1
|
Khedkar NR, Sindkhedkar M, Joseph A. Fragment-Based Drug Discovery: Small Fragments, Big Impact - Success Stories of Approved Oncology Therapeutics. Bioorg Chem 2025; 156:108197. [PMID: 39879825 DOI: 10.1016/j.bioorg.2025.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Fragment-Based Drug Discovery (FBDD) has revolutionized drug discovery by overcoming the challenges of traditional methods like combinatorial chemistry and high-throughput screening (HTS). Leveraging small, low-molecular-weight fragments, FBDD achieves higher hit rates, reduced screening costs, and faster development timelines for clinically relevant drug candidates. This review explores FBDD's core principles, innovative methodologies, and its success in targeting diverse protein classes, including previously "undruggable" targets. Key advancements in fragment libraries, screening techniques, and computational tools are discussed, along with the efficient progression from fragment hits to clinical drugs. Notably, we highlight FDA-approved fragment-derived drugs, including capivasertib, which has increased the total number of fragment-based oncology drugs to seven. As FBDD continues to evolve, its potential to address unmet therapeutic needs and drive the discovery of groundbreaking treatments across various disease areas becomes increasingly evident.
Collapse
Affiliation(s)
- Nilesh Raghunath Khedkar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Academy of Higher Education, Manipal, Karnataka 576104, India; Novel Drug Discovery & Development, Lupin Research Park, Lupin Ltd., Pune 412115, India; Research Scholar, Manipal Academy of Higher Education, India
| | - Milind Sindkhedkar
- Novel Drug Discovery & Development, Lupin Research Park, Lupin Ltd., Pune 412115, India.
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
2
|
Werle Y, Kovermann M. Fluorine Labeling and 19F NMR Spectroscopy to Study Biological Molecules and Molecular Complexes. Chemistry 2025; 31:e202402820. [PMID: 39466678 DOI: 10.1002/chem.202402820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
High-resolution nuclear magnetic resonance (NMR) spectroscopy represents a key methodology for studying biomolecules and their interplay with other molecules. Recent developments in labeling strategies have made it possible to incorporate fluorine into proteins and peptides reliably, with manageable efforts and, importantly, in a highly site-specific manner. Paired with its excellent NMR spectroscopic properties and absence in most biological systems, fluorine has enabled scientists to investigate a rather wide range of scientific objectives, including protein folding, protein dynamics and drug discovery. Furthermore, NMR spectroscopic experiments can be conducted in complex environments, such as cell lysate or directly inside living cells. This review presents selected studies demonstrating how 19F NMR spectroscopic approaches enable to contribute to the understanding of biomolecular processes. Thereby the focus has been set to labeling strategies available and specific NMR experiments performed to answer the underlying scientific objective.
Collapse
Affiliation(s)
- Yannick Werle
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
3
|
Li Q, Kang C. Perspectives on Applications of 19F-NMR in Fragment-Based Drug Discovery. Molecules 2024; 29:5748. [PMID: 39683906 DOI: 10.3390/molecules29235748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Fragment-based drug discovery is a powerful approach in drug discovery, applicable to a wide range of targets. This method enables the discovery of potent compounds that can modulate target functions, starting from fragment compounds that bind weakly to the targets. While biochemical, biophysical, and cell-based assays are commonly used to identify fragments, 19F-NMR spectroscopy has emerged as a powerful tool for exploring interactions between biomolecules and ligands. Because fluorine atoms are not naturally present in biological systems, 19F-NMR serves as a sensitive method for fragment screening against diverse targets. Herein, we reviewed the applications of 19F-NMR in fragment screening, highlighting its effectiveness in identifying fragments that bind weakly to various targets such as proteins and RNA. The accumulated evidence suggests that 19F-NMR will continue to be a crucial tool in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore 138670, Singapore
| |
Collapse
|
4
|
Woodman TJ, Lloyd MD. Analysis of enzyme reactions using NMR techniques: A case study with α-methylacyl-CoA racemase (AMACR). Methods Enzymol 2023; 690:159-209. [PMID: 37858529 DOI: 10.1016/bs.mie.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
α-Methylacyl-CoA racemase (AMACR; P504S) catalyzes the conversion of R-2-methylacyl-CoA esters into their corresponding S-2-methylacyl-CoA epimers enabling their degradation by β-oxidation. The enzyme also catalyzes the key epimerization reaction in the pharmacological activation pathway of ibuprofen and related drugs. AMACR protein levels and enzymatic activity are increased in prostate cancer, and the enzyme is a recognized drug target. Key to the development of novel treatments based on AMACR inhibition is the development of functional assays. Synthesis of substrates and purification of recombinant human AMACR are described. Incubation of R- or S-2-methylacyl-CoA esters with AMACR in vitro resulted in formation of epimers (at a near 1-1 ratio at equilibrium) via removal of their α-protons to form an enolate intermediate followed by reprotonation. Conversion can be conveniently followed by incubation in buffer containing 2H2O followed by 1H NMR analysis to monitor conversion of the α-methyl doublet to a single peak upon deuterium incorporation. Incubation of 2-methylacyl-CoA esters containing leaving groups results in an elimination reaction, which was also characterized by 1H NMR. The synthesis of substrates, including a double labeled substrate for mechanistic studies, and subsequent analysis is also described.
