1
|
Monsen RC, Sabo TM, Gray R, Hopkins JB, Chaires JB. Early Events in G-quadruplex Folding Captured by Time-Resolved Small-Angle X-Ray Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611539. [PMID: 39282441 PMCID: PMC11398465 DOI: 10.1101/2024.09.05.611539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Time-resolved small-angle X-ray experiments (TR-SAXS) are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in G4 folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 20.6 to 12.6 Å. The collapse is monophasic and is complete in less than 600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, to show that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method (EOM) analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - T Michael Sabo
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - Robert Gray
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT) Department of Physics, Illinois Institute of Technology, Chicago, IL 60616
| | - Jonathan B Chaires
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| |
Collapse
|
2
|
Zhan X, Deng L, Lian Y, Shu Z, Xu Y, Mai X, Krishna MS, Lu R, Wang A, Bai S, Zhou F, Xiong C, Xu Y, Ni J, Vandana JJ, Wang Z, Li Y, Sun D, Huang S, Liu J, Cheng GJ, Wu S, Chiang YC, Stjepanovic G, Jiang C, Shao Y, Chen G. Enhanced Recognition of a Herbal Compound Epiberberine by a DNA Quadruplex-Duplex Structure. Anal Chem 2024. [PMID: 39093925 DOI: 10.1021/acs.analchem.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The small molecule epiberberine (EPI) is a natural alkaloid with versatile bioactivities against several diseases including cancer and bacterial infection. EPI can induce the formation of a unique binding pocket at the 5' side of a human telomeric G-quadruplex (HTG) sequence with four telomeric repeats (Q4), resulting in a nanomolar binding affinity (KD approximately 26 nM) with significant fluorescence enhancement upon binding. It is important to understand (1) how EPI binding affects HTG structural stability and (2) how enhanced EPI binding may be achieved through the engineering of the DNA binding pocket. In this work, the EPI-binding-induced HTG structure stabilization effect was probed by a peptide nucleic acid (PNA) invasion assay in combination with a series of biophysical techniques. We show that the PNA invasion-based method may be useful for the characterization of compounds binding to DNA (and RNA) structures under physiological conditions without the need to vary the solution temperature or buffer components, which are typically needed for structural stability characterization. Importantly, the combination of theoretical modeling and experimental quantification allows us to successfully engineer Q4 derivative Q4-ds-A by a simple extension of a duplex structure to Q4 at the 5' end. Q4-ds-A is an excellent EPI binder with a KD of 8 nM, with the binding enhancement achieved through the preformation of a binding pocket and a reduced dissociation rate. The tight binding of Q4 and Q4-ds-A with EPI allows us to develop a novel magnetic bead-based affinity purification system to effectively extract EPI from Rhizoma coptidis (Huang Lian) extracts.
Collapse
Affiliation(s)
- Xuan Zhan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Liping Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Yun Lian
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Yunong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Xinyi Mai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Rongguang Lu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Anni Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Shiyao Bai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Fangyu Zhou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Chi Xiong
- MinJiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Yingyi Xu
- LightEdge Technologies Ltd., Zhongshan 528400, Guangdong, P. R. China
| | - Jie Ni
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, New York, New York 10065, United States
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, The Rockefeller University, New York, New York 10065, United States
| | - Zi Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518111, Guangdong, P. R. China
| | - Dongmei Sun
- Guangdong Yifang Pharmaceutical, Foshan 528244, Guangdong, P. R. China
| | - Shaohui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 101499, P. R. China
| | - Jingyan Liu
- School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, P. R. China
| | - Gui-Juan Cheng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518111, Guangdong, P. R. China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Goran Stjepanovic
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Cheng Jiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, P. R. China
- Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| |
Collapse
|
3
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
4
|
Ling X, Yao Y, Ding L, Ma J. The mechanism of UP1 binding and unfolding of human telomeric DNA G-quadruplex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194985. [PMID: 37717939 DOI: 10.1016/j.bbagrm.2023.194985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The human telomere contains multiple copies of the DNA sequence d(TTAGGG) which can fold into higher order intramolecular G-quadruplexes and regulate the maintenance of telomere length and chromosomal integrity. The nucleic acid binding protein heteronuclear ribonucleoprotein A1 (hnRNP A1) and its N-terminus proteolytic product UP1 have been shown to efficiently bind and unfold telomeric DNA G-quadruplex. However, the understanding of the molecular mechanism of the UP1 binding and unfolding telomeric G-quadruplexes is still limited. Here, we performed biochemical and biophysical characterizations of UP1 binding and unfolding of human telomeric DNA G-quadruplex d[AGGG(TTAGGG)3], and in combination of systematic site-direct mutagenesis of two tandem RNA recognition motifs (RRMs) in UP1, revealed that RRM1 is responsible for initial binding and unfolding, whereas RRM2 assists RRM1 to complete the unfolding of G-quadruplex. Isothermal titration calorimetry (ITC) and circular dichroism (CD) studies of the interactions between UP1 and DNA G-quadruplex variants indicate that the "TAG" binding motif in Loop2 of telomeric G-quadruplex is critical for UP1 recognition and G-quadruplex unfolding initiation. Together we depict a model for molecular mechanism of hnRNP A1 (UP1) binding and unfolding of the human telomeric DNA G-quadruplex.
