1
|
Just D, Wasiak T, Dzienia A, Milowska KZ, Mielańczyk A, Janas D. Explicating conjugated polymer extraction used for the differentiation of single-walled carbon nanotubes. NANOSCALE HORIZONS 2024. [PMID: 39328171 DOI: 10.1039/d4nh00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are synthesized as mixtures of various SWCNT types, exhibiting drastically different properties, and thereby making the material of limited use. Fluorene-based polymers are successful agents for purifying such blends by means of conjugated polymer extraction (CPE), greatly increasing their application potential. However, a limited number of studies have devoted attention to understanding the effects of the polyfluorene backbone and side chain structure on the selectivity and separation efficiency of SWCNTs. Regarding the impact of the polymer backbone, it was noted that the ability to extract SWCNTs with conjugated polymers could be significantly enhanced by using fluorene-based copolymers that exhibit dramatically different interactions with SWCNTs depending on the types of monomers combined. However, the role of monomer side chains remains much less explored, and the knowledge generated so far is fragmentary. Herein, we present a new approach to tailor polymer selectivity by creating copolymers of polyfluorene bearing mixed-length alkyl chains. Their thorough and systematic analysis by experiments and modeling revealed considerable insight into the impact of the attached functional groups on the capacity of conjugated polymers for the purification of SWCNTs. Interestingly, the obtained results contradict the generally accepted conclusion that polyfluorene-based polymers and copolymers with longer chains always prefer SWCNTs of larger diameters. Besides that, we report that the capacity of such polymers for sorting SWCNTs may be substantially enhanced using specific low molecular weight compounds. The carried-out research provides considerable insight into the behavior of polymers and carbon-based materials at the nanoscale.
Collapse
Affiliation(s)
- Dominik Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Tomasz Wasiak
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Karolina Z Milowska
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Anna Mielańczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
2
|
Dolan M, Hughes LN, Tvrdy K. Hydrogel Composition Effects on Performance as Single-Walled Carbon Nanotube Purification Media. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15923-15936. [PMID: 39371221 PMCID: PMC11448389 DOI: 10.1021/acs.jpcc.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Hydrogel microsphere media allows for postsynthetic purification of single-walled carbon nanotubes (SWNTs), affording characterization and application of their unique (n,m) chirality-dependent properties. This work reports the characterization of five hydrogel resins, Sephacryl S-100, S-200, S-300, S-400, and S-500, and the implementation of each as a SWNT purification medium. The physiochemical properties of each resin were explored spectroscopically through elemental analyses and with both light and electron microscopy. Both surface porosity and hydrogel swelling ratio were found to increase as the concentration of component allyl dextran (aDEX) decreased, each with an increasing Sephacryl S-number. Conversely, invariant properties included a hydrogel microsphere size distribution and concentrations of components methylenebisacrylamide and ammonium persulfate. When employed within gel-based SWNT purification schemes in overloading conditions, Sephacryl formulations of larger S-number adsorbed fewer SWNTs, but the chirality dependence of SWNT adsorption and elution was approximately consistent across all resins. In underloading conditions, approximately one-third of introduced SWNTs passed through each resin unabsorbed, while the resins showed varying chirality-dependent adsorption efficiencies. These observations collectively identify aDEX-rich gel regions as being responsible for SWNT purification, along with a SWNT-exclusive parameter other than chirality (speculated as length) that convolutes the effectiveness of gel-based single-chirality purification.
Collapse
Affiliation(s)
- Marshal Dolan
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Laurique N Hughes
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kevin Tvrdy
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
3
|
Shapturenka P, Barnes BK, Mansfield E, Noor MM, Fagan JA. Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation. RSC Adv 2024; 14:25490-25506. [PMID: 39206342 PMCID: PMC11353058 DOI: 10.1039/d4ra01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy versus applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.