Collapse
Affiliation(s)
- Timothy J Woodman
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| | - Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| |
Collapse
|
5
|
Ayotte Y, Woo S, LaPlante SR. Practical Considerations and Guidelines for Spectral Referencing for Fluorine NMR Ligand Screening. ACS OMEGA 2022; 7:13155-13163. [PMID: 35474811 PMCID: PMC9026065 DOI: 10.1021/acsomega.2c00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fluorine (19F) NMR strategies are increasingly being employed for evaluating ligand binding to macromolecules, among many other uses. 19F NMR offers many advantages as a result of its sensitive spin 1/2 nucleus, 100% natural abundance, and wide chemical shift range. Moreover, because of its absence from biological samples, one can directly monitor ligand binding without background interference from the macromolecule. Therefore, all these aforementioned features make it an attractive approach for screening compounds. However, the detection of ligand binding, especially those with weak affinities, can require interpretations of minor changes in chemical shifts. Thus, chemical shift referencing is critical for accurate measurements and interpretations. Unfortunately, one cannot rely on spectrometer indirect referencing alone, and internal chemical references have sample-dependent issues. Here, we evaluated 10 potential candidate compounds that could serve as 19F NMR chemical references. Multiple factors were systematically evaluated for each candidate to monitor the suitability for 19F NMR screening purposes. These factors include aqueous solubility, buffer compatibility, salt compatibility, aqueous stability, tolerability to pH changes, temperature changes, and compound pooling. It was concluded that there was no ideal candidate, but five compounds had properties that met the screening requirements.
Collapse
Affiliation(s)
- Yann Ayotte
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| | - Simon Woo
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| | - Steven R. LaPlante
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| |
Collapse
|
6
|
Devillers E, Chelain E, Dalvit C, Brigaud T, Pytkowicz J. (R)-α-Trifluoromethylalanine as a 19 F NMR Probe for the Monitoring of Protease Digestion of Peptides. Chembiochem 2021; 23:e202100470. [PMID: 34738292 DOI: 10.1002/cbic.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Fluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in 19 F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
Collapse
Affiliation(s)
- Emmanuelle Devillers
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Evelyne Chelain
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Claudio Dalvit
- Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.,Present address: Lavis, Trento, Italy
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Julien Pytkowicz
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
7
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
8
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
9
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
10
|
Dalvit C, Veronesi M, Vulpetti A. Fluorine NMR functional screening: from purified enzymes to human intact living cells. JOURNAL OF BIOMOLECULAR NMR 2020; 74:613-631. [PMID: 32347447 DOI: 10.1007/s10858-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.
Collapse
Affiliation(s)
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| |
Collapse
|
11
|
Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G. The precious fluorine on the ring: fluorine NMR for biological systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:365-379. [PMID: 32651751 PMCID: PMC7539674 DOI: 10.1007/s10858-020-00331-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 05/08/2023]
Abstract
The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Barbara Ogórek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Akshay Jain
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Tressler CM, Zondlo NJ. Perfluoro- tert-Butyl Hydroxyprolines as Sensitive, Conformationally Responsive Molecular Probes: Detection of Protein Kinase Activity by 19F NMR. ACS Chem Biol 2020; 15:1096-1103. [PMID: 32125821 DOI: 10.1021/acschembio.0c00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
19F NMR spectroscopy provides the ability to quantitatively analyze single species in complex solutions but is often limited by the modest sensitivity inherent to NMR. 4R- and 4S-Perfluoro-tert-buyl hydroxyproline contain 9 equivalent fluorines, in amino acids with strong conformational preferences. In order to test the ability to use these amino acids as sensitive probes of protein modifications, the perfluoro-tert-buyl hydroxyprolines were incorporated into substrate peptides of the protein kinases PKA and Akt. Peptides containing each diastereomeric proline were rapidly phosphorylated by each protein kinase and exhibited 19F chemical shift changes as a result of phosphorylation. The sensitivity of the perfluoro-tert-butyl group allowed quantitative analysis of the kinetics of phosphorylation over three half-lives at single-digit micromolar concentrations of each species. The distinct conformational preferences of these amino acids allowed the optimization of the substrate with a conformationally matched amino acid, in order to maximize the rate of phosphorylation. PKA preferred the 4R-amino acid at the -1 position, whereas the closely related AGC kinase Akt preferred the 4S-amino acid. These data, combined with analysis of structures of the Michaelis complexes of these kinases in the PDB, suggest that PKA recognizes the PPII conformation at the P-1 position relative to the phosphorylation site, while Akt/PKB recognizes an extended conformation at this position. These results suggest that conformational targeting may be employed to increase specificity in recognition by protein kinases. Perfluoro-tert-butyl hydroxyprolines were applied to the real-time detection and quantification of PKA activity and inhibition of PKA activity in HeLa cell extracts via 19F NMR spectroscopy. The coupling of proline ring pucker with main chain conformation suggests broad application of perfluoro-tert-butyl hydroxyprolines in molecular sensing and imaging.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Chrominski M, Baranowski MR, Chmielinski S, Kowalska J, Jemielity J. Synthesis of Trifluoromethylated Purine Ribonucleotides and Their Evaluation as 19F NMR Probes. J Org Chem 2020; 85:3440-3453. [PMID: 31994393 PMCID: PMC7497640 DOI: 10.1021/acs.joc.9b03198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protected guanosine and adenosine ribonucleosides and guanine nucleotides are readily functionalized with CF3 substituents within the nucleobase. Protected guanosine is trifluoromethylated at the C8 position under radical-generating conditions in up to 95% yield and guanosine 5'-oligophosphates in up to 35% yield. In the case of adenosine, the selectivity of trifluoromethylation depends heavily on the functional group protection strategy and leads to a set of CF3-modified nucleosides with different substitution patterns (C8, C2, or both) in up to 37% yield. Further transformations based on phosphorimidazolide chemistry afford various CF3-substituted mono- and dinucleoside oligophosphates in good yields. The utility of the trifluoromethylated nucleotides as probes for 19F NMR-based real-time enzymatic reaction monitoring is demonstrated with three different human nucleotide hydrolases (Fhit, DcpS, and cNIIIB). Substrate and product(s) resonances were sufficiently separated to enable effective tracking of each enzymatic activity of interest.