Collapse
Affiliation(s)
- Xiaobin Ling
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Ding
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Nicholson DA, Nesbitt DJ. Kinetic and Thermodynamic Control of G-Quadruplex Polymorphism by Na + and K + Cations. J Phys Chem B 2023; 127:6842-6855. [PMID: 37504511 DOI: 10.1021/acs.jpcb.3c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
G-Quadruplexes (G4s) are ubiquitous nucleic acid folding motifs that exhibit structural diversity that is dependent on cationic conditions. In this work, we exploit temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) to elucidate the kinetic and thermodynamic mechanisms by which monovalent cations (K+ and Na+) impact folding topologies for a simple G-quadruplex sequence (5'-GGG-(TAAGGG)3-3') with a three-state folding equilibrium. Kinetic measurements indicate that Na+ and K+ influence G4 formation in two distinctly different ways: the presence of Na+ modestly enhances an antiparallel G4 topology through an induced fit (IF) mechanism with a low affinity (Kd = 228 ± 26 mM), while K+ drives G4 into a parallel/hybrid topology via a conformational selection (CS) mechanism with much higher affinity (Kd = 1.9 ± 0.2 mM). Additionally, temperature-dependent studies of folding rate constants and equilibrium ratios reveal distinctly different thermodynamic driving forces behind G4 binding to K+ (ΔH°bind > 0, ΔS°bind > 0) versus Na+ (ΔH°bind < 0, ΔS°bind < 0), which further illuminates the diversity of the possible pathways for monovalent facilitation of G-quadruplex folding.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Qin S, Chen X, Xu Z, Li T, Zhao S, Hu R, Zhu J, Li Y, Yang Y, Liu M. Telomere G-triplex lights up Thioflavin T for RNA detection: new wine in an old bottle. Anal Bioanal Chem 2022; 414:6149-6156. [PMID: 35725832 PMCID: PMC9208972 DOI: 10.1007/s00216-022-04180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Few reports are found working on the features and functions of the human telomere G-triplex (ht-G3) though the telomere G-quadruplex has been intensely studied and widely implemented to develop various biosensors. We herein report that ht-G3 lights up Thioflavin T (ThT) and establish a sensitive biosensing platform for RNA detection by introducing a target recycling strategy. An optimal condition was selected out for ht-G3 to promote ThT to generate a strong fluorescence. Accordingly, an ht-G3-based molecular beacon was successfully designed against the corresponding RNA sequence of the SARS-CoV-2 N-gene. The sensitivity for the non-amplified RNA target achieves 0.01 nM, improved 100 times over the conventional ThT-based method. We believe this ht-G3/ThT-based label-free strategy could be widely applied for RNA detection.
Collapse
Affiliation(s)
- Shanshan Qin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Shuhong Zhao
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
7
|
Chowdhury S, Wang J, Nuccio SP, Mao H, Di Antonio M. Short LNA-modified oligonucleotide probes as efficient disruptors of DNA G-quadruplexes. Nucleic Acids Res 2022; 50:7247-7259. [PMID: 35801856 PMCID: PMC9303293 DOI: 10.1093/nar/gkac569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology. In this study, we investigated the disruption of G4s using Locked Nucleic Acids (LNA) as invader probes. We demonstrated that strategic positioning of LNA-modifications within short oligonucleotides (10 nts.) can significantly accelerate the rate of G4-disruption. Single-molecule experiments revealed that short LNA-probes can promote disruption of G4s with mechanical stability sufficient to stall polymerases. We corroborated this using a single-step extension assay, revealing that short LNA-probes can relieve replication dependent polymerase-stalling at G4 sites. We further demonstrated the potential of such LNA-based probes to study G4-biology in cells. By using a dual-luciferase assay, we found that short LNA probes can enhance the expression of c-KIT to levels similar to those observed when the c-KIT promoter is mutated to prevent the formation of the c-KIT1 G4. Collectively, our data suggest a potential use of rationally designed LNA-modified oligonucleotides as an accessible chemical-biology tool for disrupting individual G4s and interrogating their biological functions in cells.
Collapse
Affiliation(s)
- Souroprobho Chowdhury
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Jiayi Wang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sabrina Pia Nuccio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
8
|
Liano D, Monti L, Chowdhury S, Raguseo F, Di Antonio M. Long-range DNA interactions: inter-molecular G-quadruplexes and their potential biological relevance. Chem Commun (Camb) 2022; 58:12753-12762. [PMID: 36281554 PMCID: PMC9671097 DOI: 10.1039/d2cc04872h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Guanine-rich DNA sequences are known to fold into secondary structures called G-quadruplexes (G4s), which can form from either individual DNA strands (intra-molecular) or multiple DNA strands (inter-molecular, iG4s). Intra-molecular G4s have been the object of extensive biological investigation due to their enrichment in gene-promoters and telomers. On the other hand, iG4s have never been considered in biological contexts, as the interaction between distal sequences of DNA to form an iG4 in cells was always deemed as highly unlikely. In this feature article, we challenge this dogma by presenting our recent discovery of the first human protein (CSB) displaying astonishing picomolar affinity and binding selectivity for iG4s. These findings suggest potential for iG4 structures to form in cells and highlight the need of further studies to unravel the fundamental biological roles of these inter-molecular DNA structures. Furthermore, we discuss how the potential for formation of iG4s in neuronal cells, triggered by repeat expansions in the C9orf72 gene, can lead to the formation of nucleic-acids based pathological aggregates in neurodegenerative diseases like ALS and FTD. Finally, based on our recent work on short LNA-modified probes, we provide a prespective on how the rational design of G4-selective chemical tools can be leveraged to further elucidate the biological relevance of iG4 structures in the context of ageing-related diseases. Intermolecular G-quadruplex structures can form within distal region of genomic DNA, contributing to chromatin looping. Herein, we discuss recent evidence supporting formation of iG4s in living cells and their potential biological function.![]()
Collapse
Affiliation(s)
- Denise Liano
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| | - Ludovica Monti
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Souroprobho Chowdhury
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| | - Federica Raguseo
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
- The Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| |
Collapse
|
9
|
Grün JT, Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers 2021; 113:e23477. [PMID: 34664713 DOI: 10.1002/bip.23477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence.