Collapse
Affiliation(s)
- Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Benjamin K Barnes
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology Boulder CO 80305 USA
| | - Matthew M Noor
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale IL 62901 USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| |
Collapse
|
4
|
Yu X, Adronov A. Conjugated Polymers with Self-Immolative Sidechain Linkers for Carbon Nanotube Dispersion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310257. [PMID: 38497846 DOI: 10.1002/smll.202310257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Single-walled carbon nanotubes (SWNTs) are promising materials for generating high-performance electronic devices. However, these applications are greatly restricted by their lack of purity and solubility. Commercially available SWNTs are a mixture of semi-conducting (sc-) and metallic (m-) SWNTs and are insoluble in common solvents. Conjugated polymers can selectively disperse either sc- or m-SWNTs and increase their solubility; however, the conductivity of conjugated polymer-wrapped SWNTs is largely affected by the polymer side chains. Here, a poly(fluorene-co-phenylene) polymer that contains a self-immolative linker as part of its sidechains is reported. The self-immolative linker is stabilized with a tert-butyldimethylsilyl ether group that, upon treatment with tetra-n-butylammonium fluoride (TBAF), undergoes a 1,6-elimination reaction to release the sidechain. Sonication of this polymer with SWNTs in tetrahydrofuran (THF) results in concentrated dispersions that are used to prepare polymer-SWNT thin films. Treatment with TBAF caused side-chain cleavage into carbon dioxide and the corresponding diol, which can be easily removed by washing with solvent. This process is characterized by a combination of absorption and Raman spectroscopy, as well as four-point probe measurements. The conductance of the SWNT thin films increased ≈60-fold upon simple TBAF treatment, opening new possibilities for producing high-conductivity SWNT materials for numerous applications.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
5
|
Wei X, Luo X, Li S, Zhou W, Xie S, Liu H. Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography. ACS NANO 2023; 17:8393-8402. [PMID: 37092905 DOI: 10.1021/acsnano.2c12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-purity enantiomer separation of chiral single-wall carbon nanotubes (SWCNTs) remains a challenge compared with electrical type and chirality separations due to the limited selectivities for both chirality and handedness, which is important for an exploration of their properties and practical applications. Here, we performed length fractionation for enantiomer-purified SWCNTs and found a phenomenon in which the enantioselectivities were higher for longer nanotubes than for shorter nanotubes due to length-dependent interactions with the gel medium, which provided an effective strategy of controlling nanotube length for high-purity enantiomer separation. Furthermore, we employed a gentler pulsed ultrasonication instead of traditional vigorous ultrasonication for preparation of a low-defect long SWCNT dispersion and achieved the enantiomer separation of single-chirality (6,5) SWCNTs with an ultrahigh enantiomeric purity of up to 98%, which was determined by using the linear relationship between the normalized circular dichroism intensity and the enantiomeric purity. Compared with all results reported previously, the present enantiomeric purity was significantly higher and reached the highest level reported to date. Due to the ultrahigh selectivity in both chirality and handedness, the two obtained enantiomers exhibited perfect symmetry in their circular dichroism spectra, which offers standardization for characterizations and evaluations of SWCNT enantiomers.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Xin Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Optoelectronic, Xiamen University of Technology, Xiamen, Fujian 361024, People's Republic of China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
6
|
Antonucci A, Reggente M, Roullier C, Gillen AJ, Schuergers N, Zubkovs V, Lambert BP, Mouhib M, Carata E, Dini L, Boghossian AA. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. NATURE NANOTECHNOLOGY 2022; 17:1111-1119. [PMID: 36097045 DOI: 10.1038/s41565-022-01198-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melania Reggente
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Roullier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Vitalijs Zubkovs
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Center for Electronics and Microtechnology (CSEM), Landquart, Switzerland
| | - Benjamin P Lambert
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mohammed Mouhib
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, CNR Nanotec, Lecce, Italy
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Rabbani MT, Schmidt CF, Ros A. Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. Anal Chem 2020; 92:8901-8908. [PMID: 32447955 DOI: 10.1021/acs.analchem.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) possess unique physical, optical, and electrical properties with great potential for future nanoscale device applications. Common synthesis procedures yield SWNTs with large length polydispersity and varying chirality. Electrical and optical applications of SWNTs often require specific lengths, but the preparation of SWNTs with the desired length is still challenging. Insulator-based dielectrophoresis (iDEP) integrated into a microfluidic device has the potential to separate SWNTs by length. Semiconducting SWNTs of varying length suspended with sodium deoxycholate (NaDOC) show unique dielectrophoretic properties at low frequencies (<1 kHz) that were exploited here using an iDEP-based microfluidic constriction sorter device for length-based sorting. Specific migration directions in the constriction sorter were induced for long SWNTs (≥1000 nm) with negative dielectrophoretic properties compared to short (≤300 nm) SWNTs with positive dielectrophoretic properties. We report continuous fractionation conditions for length-based iDEP migration of SWNTs, and we characterize the dynamics of migration of SWNTs in the microdevice using a finite element model. Based on the length and dielectrophoretic characteristics, sorting efficiencies for long and short SWNTs recovered from separate channels of the constriction sorter amounted to >90% and were in excellent agreement with a numerical model for the sorting process.