Collapse
Affiliation(s)
- Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Sebastian Chmielinski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Auletta S, Caravan W, Persaud JK, Thuilot SF, Brown DG, Parkin DW, Stockman BJ. Discovery of Ligand-Efficient Scaffolds for the Design of Novel Trichomonas vaginalis Uridine Nucleoside Ribohydrolase Inhibitors Using Fragment Screening. ACS OMEGA 2019; 4:16226-16232. [PMID: 31592163 PMCID: PMC6777076 DOI: 10.1021/acsomega.9b02472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Trichomoniasis is caused by the parasitic protozoan Trichomonas vaginalis. The increasing prevalence of strains resistant to the current 5-nitroimidazole treatments creates the need for novel therapies. T. vaginalis cannot synthesize purine and pyrimidine rings and requires salvage pathway enzymes to obtain them from host nucleosides. The uridine nucleoside ribohydrolase was screened using an 19F NMR-based activity assay against a 2000-compound fragment diversity library. Several series of inhibitors were identified including scaffolds based on acetamides, cyclic ureas or ureas, pyridines, and pyrrolidines. A number of potent singleton compounds were identified, as well. Eighteen compounds with IC50 values of 20 μM or lower were identified, including some with ligand efficiency values of 0.5 or greater. Detergent and jump-dilution counter screens validated all scaffold classes as target-specific, reversible inhibitors. Identified scaffolds differ substantially from 5-nitroimidazoles. Medicinal chemistry using the structure-activity relationship emerging from the fragment hits is being pursued to discover nanomolar inhibitors.
Collapse
Affiliation(s)
- Shannon Auletta
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Wagma Caravan
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Julia K. Persaud
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Samantha F. Thuilot
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Dean G. Brown
- Hit
Discovery, Discovery Sciences, IMED Biotech
Unit, AstraZeneca, 35
Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David W. Parkin
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Brian J. Stockman
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| |
Collapse
|
15
|
Ayotte Y, Marando VM, Vaillancourt L, Bouchard P, Heffron G, Coote PW, Larda ST, LaPlante SR. Exposing Small-Molecule Nanoentities by a Nuclear Magnetic Resonance Relaxation Assay. J Med Chem 2019; 62:7885-7896. [PMID: 31422659 DOI: 10.1021/acs.jmedchem.9b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Small molecules can self-assemble in aqueous solution into a wide range of nanoentity types and sizes (dimers, n-mers, micelles, colloids, etc.), each having their own unique properties. This has important consequences in the context of drug discovery including issues related to nonspecific binding, off-target effects, and false positives and negatives. Here, we demonstrate the use of the spin-spin relaxation Carr-Purcell-Meiboom-Gill NMR experiment, which is sensitive to molecular tumbling rates and can expose larger aggregate species that have slower rotational correlations. The strategy easily distinguishes lone-tumbling molecules versus nanoentities of various sizes. The technique is highly sensitive to chemical exchange between single-molecule and aggregate states and can therefore be used as a reporter when direct measurement of aggregates is not possible by NMR. Interestingly, we found differences in solution behavior for compounds within structurally related series, demonstrating structure-nanoentity relationships. This practical experiment is a valuable tool to support drug discovery efforts.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Victoria M Marando
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Louis Vaillancourt
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Patricia Bouchard
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Gregory Heffron
- Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Paul W Coote
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Sacha T Larda
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Steven R LaPlante
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada.,NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
16
|