Collapse
Affiliation(s)
- J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt/M, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/M, Germany
| |
Collapse
|
10
|
Li T, Hu R, Xia J, Xu Z, Chen D, Xi J, Liu BF, Zhu J, Li Y, Yang Y, Liu M. G-triplex: A new type of CRISPR-Cas12a reporter enabling highly sensitive nucleic acid detection. Biosens Bioelectron 2021; 187:113292. [PMID: 33991961 DOI: 10.1016/j.bios.2021.113292] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas12a (Cpf1) trans-cleaves ssDNA and this feature has been widely harnessed for nucleic acid detection. Herein, we introduce a new type of Cas12a reporter, G-triplex (G3), and a highly sensitive biosensor termed G-CRISPR. We proved that Cas12a trans-cleaves G3 structures in about 10 min and G3 can serve as an excellent reporter based on the cleavage-induced high-order structure disruption. G3 reporter improves the analytical sensitivity up to 20 folds, enabling the detection of unamplified and amplified DNA as low as 50 pmol and 0.1 amol (one copy/reaction), respectively. G-CRISPR has been utilized for the analysis of 27 PCR-amplified patient samples with HPV infection risk based on both fluorescence and lateral flow assays, resulting in 100% concordance between the two. In comparison with the clinical results, it achieved overall specificity and sensitivity of 100% and 94.7%, respectively. These results suggest that G-CRISPR can serve as a rapid, sensitive, and reliable biosensor, and could further expand the CRISPR toolbox in biomedical diagnostics.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Jinou Xi
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
11
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
12
|
Zhang J, Ma X, Chen W, Bai Y, Xue P, Chen K, Chen W, Bian L. Bifunctional single-labelled oligonucleotide probe for detection of trace Ag(I) and Pb(II) based on cytosine-Ag(I)-cytosine mismatches and G-quadruplex. Anal Chim Acta 2021; 1151:338258. [PMID: 33608073 DOI: 10.1016/j.aca.2021.338258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
A novel bifunctional oligonucleotide (OND) probe with single fluorescent group HEX labelled at 5'-end was designed for detecting trace Ag(I) and Pb(II) in real samples. In the presence of Ag(I), the hairpin structure originating from Ag(I) induced cytosine-Ag(I)-cytosine mismatches causes the proximity of the HEX to the consecutive guanine bases (G)4 at 3'-terminal, resulting in the fluorescence quenching of the HEX. While in the presence of Pb(II), the G-quadruplex structure originating from two G-quartet planes by the intramolecular hydrogen bond with Pb(II) also causes the HEX approaching the (G)4 terminal and consequently the fluorescence quenching. The results showed the quantitative detection of trace Ag(I) and Pb(II) both in the linear response ranges of 1.0-20.0 × 10-9 mol L-1 with no visible interferences of other 11 metal ions observed. And the detection limits were 82 × 10-12 mol L-1 for Ag(I), 92 × 10-12 mol L-1 for Pb(II), respectively. The fluorescence quenching mechanism of the (G)4 to HEX was verified to be the photoinduced electron transfer in the aspect of thermodynamics. This method provided a feasible application for sensitive and selective detection of Pb(II) and Ag(I) in water and Chinese traditional herbs with convenient operation.
Collapse
Affiliation(s)
- Jiaxin Zhang
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xian Ma
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenhua Chen
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yifan Bai
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kehan Chen
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wang Chen
- College of Life Science and Technology, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
13
|
Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou MP, González C, Beck JL, Damha MJ, van Oijen AM, Bryan TM. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife 2020; 9:56428. [PMID: 32723475 PMCID: PMC7426096 DOI: 10.7554/elife.56428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Aaron Lavel Moye
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Jessica K Holien
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Monica L Birrento
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kamthorn Intharapichai
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Madrid, Spain
| | - Jennifer L Beck
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| |
Collapse
|
14
|
Abstract
Circular dichroism and stopped-flow UV spectroscopies were used to investigate the thermodynamic stability and the folding pathway of d[TGAG3TG3TAG3TG3TA2] at 25 °C in solutions containing 25 mM KCl. Under these conditions the oligonucleotide adopts a thermally stable, all-parallel G-quadruplex topography containing three stacked quartets. K+-induced folding shows three resolved relaxation times, each with distinctive spectral changes. Folding is complete within 200 s. These data indicate a folding pathway that involves at least two populated intermediates, one of which seems to be an antiparallel structure that rearranges to the final all-parallel conformation. Molecular dynamics reveals a stereochemically plausible folding pathway that does not involve complete unfolding of the intermediate. The rate of unfolding was determined using complementary DNA to trap transiently unfolded states to form a stable duplex. As assessed by 1D-1H NMR and fluorescence spectroscopy, unfolding is extremely slow with only one observable rate-limiting relaxation time.
Collapse
|
15
|
Byrd AK, Bell MR, Raney KD. Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions. J Biol Chem 2018; 293:17792-17802. [PMID: 30257865 DOI: 10.1074/jbc.ra118.004499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+ Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Matthew R Bell
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
16
|
Oyaghire SN, Cherubim CJ, Telmer CA, Martinez JA, Bruchez MP, Armitage BA. RNA G-Quadruplex Invasion and Translation Inhibition by Antisense γ-Peptide Nucleic Acid Oligomers. Biochemistry 2016; 55:1977-88. [PMID: 26959335 DOI: 10.1021/acs.biochem.6b00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the abilities of three complementary γ-peptide nucleic acid (γPNA) oligomers to invade an RNA G-quadruplex and potently inhibit translation of a luciferase reporter transcript containing the quadruplex-forming sequence (QFS) within its 5'-untranslated region. All three γPNA oligomers bind with low nanomolar affinities to an RNA oligonucleotide containing the QFS. However, while all probes inhibit translation with low to midnanomolar IC50 values, the γPNA designed to hybridize to the first two G-tracts of the QFS and adjacent 5'-overhanging nucleotides was 5-6 times more potent than probes directed to either the 3'-end or internal regions of the target at 37 °C. This position-dependent effect was eliminated after the probes and target were preincubated at an elevated temperature prior to translation, demonstrating that kinetic effects exert significant control over quadruplex invasion and translation inhibition. We also found that antisense γPNAs exhibited similarly potent effects against luciferase reporter transcripts bearing QFS motifs having G2, G3, or G4 tracts. Finally, our results indicate that γPNA oligomers exhibit selectivity and/or potency higher than those of other antisense molecules such as standard PNA and 2'-OMe RNA previously reported to target G-quadruplexes in RNA.