Collapse
Affiliation(s)
- Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.,Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany
| | - Christoph F Schmidt
- Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany.,Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Labunov VA, Tabulina LV, Komissarov IV, Rusal’skaya TG, Kashko IA, Shulitskii BG, Shaman YP, Kitsyuk EP, Sysa AV, Polokhin AA, Pavlov AA. Effect of Liquid-Phase Oxidative Treatments on the Purity, Hydrophilicity, and Structure of Single-Wall Carbon Nanotubes and on the Electrical Conductivity of Their Arrays. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220050080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Vittala SK, Han D. DNA-Guided Assemblies toward Nanoelectronic Applications. ACS APPLIED BIO MATERIALS 2020; 3:2702-2722. [PMID: 35025404 DOI: 10.1021/acsabm.9b01178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeepa Kulala Vittala
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Gillen AJ, Boghossian AA. Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes. Front Chem 2019; 7:612. [PMID: 31616652 PMCID: PMC6763700 DOI: 10.3389/fchem.2019.00612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Optical sensors based on single-walled carbon nanotubes (SWCNTs) demonstrate tradeoffs that limit their use in in vivo and in vitro environments. Sensor characteristics are primarily governed by the non-covalent wrapping used to suspend the hydrophobic SWCNTs in aqueous solutions, and we herein review the advantages and disadvantages of several of these different wrappings. Sensors based on surfactant wrappings can show enhanced quantum efficiency, high stability, scalability, and diminished selectivity. Conversely, sensors based on synthetic and bio-polymer wrappings tend to show lower quantum efficiency, stability, and scalability, while demonstrating improved selectivity. Major efforts have focused on optimizing sensors based on DNA wrappings, which have intermediate properties that can be improved through synthetic modifications. Although SWCNT sensors have, to date, been mainly engineered using empirical approaches, herein we highlight alternative techniques based on iterative screening that offer a more guided approach to tuning sensor properties. These more rational techniques can yield new combinations that incorporate the advantages of the diverse nanotube wrappings available to create high performance optical sensors.
Collapse
|
13
|
Qiu S, Wu K, Gao B, Li L, Jin H, Li Q. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800750. [PMID: 30062782 DOI: 10.1002/adma.201800750] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/14/2018] [Indexed: 06/08/2023]
Abstract
High-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) are of paramount significance for the construction of next-generation electronics. Until now, a number of elaborate sorting and purification techniques for s-SWCNTs have been developed, among which solution-based sorting methods show unique merits in the scale production, high purity, and large-area film formation. Here, the recent progress in the solution processing of s-SWCNTs and their application in electronic devices is systematically reviewed. First, the solution-based sorting and purification of s-SWCNTs are described, and particular attention is paid to the recent advance in the conjugated polymer-based sorting strategy. Subsequently, the solution-based deposition and morphology control of a s-SWCNT thin film on a surface are introduced, which focus on the strategies for network formation and alignment of SWCNTs. Then, the recent advances in electronic devices based on s-SWCNTs are reviewed with emphasis on nanoscale s-SWCNTs' high-performance integrated circuits and s-SWCNT-based thin-film transistors (TFT) array and circuits. Lastly, the existing challenges and development trends for the s-SWCNTs and electronic devices are briefly discussed. The aim is to provide some useful information and inspiration for the sorting and purification of s-SWCNTs, as well as the construction of electronic devices with s-SWCNTs.