Stockman BJ, Kaur A, Persaud JK, Mahmood M, Thuilot SF, Emilcar MB, Canestrari M, Gonzalez JA, Auletta S, Sapojnikov V, Caravan W, Muellers SN. NMR-Based Activity Assays for Determining Compound Inhibition, IC50 Values, Artifactual Activity, and Whole-Cell Activity of Nucleoside Ribohydrolases. J Vis Exp 2019. [PMID: 31305530 DOI: 10.3791/59928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NMR spectroscopy is often used for the identification and characterization of enzyme inhibitors in drug discovery, particularly in the context of fragment screening. NMR-based activity assays are ideally suited to work at the higher concentrations of test compounds required to detect these weaker inhibitors. The dynamic range and chemical shift dispersion in an NMR experiment can easily resolve resonances from substrate, product, and test compounds. This contrasts with spectrophotometric assays, in which read-out interference problems often arise from compounds with overlapping UV-vis absorption profiles. In addition, since they lack reporter enzymes, the single-enzyme NMR assays are not prone to coupled-assay false positives. This attribute makes them useful as orthogonal assays, complementing traditional high throughput screening assays and benchtop triage assays. Detailed protocols are provided for initial compound assays at 500 μM and 250 μM, dose-response assays for determining IC50 values, detergent counter screen assays, jump-dilution counter screen assays, and assays in E. coli whole cells. The methods are demonstrated using two nucleoside ribohydrolase enzymes. The use of 1H NMR is shown for the purine-specific enzyme, while 19F NMR is shown for the pyrimidine-specific enzyme. The protocols are generally applicable to any enzyme where substrate and product resonances can be observed and distinguished by NMR spectroscopy. To be the most useful in the context of drug discovery, the final concentration of substrate should be no more than 2-3x its Km value. The choice of NMR experiment depends on the enzyme reaction and substrates available as well as available NMR instrumentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wagma Caravan
- Department of Chemistry, Adelphi University; Department of Chemistry, Washington University in St. Louis
| | - Samantha N Muellers
- Department of Chemistry, Adelphi University; Department of Chemistry, Boston University
| |
Collapse
|
17
|
Meng H, Wen L, Xu Z, Li Y, Hao J, Zhao Y. Nonafluoro-tert-butoxylation of Diaryliodonium Salts. Org Lett 2019; 21:5206-5210. [DOI: 10.1021/acs.orglett.9b01813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Meng
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yipeng Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Hao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Abdelkarim H, Hitchinson B, Banerjee A, Gaponenko V. Advances in NMR Methods to Identify Allosteric Sites and Allosteric Ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:171-186. [PMID: 31707704 DOI: 10.1007/978-981-13-8719-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NMR allows assessment of protein structure in solution. Unlike conventional X-ray crystallography that provides snapshots of protein conformations, all conformational states are simultaneously accessible to analysis by NMR. This is a significant advantage for discovery and characterization of allosteric effects. These effects are observed when binding at one site of the protein affects another distinct site through conformational transitions. Allosteric regulation of proteins has been observed in multiple physiological processes in health and disease, providing an opportunity for the development of allosteric inhibitors. These compounds do not directly interact with the orthosteric site of the protein but influence its structure and function. In this book chapter, we provide an overview on how NMR methods are utilized to identify allosteric sites and to discover novel inhibitors, highlighting examples from the field. We also describe how NMR has contributed to understanding of allosteric mechanisms and propose that it is likely to play an important role in clarification and further development of key concepts of allostery.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Zawadzka-Kazimierczuk A, Somlyay M, Kaehlig H, Iakobson G, Beier P, Konrat R. 19F multiple-quantum coherence NMR spectroscopy for probing protein-ligand interactions. RSC Adv 2018; 8:40687-40692. [PMID: 35557931 PMCID: PMC9091488 DOI: 10.1039/c8ra09296f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/25/2019] [Accepted: 11/28/2018] [Indexed: 11/23/2022] Open
Abstract
A new 19F NMR method is presented which can be used to detect weak protein binding of small molecules with up to mM affinity. The method capitalizes on the synthetic availability of unique SF5 containing compounds and the generation of five-quantum coherences (5QC). Given the high sensitivity of 5QC relaxation to exchange events (i.e. reversible protein binding) fragments which bind to the target with weak affinity can be identified. The utility of the method in early stage drug discovery programs is demonstrated with applications to two model proteins, the neurotoxic NGAL and the prominent tumor target β-catenin.