Collapse
Affiliation(s)
- Stanley N Oyaghire
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Collin J Cherubim
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Cheryl A Telmer
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Joe A Martinez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Marcel P Bruchez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
17
|
Kormuth KA, Woolford JL, Armitage BA. Homologous PNA Hybridization to Noncanonical DNA G-Quadruplexes. Biochemistry 2016; 55:1749-57. [PMID: 26950608 DOI: 10.1021/acs.biochem.6b00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potential guanine (G) quadruplex-forming sequences (QFSs) found throughout the genomes and transcriptomes of organisms have emerged as biologically relevant structures. These G-quadruplexes represent novel opportunities for gene regulation at the DNA and RNA levels. Recently, the definition of functional QFSs has been expanding to include a variety of unconventional motifs, including relatively long loop sequences (i.e., >7 nucleotides) separating adjacent G-tracts. We have identified a QFS within the 25S rDNA gene from Saccharomyces cerevisae that features a long loop separating the two 3'-most G-tracts. An oligonucleotide based on this sequence, QFS3, folds into a stable G-quadruplex in vitro. We have studied the interaction between QFS3 and several loop mutants with a small, homologous (G-rich) peptide nucleic acid (PNA) oligomer that is designed to form a DNA/PNA heteroquadruplex. The PNA successfully invades the DNA quadruplex target to form a stable heteroquadruplex, but with surprisingly high PNA:DNA ratios based on surface plasmon resonance and mass spectrometric results. A model for high stoichiometry PNA-DNA heteroquadruplexes is proposed, and the implications for quadruplex targeting by G-rich PNA are discussed.
Collapse
Affiliation(s)
- Karen A Kormuth
- Department of Chemistry, ‡Department of Biological Sciences, and §Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - John L Woolford
- Department of Chemistry, ‡Department of Biological Sciences, and §Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A Armitage
- Department of Chemistry, ‡Department of Biological Sciences, and §Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
18
|
Rapid three-dimensional microfluidic mixer for high viscosity solutions to unravel earlier folding kinetics of G-quadruplex under molecular crowding conditions. Talanta 2016; 149:237-243. [DOI: 10.1016/j.talanta.2015.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023]
|
19
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
20
|
Mendoza O, Elezgaray J, Mergny JL. Kinetics of quadruplex to duplex conversion. Biochimie 2015; 118:225-33. [DOI: 10.1016/j.biochi.2015.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023]
|
21
|
Rouleau SG, Beaudoin JD, Bisaillon M, Perreault JP. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches. Nucleic Acids Res 2014; 43:595-606. [PMID: 25510493 PMCID: PMC4288198 DOI: 10.1093/nar/gku1311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5'UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding.
Collapse
Affiliation(s)
- Samuel G Rouleau
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Martin Bisaillon
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
22
|
Effect of Cholesterol Anchoring Group on the Properties of G-Quadruplex-Based FRET Probes for Potassium Ion. CHEMOSENSORS 2014. [DOI: 10.3390/chemosensors2040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Mohammed HS, Delos Santos JO, Armitage BA. Noncovalent binding and fluorogenic response of cyanine dyes to DNA homoquadruplex and PNA-DNA heteroquadruplex structures. ARTIFICIAL DNA, PNA & XNA 2014; 2:43-49. [PMID: 21912726 DOI: 10.4161/adna.2.2.16339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/10/2011] [Indexed: 12/18/2022]
Abstract
Two symmetrical cyanine dyes based on benzothiazole heterocycles and a trimethine bridge were found to bind to a parallel-stranded DNA guanine quadruplex based on the MYC oncogene promoter sequence with high nanomolar affinity and 1:1 stoichiometry. The dyes exhibited substantial fluorescence enhancements upon binding. In the presence of homologous guanine-rich peptide nucleic acid oligomers, PNA-DNA heteroquadruplexes were formed. The dyes retained their ability to bind to the heteroquadruplexes at low micromolar concentrations and with varying fluorescence enhancements, although indeterminate stoichiometries preclude quantitative comparison of the affinities with the DNA homoquadruplex precursor. The difference in fluorescence enhancement between DNA homoquadruplex and PNA-DNA heteroquadruplex allows the dyes to be used as fluorogenic indicators of hybridization in a facile method for determining PNA-DNA stoichiometry.
Collapse
Affiliation(s)
- Halimatu S Mohammed
- Department of Chemistry and Center for Nucleic Acids Science and Technology; Carnegie Mellon University; Pittsburgh, PA USA
| | | | | |
Collapse
|
24
|
Formation and characterization of PNA-containing heteroquadruplexes. Methods Mol Biol 2014; 1050:73-82. [PMID: 24297351 DOI: 10.1007/978-1-62703-553-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The guanine quadruplex is a secondary structure formed by DNA and RNA that has been implicated in regulation of gene expression and maintenance of genome stability. Guanine-rich PNA oligomers can invade DNA or RNA quadruplex targets to form heteroquadruplex structures. Affinities in the low nanomolar range are routinely observed, making PNAs among the tightest binding of all quadruplex-targeted agents. Although inherently more promiscuous than heteroduplex formation based on Watson-Crick pairing, selectivity of heteroquadruplex formation can be improved through rational design of the sequence and backbone structure of the PNA. This chapter presents design rules and methods for characterizing PNA-DNA/RNA heteroquadruplexes.
Collapse
|
25
|
Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 2014; 10:358-64. [PMID: 24633353 PMCID: PMC4188979 DOI: 10.1038/nchembio.1479] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual structural elements, G-quadruplexes, which are responsible for the cis-acting regulation of viral mRNA translation. By studying the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1) mRNA, we demonstrate that destabilization of G-quadruplexes using antisense oligonucleotides increases EBNA1 mRNA translation. In contrast, pretreatment with a G-quadruplex-stabilizing small molecule, pyridostatin, decreases EBNA1 synthesis, highlighting the importance of G-quadruplexes within virally encoded transcripts as unique regulatory signals for translational control and immune evasion. Furthermore, these findings suggest alternative therapeutic strategies focused on targeting RNA structure within viral ORFs.