Collapse
Affiliation(s)
- Song Qiu
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, P.R. China
| | - Kunjie Wu
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, P.R. China
| | - Bing Gao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Liqiang Li
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, P.R. China
| | - Hehua Jin
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, P.R. China
| | - Qingwen Li
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, P.R. China
| |
Collapse
|
14
|
Safaee MM, Gravely M, Rocchio C, Simmeth M, Roxbury D. DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2225-2233. [PMID: 30575397 DOI: 10.1021/acsami.8b16478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) functionalized with short single-stranded DNA have been extensively studied within the last decade for biomedical applications due to the high dispersion efficiency and intrinsic biocompatibility of DNA as well as the photostable and tunable fluorescence of SWCNTs. Characterization of their physical properties, particularly their length distribution, is of great importance regarding their application as a bioengineered research tool and clinical diagnostic agent. Conventionally, atomic force microscopy (AFM) has been used to quantify the length of DNA-SWCNTs by depositing the hybrids onto an electrostatically charged flat surface. Here, we demonstrate that hybrids of DNA-SWCNTs with different oligomeric DNA sequences ((GT)6 and (GT)30) differentially deposit on the AFM substrate, resulting in significant inaccuracies in the reported length distributions of the parent solutions. Using a solution-based surfactant exchange technique, we placed both samples into a common surfactant wrapping and found identical SWCNT length distributions upon surface deposition. Additionally, by spin-coating the surfactant-wrapped SWCNTs onto a substrate, thus mitigating effects of electrostatic interactions, we found length distributions that did not depend on DNA sequence but were significantly longer than electrostatic deposition methods, illuminating the inherent bias of the surface deposition method. Quantifying the coverage of DNA molecules on each SWCNT through both absorbance spectroscopy and direct observation, we found that the density of DNA per SWCNT was significantly higher in short (GT)6-SWCNTs (length < 100 nm) compared to long (GT)6-SWCNTs (length > 100 nm). In contrast, we found no dependence of the DNA density on SWCNT length in (GT)30-SWCNT hybrids. Thus, we attribute differences in the observed length distributions of DNA-SWCNTs to variations in electrostatic repulsion induced by sequence-dependent DNA density.
Collapse
Affiliation(s)
- Mohammad Moein Safaee
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Mitchell Gravely
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Caroline Rocchio
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Matthew Simmeth
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Daniel Roxbury
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| |
Collapse
|
15
|
Silver Nanowires from Sonication-Induced Scission. MICROMACHINES 2019; 10:mi10010029. [PMID: 30621161 PMCID: PMC6356813 DOI: 10.3390/mi10010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 11/17/2022]
Abstract
Silver nanowires (AgNWs) have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve size which strongly affects the optical and electrical properties of AgNWs. AgNWs of mean diameter 70 nm and mean length 12.5 μm were achieved by the polyol solvothermal method. Sonication-induced scission was used to obtain the small size AgNWs. The relationship between the size of AgNWs and the ultrasonic time, ultrasonic power, and concentration of AgNWs were studied. The results show that the length of AgNWs gradually reduces with the increase of the ultrasonic time and ultrasonic power, and with the decrease of concentration of AgNWs. Meanwhile, there is an existence of a limiting length below which fragmentation of AgNWs no longer occurs. Further, the mechanics of sonication-induced scission for the fragmentation of AgNWs was discussed.
Collapse
|
16
|
Manzetti S, Gabriel JCP. Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. INTERNATIONAL NANO LETTERS 2019. [DOI: 10.1007/s40089-018-0260-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Bati ASR, Yu L, Batmunkh M, Shapter JG. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. NANOSCALE 2018; 10:22087-22139. [PMID: 30475354 DOI: 10.1039/c8nr07379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding mechanical, chemical and optoelectronic properties, which makes them promising candidates for use in a wide range of applications. However, as-produced SWCNTs have a wide distribution of various chiral species with different properties (i.e. electronic structures). In order to take full advantage of SWCNT properties, highly purified and well-separated SWCNTs are of great importance. Recent advances have focused on developing new strategies to effectively separate nanotubes into single-chirality and/or semiconducting/metallic species and integrating them into different applications. This review highlights recent progress in this cutting-edge research area alongside the enormous development of their identification and structural characterization techniques. A comprehensive review of advances in both controlled synthesis and post-synthesis separation methods of SWCNTs are presented. The relationship between the unique structure of SWCNTs and their intrinsic properties is also discussed. Finally, important future directions for the development of sorting and purification protocols for SWCNTs are provided.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - LePing Yu
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhbayar Batmunkh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
18
|
Borzooeian Z, Taslim ME, Ghasemi O, Rezvani S, Borzooeian G, Nourbakhsh A. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. PLoS One 2018; 13:e0197972. [PMID: 29939999 PMCID: PMC6016930 DOI: 10.1371/journal.pone.0197972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/13/2018] [Indexed: 11/20/2022] Open
Abstract
Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.
Collapse
Affiliation(s)
- Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Mohammad E. Taslim
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Omid Ghasemi
- Merrimack Pharmaceuticals Inc, Cambridge, MA, United States of America
| | - Saina Rezvani
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Giti Borzooeian
- Department of Biology, Payamnoor, University of Esfahan, Esfahan, Iran
| | - Amirhasan Nourbakhsh
- Department of Electrical Engineering Computer Science, Massachusetts Institute of Technology, Boston, MA, United States of America
| |
Collapse
|
19
|
Rabbani M, Schmidt CF, Ros A. Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis. Anal Chem 2017; 89:13235-13244. [PMID: 29131586 PMCID: PMC5749884 DOI: 10.1021/acs.analchem.7b03105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs.