Collapse
Affiliation(s)
- Anna Zawadzka-Kazimierczuk
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna Vienna Biocenter Campus 5 A-1030 Vienna Austria
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna Vienna Biocenter Campus 5 A-1030 Vienna Austria
| | - Hanspeter Kaehlig
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 A-1090 Vienna Austria
| | - George Iakobson
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 160 00 Prague Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 160 00 Prague Czech Republic
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna Vienna Biocenter Campus 5 A-1030 Vienna Austria
| |
Collapse
|
20
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
21
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
22
|
|
23
|
Ojima I. Strategic Incorporation of Fluorine into Taxoid Anticancer Agents for Medicinal Chemistry and Chemical Biology Studies. J Fluor Chem 2017; 198:10-23. [PMID: 28824201 DOI: 10.1016/j.jfluchem.2016.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This account exemplifies our recent progress on the strategic incorporation of fluorine and organofluorine groups to taxoid anticancer agents and their tumor-targeted drug delivery systems (TTDDSs) for medicinal chemistry and chemical biology studies. Novel 3'-difluorovinyltaxoids were strategically designed to block the metabolism by cytochrome P-450, synthesized, and evaluated for their cytotoxicity against drug-sensitive and multidrug-resistant (MDR) human cancer cell lines. 3'-Difluorovinyltaxoids exhibited impressive activities against these cancer cell lines. More significantly, a representative 3'-difluorovinyltaxoid exhibited 230-33,000 times higher potency than conventional anticancer drugs against cancer stem cell-enriched HCT-116 cell line. Studies on the mechanism of action (MOA) of these fluorotaxoids were performed by tubulin polymerization assay, morphology analysis by electron microscopy (EM) and protein binding assays. Novel 19F NMR probes, BLT-F2 and BLT-S-F6, were designed by strategically incorporating fluorine, CF3 and CF3O groups into tumor-targeting drug conjugates. These 19F-probes were designed and synthesized to investigate the mechanism of linker cleavage and factors that influence their plasma and metabolic stability by real-time 19F NMR analysis. Time-resolved 19F NMR study on probe BLT-F2 revealed a stepwise mechanism for the release of a fluorotaxoid, which might not be detected by other analytical methods. Probe BLT-S-F6 were very useful to study the stability and reactivity of the drug delivery system in human blood plasma by 19F NMR. The clean analysis of the linker stability and reactivity of drug conjugates in blood plasma by HPLC and 1H NMR is very challenging, but the use of 19F NMR and suitable 19F probes can provide a practical solution to this problem.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, U. S. A.,Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, U. S. A
| |
Collapse
|
24
|
Tressler CM, Zondlo NJ. Synthesis of Perfluoro-tert-butyl Tyrosine, for Application in 19F NMR, via a Diazonium-Coupling Reaction. Org Lett 2016; 18:6240-6243. [PMID: 27978684 DOI: 10.1021/acs.orglett.6b02858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical synthesis of the novel highly fluorinated amino acid Fmoc-perfluoro-tert-butyl tyrosine was developed. The sequence proceeds in two steps from commercially available Fmoc-4-NH2-phenylalanine via diazotization followed by diazonium coupling reaction with perfluoro-tert-butanol. In peptides, perfluoro-tert-butyl tyrosine was detected in 30 s by NMR spectroscopy at 500 nM peptide concentration due to nine chemically equivalent fluorines that are a sharp singlet by 19F NMR. Perfluoro-tert-butyl ether has an estimated σp Hammett substituent constant of +0.30.
Collapse
Affiliation(s)
- Caitlin M Tressler
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
25
|
Gee CT, Arntson KE, Urick AK, Mishra NK, Hawk LML, Wisniewski AJ, Pomerantz WCK. Protein-observed (19)F-NMR for fragment screening, affinity quantification and druggability assessment. Nat Protoc 2016; 11:1414-27. [PMID: 27414758 DOI: 10.1038/nprot.2016.079] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NMR spectroscopy can be used to quantify the binding affinity between proteins and low-complexity molecules, termed 'fragments'; this versatile screening approach allows researchers to assess the druggability of new protein targets. Protein-observed (19)F-NMR (PrOF NMR) using (19)F-labeled amino acids generates relatively simple spectra that are able to provide dynamic structural information toward understanding protein folding and function. Changes in these spectra upon the addition of fragment molecules can be observed and quantified. This protocol describes the sequence-selective labeling of three proteins (the first bromodomains of Brd4 and BrdT, and the KIX domain of the CREB-binding protein) using commercially available fluorinated aromatic amino acids and fluorinated precursors as example applications of the method developed by our research group. Fragment-screening approaches are discussed, as well as Kd determination, ligand-efficiency calculations and druggability assessment, i.e., the ability to target these proteins using small-molecule ligands. Experiment times on the order of a few minutes and the simplicity of the NMR spectra obtained make this approach well-suited to the investigation of small- to medium-sized proteins, as well as the screening of multiple proteins in the same experiment.
Collapse
Affiliation(s)
- Clifford T Gee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keith E Arntson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew K Urick
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Neeraj K Mishra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura M L Hawk
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea J Wisniewski
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
26
|
Yamasaki K, Tani O, Tateishi Y, Tanabe E, Namatame I, Niimi T, Furukawa K, Sakashita H. An NMR Biochemical Assay for Fragment-Based Drug Discovery: Evaluation of an Inhibitor Activity on Spermidine Synthase of Trypanosoma cruzi. J Med Chem 2016; 59:2261-6. [DOI: 10.1021/acs.jmedchem.5b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Osamu Tani
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Yukihiro Tateishi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Eiki Tanabe
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Ichiji Namatame
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Tatsuya Niimi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| |
Collapse
|
27
|
Lei H, Jones C, Zhu T, Patel K, Wolf NM, Fung LWM, Lee H, Johnson ME. Identification of B. anthracis N5-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening. Bioorg Med Chem 2016; 24:596-605. [DOI: 10.1016/j.bmc.2015.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
|
28
|
Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Anal Biochem 2015; 495:52-9. [PMID: 26686030 DOI: 10.1016/j.ab.2015.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.