Collapse
Affiliation(s)
- Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jie Zhong
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lea Lekieffre
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan P Cowieson
- Centre for Synchrotron Science, Monash University, Melbourne, Victoria, Australia
| | - Jennifer L Clancy
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cambridge Institute, Cancer Research UK, Li Ka Shing Center, Cambridge, UK
- School of Clinical Medicine, The University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Rajiv Khanna
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Judy Tellam
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Li Y, Liu C, Feng X, Xu Y, Liu BF. Ultrafast Microfluidic Mixer for Tracking the Early Folding Kinetics of Human Telomere G-Quadruplex. Anal Chem 2014; 86:4333-9. [DOI: 10.1021/ac500112d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youzhi Xu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Gray RD, Trent JO, Chaires JB. Folding and unfolding pathways of the human telomeric G-quadruplex. J Mol Biol 2014; 426:1629-50. [PMID: 24487181 DOI: 10.1016/j.jmb.2014.01.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/30/2022]
Abstract
Sequence analogs of human telomeric DNA such as d[AGGG(TTAGGG)3] (Tel22) fold into monomeric quadruplex structures in the presence of a suitable cation. To investigate the pathway for unimolecular quadruplex formation, we monitored the kinetics of K(+)-induced folding of Tel22 by circular dichroism (CD), intrinsic 2-aminopurine fluorescence, and fluorescence resonance energy transfer (FRET). The results are consistent with a four-step pathway U ↔ I1 ↔ I2 ↔ I3 ↔ F where U and F represent unfolded and folded conformational ensembles and I1, I2, and I3 are intermediates. Previous kinetic studies have shown that I1 is formed in a rapid pre-equilibrium and may consist of an ensemble of "prefolded" hairpin structures brought about by cation-induced electrostatic collapse of the DNA. The current study shows that I1 converts to I2 with a relaxation time τ1=0.1s at 25 °C in 25 mM KCl. The CD spectrum of I2 is characteristic of an antiparallel quadruplex that could form as a result of intramolecular fold-over of the I1 hairpins. I3 is relatively slowly formed (τ2≈3700s) and has CD and FRET properties consistent with those expected of a triplex structure as previously observed in equilibrium melting studies. I3 converts to F with τ3≈750s. Identical pathways with different kinetic constants involving a rapidly formed antiparallel intermediate were observed with oligonucleotides forming mixed parallel/antiparallel hybrid-1 and hybrid-2 topologies {e.g. d[TTGGG(TTAGGG)3A] and d[TAGGG(TTAGGG)3TT]}. Aspects of the kinetics of unfolding were also monitored by the spectroscopic methods listed above and by time-resolved fluorescence lifetime measurements using a complementary strand trap assay. These experiments reveal a slow, rate-limiting step along the unfolding pathway.
Collapse
Affiliation(s)
- Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
28
|
Tanaka A, Choi J, Majima T. Folding and structural polymorphism of G-quadruplex formed from a long telomeric sequence containing six GGG tracts. RSC Adv 2014. [DOI: 10.1039/c4ra08053j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A long telomeric sequence preferentially forms a thermodynamically stable G-quadruplex at the 3′ end rather than at the 5′ end or at internal positions.
Collapse
Affiliation(s)
- Atsushi Tanaka
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047, Japan
| | - Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047, Japan
| |
Collapse
|
29
|
Long X, Stone MD. Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism. PLoS One 2013; 8:e83420. [PMID: 24367594 PMCID: PMC3867459 DOI: 10.1371/journal.pone.0083420] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
Telomeres are specialized chromatin structures found at the end of chromosomes and are crucial to the maintenance of eukaryotic genome stability. Human telomere DNA is comprised of the repeating sequence (T2AG3)n, which is predominantly double-stranded but terminates with a 3’ single-stranded tail. The guanine-rich tail can fold into secondary structures known as a G-quadruplexes (GQs) that may exist as a polymorphic mixture of anti-parallel, parallel, and several hybrid topological isomers. Using single-molecule Förster resonance energy transfer (smFRET), we have reconstructed distributions of telomere DNA GQ conformations generated by an in situ refolding protocol commonly employed in single-molecule studies of GQ structure, or using a slow cooling DNA annealing protocol typically used in the preparation of GQ samples for ensemble biophysical analyses. We find the choice of GQ folding protocol has a marked impact on the observed distributions of DNA conformations under otherwise identical buffer conditions. A detailed analysis of the kinetics of GQ folding over timescales ranging from minutes to hours revealed the distribution of GQ structures generated by in situ refolding gradually equilibrates to resemble the distribution generated by the slow cooling DNA annealing protocol. Interestingly, conditions of low ionic strength, which promote transient GQ unfolding, permit the fraction of folded DNA molecules to partition into a distribution that more closely approximates the thermodynamic folding equilibrium. Our results are consistent with a model in which kinetic partitioning occurs during in situ folding at room temperature in the presence of K+ ions, producing a long-lived non-equilibrium distribution of GQ structures in which the parallel conformation predominates on the timescale of minutes. These results suggest that telomere DNA GQ folding kinetics, and not just thermodynamic stability, likely contributes to the physiological ensemble GQ structures.
Collapse
Affiliation(s)
- Xi Long
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Gupta A, Lee LL, Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA. Strand invasion of DNA quadruplexes by PNA: comparison of homologous and complementary hybridization. Chembiochem 2013; 14:1476-84. [PMID: 23868291 PMCID: PMC3856695 DOI: 10.1002/cbic.201300263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 12/18/2022]
Abstract
Molecular recognition of DNA quadruplex structures is envisioned to be a strategy for regulating gene expression at the transcriptional level and for in situ analysis of telomere structure and function. The recognition of DNA quadruplexes by peptide nucleic acid (PNA) oligomers is presented here, with a focus on comparing complementary, heteroduplex-forming and homologous, heteroquadruplex-forming PNAs. Surface plasmon resonance and optical spectroscopy experiments demonstrated that the efficacy of a recognition mode depended strongly on the target. Homologous PNA readily invades a quadruplex derived from the promoter regulatory region found upstream of the MYC proto-oncogene to form a heteroquadruplex at high potassium concentration mimicking the intracellular environment, whereas complementary PNA exhibits virtually no hybridization. In contrast, complementary PNA is superior to the homologous in hybridizing to a quadruplex modeled on the human telomere sequence. The results are discussed in terms of the different structural morphologies of the quadruplex targets and the implications for in vivo recognition of quadruplexes by PNAs.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Ling-Ling Lee
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Subhadeep Roy
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Farial A. Tanious
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|
31
|
Li Y, Xu F, Liu C, Xu Y, Feng X, Liu BF. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction. Analyst 2013; 138:4475-82. [PMID: 23785706 DOI: 10.1039/c3an00521f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.