Collapse
Affiliation(s)
- Mohammad
Towshif Rabbani
- Third
Institute of Physics−Biophysics, Department of Physics, University of Göttingen, 37077 Göttingen, Germany
- School
of Molecular Sciences, Arizona State University, Tempe 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe 85287, United
States
| | - Christoph F. Schmidt
- Third
Institute of Physics−Biophysics, Department of Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe 85287, United
States
| |
Collapse
|
20
|
Jena PV, Galassi TV, Roxbury D, Heller DA. Progress Towards Applications of Carbon Nanotube Photoluminescence. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY : JSS 2017; 6:M3075-M3077. [PMID: 28845362 PMCID: PMC5568031 DOI: 10.1149/2.0121706jss] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the fifteen years following the discovery of single-walled carbon nanotube (SWCNT) photoluminescence, investigators have made significant progress in their understanding of the phenomenon and towards the development of applications. The intrinsic potential of semiconducting carbon nanotubes - a family of bright, photostable near infrared (NIR) fluorophores (900-2100 nm) with tunable properties, has motivated their use as optical probes and sensors. In this perspective, we highlight the advances made in the synthesis, processing, modification, separation, and metrology of carbon nanotubes in the context of applications of their photoluminescence.
Collapse
Affiliation(s)
- Prakrit V. Jena
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Thomas V. Galassi
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Weill Cornell Medical College, New York, NY 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Weill Cornell Medical College, New York, NY 10065, United States
| |
Collapse
|
21
|
Ji M, Daniels B, Shieh A, Modarelli DA, Parquette JR. Controlling the length of self-assembled nanotubes by sonication followed by polymer wrapping. Chem Commun (Camb) 2017; 53:12806-12809. [PMID: 29143056 DOI: 10.1039/c7cc07418b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we report that sonication, followed by polymer-wrapping, is an effective strategy to reduce the length of self-assembled nanotubes and suspend their propensity to self-heal into their elongated precursors.
Collapse
Affiliation(s)
- Mingyang Ji
- Department of Chemistry
- The Ohio State University
- Ohio 43210
- USA
| | - Brian Daniels
- Department of Chemistry
- The Ohio State University
- Ohio 43210
- USA
| | - Aileen Shieh
- Department of Chemistry
- The Ohio State University
- Ohio 43210
- USA
| | - David A. Modarelli
- Department of Chemistry and The Center for Laser and Optical Spectroscopy
- Knight Chemical Laboratory
- The University of Akron
- Akron
- USA
| | | |
Collapse
|
22
|
Tang MSY, Ng EP, Juan JC, Ooi CW, Ling TC, Woon KL, Show PL. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review. NANOTECHNOLOGY 2016; 27:332002. [PMID: 27396920 DOI: 10.1088/0957-4484/27/33/332002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
Collapse
Affiliation(s)
- Malcolm S Y Tang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. Low Dimensional Material Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
23
|
Hennrich F, Li W, Fischer R, Lebedkin S, Krupke R, Kappes MM. Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors. ACS NANO 2016; 10:1888-95. [PMID: 26792404 DOI: 10.1021/acsnano.5b05572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Samples of highly enriched semiconducting SWCNTs with average diameters of 1.35 nm have been prepared by combining PODOF polymer wrapping with size-exclusion chromatography. The purity of the material was determined to be >99.7% from the transfer characteristics of short-channel transistors comprising densely aligned sc-SWCNTs. The transistors have a hole mobility of up to 297 cm(2)V(-1) s(-1) and an On/Off ratio as high as 2 × 10(8).