Collapse
|
29
|
Bottegoni G, Veronesi M, Bisignano P, Kacker P, Favia AD, Cavalli A. Development and Application of a Virtual Screening Protocol for the Identification of Multitarget Fragments. ChemMedChem 2015; 11:1259-63. [PMID: 26663255 DOI: 10.1002/cmdc.201500521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/09/2022]
Abstract
In this study, we report on a virtual ligand screening protocol optimized to identify fragments endowed with activity at multiple targets. Thanks to this protocol, we were able to identify a fragment that displays activity in the low-micromolar range at both β-secretase 1 (BACE-1) and glycogen synthase kinase 3β (GSK-3β). These two structurally and physiologically unrelated enzymes likely contribute, through different pathways, to the onset of Alzheimer's disease (AD). Therefore, their simultaneous inhibition holds great potential in exerting a profound effect on AD. In perspective, the strategy outlined herein can be adapted to other target combinations.
Collapse
Affiliation(s)
- Giovanni Bottegoni
- CompuNet, Istituto Italiano di Tecnologia, 16163, Genova, Italy. .,BiKi Technologies srl, 16121, Genova, Italy.
| | - Marina Veronesi
- PharmaChemistry Facility, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Paola Bisignano
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Puneet Kacker
- Drug Repurposing Division, GVK Biosciences Pvt. Ltd., 500076, Hyderabad, India
| | - Angelo D Favia
- CompuNet, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, 16163, Genova, Italy.,FaBit, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
30
|
Keita M, Kaffy J, Troufflard C, Morvan E, Crousse B, Ongeri S. (19)F NMR monitoring of the eukaryotic 20S proteasome chymotrypsin-like activity: an investigative tool for studying allosteric regulation. Org Biomol Chem 2015; 12:4576-81. [PMID: 24867821 DOI: 10.1039/c4ob00962b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The proteasome displays three distinct proteolytic activities. Currently, proteasome inhibitors are evaluated using specific fluorescent substrates for each of the individual active sites. However, the photophysical properties of the commonly used fluorophores are similar and thus, the simultaneous monitoring of the three proteolytic activities is not possible. We have developed a bimodal fluorescent fluorinated substrate as a novel tool to study the chymotrypsin-like (ChT-L) proteolytic activity and its regulation by inhibitors and by substrates of trypsin-like (T-L) and caspase-like sites (PA). We demonstrate that this substrate is reliable to evaluate the ChT-L inhibitory activity of new molecules either by fluorescence or (19)F NMR spectroscopy. We have found that the ChT-L activity is dramatically reduced in the presence of T-L and PA substrates. This work provides a proof of concept that the fluorinated substrate enables investigation of the allosteric regulation of the ChT-L activity.
Collapse
Affiliation(s)
- M Keita
- Molécules Fluorées et Chimie Médicinale, BioCIS UMR-CNRS 8076, LabEx LERMIT, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| | | | | | | | | | | |
Collapse
|
31
|
Sharaf NG, Gronenborn AM. (19)F-modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions. Methods Enzymol 2015; 565:67-95. [PMID: 26577728 DOI: 10.1016/bs.mie.2015.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
(19)F solution NMR is a powerful and versatile tool to study protein structure and protein-ligand interactions due to the favorable NMR characteristics of the (19)F atom, its absence in naturally occurring biomolecules, and small size. Protocols to introduce (19)F atoms into both proteins and their ligands are readily available and offer the ability to conduct protein-observe (using (19)F-labeled proteins) or ligand-observe (using (19)F-containing ligands) NMR experiments. This chapter provides two protocols for the (19)F-labeling of proteins, using an Escherichia coli expression system: (i) amino acid type-specific incorporation of (19)F-modified amino acids and (ii) site-specific incorporation of (19)F-modified amino acids using recombinantly expressed orthogonal amber tRNA/tRNA synthetase pairs. In addition, we discuss several applications, involving (19)F-modified proteins and (19)F-containing ligands.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
32
|
19F nuclear magnetic resonance screening of glucokinase activators. Anal Biochem 2015; 477:62-8. [DOI: 10.1016/j.ab.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
|
33
|
Kim Y, Hilty C. Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands. Angew Chem Int Ed Engl 2015; 54:4941-4. [PMID: 25703090 PMCID: PMC4472436 DOI: 10.1002/anie.201411424] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/08/2022]
Abstract
Fluorine-19 NMR and hyperpolarization form a powerful combination for drug screening. Under a competitive equilibrium with a selected fluorinated reporter ligand, the dissociation constant (K(D)) of other ligands of interest is measurable using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment, without the need for a titration. This method is demonstrated by characterizing the binding of three ligands with different affinities for the serine protease trypsin. Monte Carlo simulations show that the highest accuracy is obtained when about one-half of the bound reporter ligand is displaced in the binding competition. Such conditions can be achieved over a wide range of affinities, allowing for rapid screening of non-fluorinated compounds when a single fluorinated ligand for the binding pocket of interest is known.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Chemistry Texas A&M University, College Station, TX 77843 (USA)
| | - Christian Hilty
- Department of Chemistry Texas A&M University, College Station, TX 77843 (USA)
| |
Collapse
|
34
|