Collapse
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
32
|
Zhou W, Suntharalingam K, Brand NJ, Barton PJR, Vilar R, Ying L. Possible regulatory roles of promoter g-quadruplexes in cardiac function-related genes - human TnIc as a model. PLoS One 2013; 8:e53137. [PMID: 23326389 PMCID: PMC3541360 DOI: 10.1371/journal.pone.0053137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/23/2012] [Indexed: 12/15/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded DNA secondary structures, which are involved in a diverse range of biological processes. Although the anti-cancer potential of G4s in oncogene promoters has been thoroughly investigated, the functions of promoter G4s in non-cancer-related genes are not well understood. We have explored the possible regulatory roles of promoter G4s in cardiac function-related genes using both computational and a wide range of experimental approaches. According to our bioinformatics results, it was found that potential G4-forming sequences are particularly enriched in the transcription regulatory regions (TRRs) of cardiac function-related genes. Subsequently, the promoter of human cardiac troponin I (TnIc) was chosen as a model, and G4s found in this region were subjected to biophysical characterisations. The chromosome 19 specific minisatellite G4 sequence (MNSG4) and near transcription start site (TSS) G4 sequence (−80 G4) adopt anti-parallel and parallel structures respectively in 100 mM KCl, with stabilities comparable to those of oncogene G4s. It was also found that TnIc G4s act cooperatively as enhancers in gene expression regulation in HEK293 cells, when stabilised by a synthetic G4-binding ligand. This study provides the first evidence of the biological significance of promoter G4s in cardiac function-related genes. The feasibility of using a single ligand to target multiple G4s in a particular gene has also been discussed.
Collapse
Affiliation(s)
- Wenhua Zhou
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Nigel J. Brand
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
| | - Paul J. R. Barton
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Liming Ying
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Fotticchia I, Giancola C, Petraccone L. G-quadruplex unfolding in higher-order DNA structures. Chem Commun (Camb) 2013; 49:9488-90. [DOI: 10.1039/c3cc44560g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Samatanga B, Dominguez C, Jelesarov I, Allain FHT. The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Res 2012; 41:2505-16. [PMID: 23275549 PMCID: PMC3575826 DOI: 10.1093/nar/gks1289] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The RNA binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) F is involved in telomeres maintenance and pre-mRNA processing, such as alternative splicing and polyadenylation. It specifically recognizes RNA containing three consecutive guanines (G-tracts) that have the potential to assemble into G-quadruplexes. We have proposed recently that hnRNP F could regulate alternative splicing by remodeling RNA structures, such as G-quadruplexes. However, the exact mechanism of hnRNP F binding to such RNA sequences remains unknown. Here, we have studied the binding of the third RNA binding domain of hnRNP F [quasi-RNA recognition motif 3 (qRRM3)] to G-tract RNA using isothermal titration calorimetry, circular dichroism and nuclear magnetic resonance spectroscopy. Our results show that qRRM3 binds specifically exclusively to single-stranded G-tracts (ssRNA), in contrast to previous reports stating that the G-quadruplex was recognized as well. Furthermore, we demonstrate that the pre-existent ssRNA/G-quadruplex equilibrium slows down the formation of the protein–ssRNA complex. Based on in vitro transcription assays, we show that the rate of the protein–RNA complex formation is faster than that of the G-quadruplex. We propose a model according to which hnRNP F could bind RNA co-transcriptionally and prevents G-quadruplex formation.
Collapse
Affiliation(s)
- Brighton Samatanga
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Telomere- and telomerase-interacting protein that unfolds telomere G-quadruplex and promotes telomere extension in mammalian cells. Proc Natl Acad Sci U S A 2012. [PMID: 23184978 DOI: 10.1073/pnas.1200232109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomere extension by telomerase is essential for chromosome stability and cell vitality. Here, we report the identification of a splice variant of mammalian heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), hnRNP A2*, which binds telomeric DNA and telomerase in vitro. hnRNP A2* colocalizes with telomerase in Cajal bodies and at telomeres. In vitro assays show that hnRNP A2* actively unfolds telomeric G-quadruplex DNA, exposes 5 nt of the 3' telomere tail and substantially enhances the catalytic activity and processivity of telomerase. The expression level of hnRNP A2* in tissues positively correlates with telomerase activity, and overexpression of hnRNP A2* leads to telomere elongation in vivo. Thus, hnRNP A2* plays a positive role in unfolding telomere G-quadruplexes and in enhancing telomere extension by telomerase.
Collapse
|
36
|
Li Y, Xu Y, Feng X, Liu BF. A rapid microfluidic mixer for high-viscosity fluids to track ultrafast early folding kinetics of G-quadruplex under molecular crowding conditions. Anal Chem 2012; 84:9025-32. [PMID: 23020167 DOI: 10.1021/ac301864r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tracking the folding kinetics of macromolecules under molecular crowding conditions represents a tremendous challenge due to the high viscosity of the solution. In this paper, we report a unique T-type microfluidic mixer with seven consecutive ω-shaped baffles for fast mixing of high-viscosity fluids. Numerical simulations and experimental characterizations proved that the micromixer could achieve a mixing time of 579.4 μs for solutions with viscosities about 33.6 times that of pure water. Over a 1000-fold improvement in mixing dead time was accomplished in comparison to those reported previously. We further used this highly efficient micromixer to track the early folding kinetics of human telomere G-quadruplex under molecular crowding conditions. Results indicated an exponential process in the initial folding phase of G-quadruplex, and the G-quadruplex formed a more compact structure under higher degrees of molecular crowding conditions.
Collapse
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
37
|
Dao NT, Haselsberger R, Michel-Beyerle ME, Phan AT. Following G-quadruplex formation by its intrinsic fluorescence. FEBS Lett 2011; 585:3969-77. [PMID: 22079665 DOI: 10.1016/j.febslet.2011.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/23/2011] [Accepted: 11/01/2011] [Indexed: 12/11/2022]
Abstract
We characterized and compared the fluorescence properties of various well-defined G-quadruplex structures. The increase of intrinsic fluorescence of G-rich DNA sequences when they form G-quadruplexes can be used to monitor the folding and unfolding of G-quadruplexes as a function of cations and temperature. The temperature-dependent fluorescence spectra of different G-quadruplexes also exhibit characteristic patterns. Thus, the stability and possibly also the structure of G-quadruplexes can be characterized and distinguished by their intrinsic fluorescence spectra.