Collapse
Affiliation(s)
- Frank Hennrich
- Institute of Nanotechnology, Karlsruhe Institute of Technology , D-76021 Karlsruhe, Germany
| | - Wenshan Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology , D-76021 Karlsruhe, Germany
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Regina Fischer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology , D-76128 Karlsruhe, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology , D-76021 Karlsruhe, Germany
| | - Ralph Krupke
- Institute of Nanotechnology, Karlsruhe Institute of Technology , D-76021 Karlsruhe, Germany
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology , D-76021 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology , D-76128 Karlsruhe, Germany
| |
Collapse
|
24
|
Tsutsumi Y, Fujigaya T, Nakashima N. Size reduction of 3D-polymer-coated single-walled carbon nanotubes by ultracentrifugation. NANOSCALE 2015; 7:19534-9. [PMID: 26538202 DOI: 10.1039/c5nr05066a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe a novel single-walled carbon nanotube (SWNT) cutting method without introducing any structural defects on the tubes; namely, the finding that simple ultracentrifugation at 600 000g for the SWNTs coated with a cross-linked polymer formed by poly(N-isopropylacrylamide) (PNIPAM) or the polyethylene glycol-carrying PNIPAM copolymer provides shortened (<200 nm) SWNTs, which was revealed by dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements. The Raman and absorption measurements of the obtained SWNTs indicated that the graphitic structure and optical properties, such as characteristic absorption and photoluminescence in the near-IR region of the SWNTs, were almost unchanged even after the cutting. The obtained shortened SWNTs were individually solubilized in water and buffer solution due to the remaining cross-linked polymer structures on the SWNTs. The present method is very simple (only ultracentrifugation) and the yield is very high, which are the advantages in the preparation of many shortened isolated SWNTs with specific properties and functions that are applicable in many fields including bioapplications in vivo, such as imaging, NIR-hyperthermic treatment, photodynamic therapy, etc.
Collapse
Affiliation(s)
- Yusuke Tsutsumi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka, Japan.
| | | | | |
Collapse
|
25
|
Komínková Z, Valeš V, Kalbáč M. Selective and Scalable Chemical Removal of Thin Single‐Walled Carbon Nanotubes from their Mixtures with Double‐Walled Carbon Nanotubes. Chemistry 2015; 21:16147-53. [DOI: 10.1002/chem.201501729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Zuzana Komínková
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic)
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17.listopadu 12, 77146 Olomouc (Czech Republic)
| | - Václav Valeš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic)
| | - Martin Kalbáč
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic)
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17.listopadu 12, 77146 Olomouc (Czech Republic)
| |
Collapse
|
26
|
|
27
|
Bhattacharyya T, Chatterjee A, Chatterjee B, Raja SO, Dasgupta AK. Real-time electro-diffusion method to discriminate carbon nanomaterials. Electrophoresis 2015; 36:3009-13. [PMID: 26395102 DOI: 10.1002/elps.201500325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 11/06/2022]
Abstract
We report both the experimental and theoretical insights of differential electro-diffusion behavior of carbon nanomaterials (e.g. single wall, multiwall carbon nanotubes, and graphene). We thus discriminate one from the other in a soft gel system. The differential mobility of such material depends on their intrinsic properties, both extend and rate of migration bearing the discriminatory signature. The mobility analysis is made by a real time monitoring of the respective bands.
Collapse
Affiliation(s)
- Tamoghna Bhattacharyya
- Department of Natural Science, Ulsan National Institute of Science and Technology, Ulju-gun, Ulsan, Republic of Korea
| | - Arumoy Chatterjee
- Department of Biochemistry and Centre of Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, West Bengal, India
| | - Budhaditya Chatterjee
- Department of Biochemistry and Centre of Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, West Bengal, India
| | - Sufi O Raja
- Department of Biochemistry and Centre of Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, West Bengal, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry and Centre of Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
28
|
Nogaj LJ, Smyder JA, Leach KE, Tu X, Zheng M, Krauss TD. Bright Fraction of Single-Walled Carbon Nanotubes through Correlated Fluorescence and Topography Measurements. J Phys Chem Lett 2015; 6:2816-2821. [PMID: 26266867 DOI: 10.1021/acs.jpclett.5b01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Correlated measurements of fluorescence and topography were performed for individual single-walled carbon nanotubes (SWNTs) on quartz using epifluorescence confocal microscopy and atomic force microscopy (AFM). Surprisingly, only ~11% of all SWNTs in DNA-wrapped samples were found to be highly emissive on quartz, suggesting that the ensemble fluorescence quantum yield is low because only a small population of SWNTs fluoresces strongly. Qualitatively similar conclusions were obtained from control studies using a sodium cholate surfactant system. To accommodate AFM measurements, excess surfactant was removed from the substrate. Though individual SWNTs on nonrinsed and rinsed surfaces displayed differences in fluorescence intensities and line widths, arising from the influence of the local environment on individual SWNT optical measurements, photoluminescence data from both samples displayed consistent trends.