Seitz JD, Vineberg JG, Wei L, Khan JF, Lichtenthal B, Lin CF, Ojima I. Design, Synthesis and Application of Fluorine-Labeled Taxoids as 19F NMR Probes for the Metabolic Stability Assessment of Tumor-Targeted Drug Delivery Systems. J Fluor Chem 2015; 171:148-161. [PMID: 25722499 DOI: 10.1016/j.jfluchem.2014.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel tumor-targeting drug conjugates, BLT-F2 (1) and BLT-S-F6 (2), bearing a fluorotaxoid as the warhead, a mechanism-based self-immolative disulfide linker, and biotin as the tumor-targeting module, were designed and synthesized as 19F NMR probes. Fluorine atoms and CF3 groups were strategically incorporated into the conjugates to investigate the mechanism of linker cleavage and factors that influence their plasma and metabolic stability by real-time monitoring with 19F NMR. Time-resolved 19F NMR study on probe 1 disclosed a stepwise mechanism for release of a fluorotaxoid, which might not have been detected by other analytical methods. Probe 2 was designed to bear two CF3 groups in the taxoid moiety as "3-FAB" reporters for enhanced sensitivity and a polyethylene glycol oligomer insert to improve solubility. The clean analysis of the linker stability and reactivity of drug conjugates in blood plasma or cell culture media by HPLC and 1H NMR is troublesome, due to the overlap of key signals/peaks with background arising from highly complex ingredients in biological systems. Accordingly, the use of 19F NMR would provide a practical solution to this problem. In fact, our "3-FAB" probe 2 was proven to be highly useful to investigate the stability and reactivity of the self-immolative disulfide linker system in human blood plasma by 19F NMR. It has also been revealed that the use of polysorbate 80 as excipient for the formulation of probe 2 dramatically increases the stability of the disulfide linker system. This finding further indicates that the tumor-targeting drug conjugates with polysorbate 80/EtOH/saline formulation for in vivo studies would have high stability in blood plasma, while the drug release in cancer cells proceeds smoothly.
Collapse
Affiliation(s)
- Joshua D Seitz
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Jacob G Vineberg
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Longfei Wei
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Jonathan F Khan
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Brendan Lichtenthal
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Chi-Feng Lin
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Iwao Ojima
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400 ; Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| |
Collapse
|
35
|
Kim Y, Hilty C. Affinitätsbestimmung durch kompetitive Bindung mit Fluor-19-hyperpolarisierten Liganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Abstract
Fragment-based drug design (FBDD) comprises both fragment-based screening (FBS) to find hits and elaboration of these hits to lead compounds. Typical fragment hits have lower molecular weight (<300-350 Da) and lower initial potency but higher ligand efficiency when compared to those from high-throughput screening. NMR spectroscopy has been widely used for FBDD since it identifies and localizes the binding site of weakly interacting hits on the target protein. Here we describe ligand-based NMR methods for hit identification from fragment libraries and for functional cross-validation of primary hits.
Collapse
|
37
|
Tressler C, Zondlo NJ. (2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline: two conformationally distinct proline amino acids for sensitive application in 19F NMR. J Org Chem 2014; 79:5880-6. [PMID: 24870929 PMCID: PMC4076032 DOI: 10.1021/jo5008674] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 01/19/2023]
Abstract
(2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline were synthesized (as Fmoc-, Boc-, and free amino acids) in 2-5 steps. The key step of each synthesis was a Mitsunobu reaction with perfluoro-tert-butanol, which incorporated a perfluoro-tert-butyl group, with nine chemically equivalent fluorines. Both amino acids were incorporated in model α-helical and polyproline helix peptides. Each amino acid exhibited distinct conformational preferences, with (2S,4R)-perfluoro-tert-butyl 4-hydroxyproline promoting polyproline helix. Peptides containing these amino acids were sensitively detected by (19)F NMR, suggesting their use in probes and medicinal chemistry.
Collapse
Affiliation(s)
- Caitlin
M. Tressler
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
38
|
Shea TA, Burburan PJ, Matubia VN, Ramcharan SS, Rosario I, Parkin DW, Stockman BJ. Identification of proton-pump inhibitor drugs that inhibit Trichomonas vaginalis uridine nucleoside ribohydrolase. Bioorg Med Chem Lett 2014; 24:1080-4. [DOI: 10.1016/j.bmcl.2014.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
|
39
|
Veronesi M, Romeo E, Lambruschini C, Piomelli D, Bandiera T, Scarpelli R, Garau G, Dalvit C. Fluorine NMR-Based Screening on Cell Membrane Extracts. ChemMedChem 2013; 9:286-9. [DOI: 10.1002/cmdc.201300438] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Indexed: 11/12/2022]
|
40
|
Lambruschini C, Veronesi M, Romeo E, Garau G, Bandiera T, Piomelli D, Scarpelli R, Dalvit C. Development of fragment-based n-FABS NMR screening applied to the membrane enzyme FAAH. Chembiochem 2013; 14:1611-9. [PMID: 23918626 DOI: 10.1002/cbic.201300347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 12/26/2022]
Abstract
Despite the recognized importance of membrane proteins as pharmaceutical targets, the reliable identification of fragment hits that are able to bind these proteins is still a major challenge. Among different ¹⁹F NMR spectroscopic methods, n-fluorine atoms for biochemical screening (n-FABS) is a highly sensitive technique that has been used efficiently for fragment screening, but its application for membrane enzymes has not been reported yet. Herein, we present the first successful application of n-FABS to the discovery of novel fragment hits, targeting the membrane-bound enzyme fatty acid amide hydrolase (FAAH), using a library of fluorinated fragments generated based on the different local environment of fluorine concept. The use of the recombinant fusion protein MBP-FAAH and the design of compound 11 as a suitable novel fluorinated substrate analogue allowed n-FABS screening to be efficiently performed using a very small amount of enzyme. Notably, we have identified 19 novel fragment hits that inhibit FAAH with a median effective concentration (IC₅₀) in the low mM-μM range. To the best of our knowledge, these results represent the first application of a ¹⁹F NMR fragment-based functional assay to a membrane protein.