Collapse
Affiliation(s)
- Nguyen Thuan Dao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
38
|
Lane AN. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie 2011; 94:277-86. [PMID: 21854828 DOI: 10.1016/j.biochi.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
DNA quadruplexes are often conceived as very stable structures. However, most of the free energy of stabilization derives from specific ion binding via inner sphere coordination of the GO6 of the guanine residues comprising the basic quartet. When compared with other nucleic acid structures such as DNA or RNA duplexes and hairpins, or proteins of the same number of atoms, metal-coordinated intramolecular quadruplexes are found to be of comparable or lower thermodynamic stability under similar solution conditions. Furthermore, intramolecular quadruplexes are actually less stable kinetically, than DNA duplexes or hairpins of the same size. Although the literature is incomplete, it is clear that polyelectrolyte ion effects, the influence of solvation and steric crowding on stability are qualitatively different between intramolecular quadruplexes and DNA duplexes. For example, decreasing water activity destabilizes DNA duplexes, whereas quadruplexes are stabilized. The variety of folded conformations accessible to a single sequence further implies strong sensitivity of the conformational ensemble to the solution conditions, compared with DNA duplexes or small single domain proteins. These considerations may have relevance to the conditions prevailing inside cell nuclei and therefore the structures that potentially might form in vivo.
Collapse
Affiliation(s)
- Andrew N Lane
- JG Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
39
|
Roy S, Zanotti KJ, Murphy CT, Tanious FA, Wilson WD, Ly DH, Armitage BA. Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes. Chem Commun (Camb) 2011; 47:8524-6. [PMID: 21717030 DOI: 10.1039/c1cc12805a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Guanine-rich peptide nucleic acid probes hybridize to DNA G quadruplex targets with high affinity, forming PNA-DNA heteroquadruplexes. We report a surprising degree of kinetic discrimination for PNA heteroquadruplex formation with a series of DNA targets. The fastest hybridization is observed for targets folded into parallel morphologies.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Giri B, Smaldino PJ, Thys RG, Creacy SD, Routh ED, Hantgan RR, Lattmann S, Nagamine Y, Akman SA, Vaughn JP. G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA. Nucleic Acids Res 2011; 39:7161-78. [PMID: 21586581 PMCID: PMC3167620 DOI: 10.1093/nar/gkr234] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has been previously shown that the DHX36 gene product, G4R1/RHAU, tightly binds tetramolecular G4-DNA with high affinity and resolves these structures into single strands. Here, we test the ability of G4R1/RHAU to bind and unwind unimolecular G4-DNA. Gel mobility shift assays were used to measure the binding affinity of G4R1/RHAU for unimolecular G4-DNA-formed sequences from the Zic1 gene and the c-Myc promoter. Extremely tight binding produced apparent K(d)'s of 6, 3 and 4 pM for two Zic1 G4-DNAs and a c-Myc G4-DNA, respectively. The low enzyme concentrations required for measuring these K(d)'s limit the precision of their determination to upper boundary estimates. Similar tight binding was not observed in control non-G4 forming DNA sequences or in single-stranded DNA having guanine-rich runs capable of forming tetramolecular G4-DNA. Using a peptide nucleic acid (PNA) trap assay, we show that G4R1/RHAU catalyzes unwinding of unimolecular Zic1 G4-DNA into an unstructured state capable of hybridizing to a complementary PNA. Binding was independent of adenosine triphosphate (ATP), but the PNA trap assay showed that unwinding of G4-DNA was ATP dependent. Competition studies indicated that unimolecular Zic1 and c-Myc G4-DNA structures inhibit G4R1/RHAU-catalyzed resolution of tetramolecular G4-DNA. This report provides evidence that G4R1/RHAU tightly binds and unwinds unimolecular G4-DNA structures.
Collapse
Affiliation(s)
- Banabihari Giri
- Department of Cancer Biology and the Comprehensive Cancer Center of Wake Forest University School of Medicine, Winston-Salem, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cogoi S, Paramasivam M, Membrino A, Yokoyama KK, Xodo LE. The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem 2010; 285:22003-16. [PMID: 20457603 DOI: 10.1074/jbc.m110.101923] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G --> T or G --> A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Biomedical Science and Technology, University of Udine, School of Medicine, Piazzale Kolbe 4, 33100 Udine, Italy
| | | | | | | | | |
Collapse
|
42
|
Dailey MM, Miller MC, Bates PJ, Lane AN, Trent JO. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res 2010; 38:4877-88. [PMID: 20348136 PMCID: PMC2919704 DOI: 10.1093/nar/gkq166] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters.
Collapse
Affiliation(s)
- Magdalena M Dailey
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
43
|
Lusvarghi S, Murphy CT, Roy S, Tanious FA, Sacui I, Wilson WD, Ly DH, Armitage BA. Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity. J Am Chem Soc 2010; 131:18415-24. [PMID: 19947597 DOI: 10.1021/ja907250j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeting guanine (G) quadruplex structures is an exciting new strategy with potential for controlling gene expression and designing anticancer agents. Guanine-rich peptide nucleic acid (PNA) oligomers bind to homologous DNA and RNA to form hetero-G-quadruplexes but can also bind to complementary cytosine-rich sequences to form heteroduplexes. In this study, we incorporated backbone modifications into G-rich PNAs to improve the selectivity for quadruplex versus duplex formation. Incorporation of abasic sites as well as chiral modifications to the backbone were found to be effective strategies for improving selectivity as shown by UV-melting and surface plasmon resonance measurements. The enhanced selectivity is due primarily to decreased affinity for complementary sequences, since binding to the homologous DNA to form PNA-DNA heteroquadruplexes retains high affinity. The improved selectivity of these PNAs is an important step toward using PNAs for regulating gene expression by G-quadruplex formation.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Departments of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Onyshchenko MI, Gaynutdinov TI, Englund EA, Appella DH, Neumann RD, Panyutin IG. Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs. Nucleic Acids Res 2010; 37:7570-80. [PMID: 19820116 PMCID: PMC2794188 DOI: 10.1093/nar/gkp840] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Numerous regulatory genes have G-rich regions that can potentially form quadruplex structures, possibly playing a role in transcription regulation. We studied a G-rich sequence in the BCL2 gene 176-bp upstream of the P1 promoter for G-quadruplex formation. Using circular dichroism (CD), thermal denaturation and dimethyl sulfate (DMS) footprinting, we found that a single-stranded oligonucleotide with the sequence of the BCL2 G-rich region forms a potassium-stabilized G-quadruplex. To study G-quadruplex formation in double-stranded DNA, the G-rich sequence of the BCL2 gene was inserted into plasmid DNA. We found that a G-quadruplex did not form in the insert at physiological conditions. To induce G-quadruplex formation, we used short peptide nucleic acids (PNAs) that bind to the complementary C-rich strand. We examined both short duplex-forming PNAs, complementary to the central part of the BCL2 gene, and triplex-forming bis-PNAs, complementary to sequences adjacent to the G-rich BCL2 region. Using a DMS protection assay, we demonstrated G-quadruplex formation within the G-rich sequence from the promoter region of the human BCL2 gene in plasmid DNA. Our results show that molecules binding the complementary C-strand facilitate G-quadruplex formation and introduce a new mode of PNA-mediated sequence-specific targeting.