Collapse
Affiliation(s)
| | | | | | - Xiaomin Tu
- §National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ming Zheng
- §National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
29
|
Zhao Q, Zhang J. Characterizing the chiral index of a single-walled carbon nanotube. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4586-4605. [PMID: 25330979 DOI: 10.1002/smll.201401567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/12/2014] [Indexed: 06/04/2023]
Abstract
The properties of single-walled carbon nanotubes (SWCNTs) mainly depend on their geometry. However, there are still formidable difficulties to determine the chirality of SWCNTs accurately. In this review, some efficient methods to characterize the chiral indices of SWCNTs are illuminated. These methods are divided into imaging techniques and spectroscopy techniques. With these methods, diameter, helix angle, and energy states can be measured. Generally speaking, imaging techniques have a higher accuracy and universality, but are time-consuming with regard to the sample preparation and characterization. The spectroscopy techniques are very simple and fast in operation, but these techniques can be applied only to the particular structure of the sample. Here, the principles and operations of each method are introduced, and a comprehensive understanding of each technique, including their advantages and disadvantages, is given. Advanced applications of some methods are also discussed. The aim of this review is to help readers to choose methods with the appropriate accuracy and time complexity and, furthermore, to put forward an idea to find new methods for chirality characterization.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural, Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | | |
Collapse
|
30
|
Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2014; 111:13948-53. [PMID: 25214538 DOI: 10.1073/pnas.1400821111] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950-1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.
Collapse
|
31
|
Kim MJ, Kang J, Park M. Chirality-controlled growth of single-walled carbon nanotubes via nanotube cloning. Macromol Res 2014. [DOI: 10.1007/s13233-014-2150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Rohringer P, Shi L, Liu X, Yanagi K, Pichler T. Purification, separation and extraction of inner tubes from double-walled carbon nanotubes by tailoring density gradient ultracentrifugation using optical probes. CARBON 2014; 74:282-290. [PMID: 25843961 PMCID: PMC4375560 DOI: 10.1016/j.carbon.2014.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/13/2014] [Indexed: 05/15/2023]
Abstract
We studied the effect of varying sonication and centrifugation parameters on double-walled carbon nanotubes (DWCNT) by measuring optical absorption and photoluminescence (PL) of the samples. We found that by using a low sonication intensity before applying density gradient ultracentrifugation (DGU), only inner tube species with a diameter [Formula: see text]0.8 nm can be identified in absorption measurements. This is in stark contrast to the result after sonicating at higher intensities, where also bigger inner tubes can be found. Furthermore, by comparing PL properties of samples centrifugated either with or without a gradient medium, we found that applying DGU greatly enhances the PL intensity, whereas centrifugation at even higher speeds but without a gradient medium results in lower intensities. This can be explained by extraction of inner tubes from their host outer tubes in a two-stage process: the different shearing forces from the sonication treatments result in some DWCNT to be opened, whereas others stay uncut. A subsequent application of DGU leads to the extraction of the inner tubes or not if the host nanotube stayed uncut or no gradient medium was used. This work shows a pathway to avoid this phenomenon to unravel the intrinsic PL from inner tubes of DWCNT.
Collapse
Affiliation(s)
- Philip Rohringer
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Wien, Austria
| | - Lei Shi
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Wien, Austria
| | - Xianjie Liu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58333 Linköping, Sweden
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachiouji, Tokyo 192-0397, Japan
| | - Thomas Pichler
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Wien, Austria
- Corresponding author: Fax: +43 14277 51404/51475.
| |
Collapse
|
33
|
Moore KE, Pfohl M, Hennrich F, Chakradhanula VSK, Kuebel C, Kappes MM, Shapter JG, Krupke R, Flavel BS. Separation of double-walled carbon nanotubes by size exclusion column chromatography. ACS NANO 2014; 8:6756-64. [PMID: 24896840 DOI: 10.1021/nn500756a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this report we demonstrate the separation of raw carbon nanotube material into fractions of double-walled (DWCNTs) and single-walled carbon nanotubes (SWCNTs). Our method utilizes size exclusion chromatography with Sephacryl gel S-200 and yielded two distinct fractions of single- and double-walled nanotubes with average diameters of 0.93 ± 0.03 and 1.64 ± 0.15 nm, respectively. The presented technique is easily scalable and offers an alternative to traditional density gradient ultracentrifugation methods. CNT fractions were characterized by atomic force microscopy and Raman and absorption spectroscopy as well as transmission electron microscopy.