Collapse
Affiliation(s)
- Chiara Lambruschini
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Barker J, Courtney S, Hesterkamp T, Ullmann D, Whittaker M. Fragment screening by biochemical assay. Expert Opin Drug Discov 2013; 1:225-36. [PMID: 23495844 DOI: 10.1517/17460441.1.3.225] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of high concentration biochemical assays to identify weak binding fragment molecules can be an effective method to identify novel starting points for medicinal chemistry programmes. The combination of a high-quality fragment library with sensitive biochemical screening methods is a viable alternative to the more commonly used fragment screening methods such as nuclear magnetic resonance screening or high-throughput X-ray crystallography. Notably, there are a number of literature reports where fragment molecules have been identified by a high concentration biochemical assay. The use of high concentration screening of fragments using a portfolio of single-molecule fluorescence correlation spectroscopy detection techniques to ensure the highest reproducibility and sensitivity have been demonstrated, as well as the use of and X-ray crystallography to determine the binding mode of active fragments.
Collapse
Affiliation(s)
- John Barker
- Evotec, 111 Milton Park, Abingdon, Oxon, OX14 4RZ, UK.
| | | | | | | | | |
Collapse
|
42
|
Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A Genetically Encoded19F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl 2013; 52:3958-62. [DOI: 10.1002/anie.201300463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/09/2022]
|
43
|
Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A Genetically Encoded19F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Chen H, Viel S, Ziarelli F, Peng L. 19F NMR: a valuable tool for studying biological events. Chem Soc Rev 2013; 42:7971-82. [DOI: 10.1039/c3cs60129c] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Tanoli SAK, Tanoli NU, Bondancia TM, Usmani S, Kerssebaum R, Ferreira AG, Fernandes JB, Ul-Haq Z. Crude to leads: a triple-pronged direct NMR approach in coordination with docking simulation. Analyst 2013; 138:5137-45. [DOI: 10.1039/c3an00728f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Bertolacci L, Romeo E, Veronesi M, Magotti P, Albani C, Dionisi M, Lambruschini C, Scarpelli R, Cavalli A, De Vivo M, Piomelli D, Garau G. A binding site for nonsteroidal anti-inflammatory drugs in fatty acid amide hydrolase. J Am Chem Soc 2012; 135:22-5. [PMID: 23240907 DOI: 10.1021/ja308733u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In addition to inhibiting the cyclooxygenase (COX)-mediated biosynthesis of prostanoids, various widely used nonsteroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamide-degrading membrane enzyme fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with site-directed mutagenesis, enzyme activity assays, and NMR analysis, has revealed the molecular details of this interaction, providing information that may guide the design of dual FAAH-COX inhibitors with superior analgesic efficacy.
Collapse
Affiliation(s)
- Laura Bertolacci
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shang Q, Xiang JF, Tang YL. Screening α-glucosidase inhibitors from mulberry extracts via DOSY and relaxation-edited NNR. Talanta 2012; 97:362-7. [DOI: 10.1016/j.talanta.2012.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/21/2012] [Indexed: 11/28/2022]
|
48
|
Abstract
Nuclear Magnetic Resonance (NMR) techniques are widely used in the drug discovery process. The primary feature exploited in these investigations is the large difference in mass between drugs and receptors (usually proteins) and the effect this has on the rotational or translational correlation times for drugs bound to their targets. Many NMR parameters, such as the diffusion coefficient, spin diffusion, nuclear Overhauser enhancement, and transverse and longitudinal relaxation times, are strong functions of either the overall tumbling or translation of molecules in solution. This has led to the development of a wide variety of NMR techniques applicable to the elucidation of protein and nucleic acid structure in solution, the screening of drug candidates for binding to a target of choice, and the study of the conformational changes which occur in a target upon drug binding. High-throughput screening by NMR methods has recently received a boost from the introduction of sophisticated computational techniques for reducing the time needed for the acquisition of the primary NMR data for multidimensional studies.
Collapse
Affiliation(s)
- Laurel O Sillerud
- Department of Biochemistry and Molecular Biology, UNM HDC, University of New Mexico, Albuquerque, NM, USA.
| | | |
Collapse
|
49
|
Woods JR, Mo H, Bieberich AA, Alavanja T, Colby DA. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments. MEDCHEMCOMM 2011. [PMID: 22029741 DOI: 10.1039/c2md20172k] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using (19)F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using (19)F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells.
Collapse
Affiliation(s)
- James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
50
|
Woods JR, Mo H, Bieberich AA, Alavanja T, Colby DA. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments. J Med Chem 2011; 54:7934-41. [PMID: 22029741 DOI: 10.1021/jm201114t] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using (19)F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using (19)F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells.
Collapse
Affiliation(s)
- James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|