Collapse
Affiliation(s)
- Mykola I. Onyshchenko
- Department of Radiology and Imaging Sciences, Clinical Center and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timur I. Gaynutdinov
- Department of Radiology and Imaging Sciences, Clinical Center and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan A. Englund
- Department of Radiology and Imaging Sciences, Clinical Center and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel H. Appella
- Department of Radiology and Imaging Sciences, Clinical Center and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald D. Neumann
- Department of Radiology and Imaging Sciences, Clinical Center and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor G. Panyutin
- Department of Radiology and Imaging Sciences, Clinical Center and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
- *To whom correspondence should be addressed. Tel: +1 301 496 8308; Fax: +1 301 480 9712;
| |
Collapse
|
45
|
Fegan A, Shirude PS, Ying L, Balasubramanian S. Ensemble and single molecule FRET analysis of the structure and unfolding kinetics of the c-kit promoter quadruplexes. Chem Commun (Camb) 2009; 46:946-8. [PMID: 20107659 DOI: 10.1039/b920680a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FRET analysis has been used to examine the folded conformations and differing kinetic stabilities of two DNA G-quadruplexes (c-kit 1 and c-kit 2) derived from sequences found in the promoter of the c-kit proto-oncogene.
Collapse
Affiliation(s)
- Adrian Fegan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UKCB2 1EW
| | | | | | | |
Collapse
|
46
|
Huang J, Wang M, Zhou Y, Weng X, Shuai L, Zhou X, Zhang D. Visual observation of G-quadruplex DNA with the label-free fluorescent probe silole with aggregation-induced emission. Bioorg Med Chem 2009; 17:7743-8. [DOI: 10.1016/j.bmc.2009.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 11/26/2022]
|
47
|
Mendez MA, Szalai VA. Fluorescence of unmodified oligonucleotides: A tool to probe G-quadruplex DNA structure. Biopolymers 2009; 91:841-50. [PMID: 19548317 DOI: 10.1002/bip.21268] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fluorescence of unmodified oligonucleotides has not been exploited for guanine-quadruplex (G-quadruplex) characterization. We observe that G-rich sequences fluoresce more strongly than duplex or single-stranded DNA but much more weakly than fluorophores like fluorescein. This increase in the intrinsic fluorescence is not due to an increase in absorption at the excitation wavelength but rather to a change in the quantum yield. We show that unlabeled oligonucleotides that form G-quadruplexes can be differentiated on the basis of their emission spectra from similar sequences that do not contain consecutive guanines. Intermolecular quadruplexes formed by the oligonucleotides 5'-T(4)G(n)T(4)-3' (n = 4-10) display a nonlinear, but continuous, increase in emission intensity as the G content increases. The sequence 5'-GGGT-3', which has been proposed to form a monomeric quadruplex and an interlocked quadruplex (Krishnan-Ghosh et al. J Am Chem Soc 2004, 126, 11009), was compared with the similar sequence 5'-TGGG-3', the structure of which has not been characterized. Both the maximum emission intensity and the spectral shape differ for these oligonucleotides as a function of sample preparation, indicating that different types of quadruplexes form for both sequences. Our work is the first to demonstrate that the suprastructure of G-rich sequences can be probed using fluorescence signatures of unmodified oligonucleotides.
Collapse
Affiliation(s)
- Miguel Angel Mendez
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
48
|
Lynch S, Baker H, Byker SG, Zhou D, Sinniah K. Single molecule force spectroscopy on G-quadruplex DNA. Chemistry 2009; 15:8113-6. [PMID: 19603437 DOI: 10.1002/chem.200901390] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susanna Lynch
- Chemistry & Biochemistry, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546, USA
| | | | | | | | | |
Collapse
|
49
|
Hsu STD, Varnai P, Bugaut A, Reszka AP, Neidle S, Balasubramanian S. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J Am Chem Soc 2009; 131:13399-409. [PMID: 19705869 PMCID: PMC3055164 DOI: 10.1021/ja904007p] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guanine-rich DNA sequences with the ability to form quadruplex structures are enriched in the promoter regions of protein-coding genes, particularly those of proto-oncogenes. G-quadruplexes are structurally polymorphic and their folding topologies can depend on the sample conditions. We report here on a structural study using solution state NMR spectroscopy of a second G-quadruplex-forming motif (c-kit2) that has been recently identified in the promoter region of the c-kit oncogene. In the presence of potassium ions, c-kit2 exists as an ensemble of structures that share the same parallel-stranded propeller-type conformations. Subtle differences in structural dynamics have been identified using hydrogen-deuterium exchange experiments by NMR spectroscopy, suggesting the coexistence of at least two structurally similar but dynamically distinct substates, which undergo slow interconversion on the NMR timescale.
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Peter Varnai
- Department of Chemistry and Biochemistry, University of Sussex, Falmer Brighton BN1 9QJ, United Kingdom
| | - Anthony Bugaut
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Anthony P. Reszka
- The Cancer Research UK, Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Stephen Neidle
- The Cancer Research UK, Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shankar Balasubramanian
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
50
|
Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C. Human telomeric G-quadruplex formed from duplex under near physiological conditions: Spectroscopic evidence and kinetics. Biochimie 2009; 91:1104-11. [DOI: 10.1016/j.biochi.2009.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
|