 2, 7, and 1 along the seven-cluster chain extending from the flavin). The other clusters have either evaded detection or definitive signal assignments have not been established. Here, we combine double electron-electron resonance (DEER) spectroscopy on B. taurus complex I with the structure of the hydrophilic domain of Thermus thermophilus complex I. By considering the magnetic moments of the clusters and the orientation selectivity of the DEER experiment explicitly, signal N4 is assigned to the first 4Fe cluster in the TYKY subunit (position 5), and N5 to the all-cysteine ligated 4Fe cluster in the 75 kDa subunit (position 3). The implications of our assignment for the mechanisms of electron transfer and energy transduction by complex I are discussed.
Collapse
Affiliation(s)
- Maxie M. Roessler
- Center for Advanced Electron Spin Resonance, and
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom; and
| | - Martin S. King
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Alan J. Robinson
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom; and
| | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|