Collapse
Affiliation(s)
- Katherine E Moore
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University , 5000, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Flavel BS, Moore KE, Pfohl M, Kappes MM, Hennrich F. Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS NANO 2014; 8:1817-26. [PMID: 24460395 DOI: 10.1021/nn4062116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A gel permeation chromatography system is used to separate aqueous sodium dodecyl sulfate suspensions of single-walled carbon nanotubes (SWCNTs). This automated procedure requires no precentrifugation, is scalable, and is found to yield monochiral SWCNT fractions of semiconducting SWCNTs with a purity of 61-95%. Unsorted and resulting monochiral fractions are characterized using optical absorption and photoluminescence spectroscopy.
Collapse
Affiliation(s)
- Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
36
|
Lau YTR, Yamaguchi M, Li X, Bando Y, Golberg D, Winnik FM. Length fractionation of boron nitride nanotubes using creamed oil-in-water emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1735-1740. [PMID: 24512303 DOI: 10.1021/la404961p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fractionation by length of multiwalled boron nitride nanotubes (BNNTs) was achieved by emulsification and creaming of an oil/water/surfactant mixture. The length separation is based on the fact that nanoparticle-coated oil droplets polydisperse in size move toward the upper surface or the bottom of an emulsified mixture depending on the density of the droplets, such that droplets of different sizes are located at different heights. By sampling heightwise an unstable hexane/water/Tween 20/BNNT (1-20 μm long) emulsion, we observed that the lengths of the BNNTs adsorbed on the droplets display a strong correlation with the droplets sizes, thus leading to selective separation of the BNNT lengths, as confirmed by dark-field optical imaging and dynamic light scattering. This method may potentially be extended to other high aspect ratio nanomaterials exhibiting emulsification properties similar to those of BNNTs.
Collapse
Affiliation(s)
- Yiu-Ting R Lau
- World Premier International (WPI) Research Center Initiative, International Center for Materials Nanoarchitectonics (MANA), and National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Park J, Deria P, Olivier JH, Therien MJ. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes. NANO LETTERS 2014; 14:504-511. [PMID: 24329134 DOI: 10.1021/nl403511s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We utilize individualized, length-sorted (6,5)-chirality enriched single-walled carbon nanotubes (SWNTs) having dimensions of 200 and 800 nm, femtosecond transient absorption spectroscopy, and variable excitation fluences that modulate the exciton density per nanotube unit length, to interrogate nanotube exciton/biexciton dynamics. For pump fluences below 30 μJ/cm(2), transient absorption (TA) spectra of (6,5) SWNTs reveal the instantaneous emergence of the exciton to biexciton transition (E11 → E11,BX) at 1100 nm; in contrast, under excitation fluences exceeding 100 μJ/cm(2), this TA signal manifests a rise time (τ rise ∼ 250 fs), indicating that E11 state repopulation is required to produce this signal. Femtosecond transient absorption spectroscopic data acquired over the 900-1400 nm spectral region of the near-infrared (NIR) region for (6,5) SWNTs, as a function of nanotube length and exciton density, reveal that over time delays that exceed 200 fs exciton-exciton interactions do not occur over spatial domains larger than 200 nm. Furthermore, the excitation fluence dependence of the E11 → E11,BX transient absorption signal demonstrates that relaxation of the E11 biexciton state (E11,BX) gives rise to a substantial E11 state population, as increasing delay times result in a concomitant increase of E11 → E11,BX transition oscillator strength. Numerical simulations based on a three-state model are consistent with a mechanism whereby biexcitons are generated at high excitation fluences via sequential SWNT ground- and E11-state excitation that occurs within the 980 nm excitation pulse duration. These studies that investigate fluence-dependent TA spectral evolution show that SWNT ground → E11 and E11 → E11,BX excitations are coresonant and provide evidence that E11,BX → E11 relaxation constitutes a significant decay channel for the SWNT biexciton state over delay times that exceed 200 fs, a finding that runs counter to assumptions made in previous analyses of SWNT biexciton dynamical data where exciton-exciton annihilation has been assumed to play a dominant role.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | |
Collapse
|
38
|
John R, Shinde DB, Liu L, Ding F, Xu Z, Vijayan C, Pillai VK, Pradeep T. Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging. ACS NANO 2014; 8:234-242. [PMID: 24308315 DOI: 10.1021/nn403289g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report an in situ Raman spectroscopic and microscopic investigation of the electrochemical unzipping of single-walled carbon nanotubes (SWNTs). Observations of the radial breathing modes (RBMs) using Raman spectral mapping reveal that metallic SWNTs are opened up rapidly followed by gradual unzipping of semiconducting SWNTs. Consideration of the resonant Raman scattering theory suggests that two metallic SWNTs with chiralities (10, 4) and (12, 0) get unzipped first at a lower electrode potential (0.36 V) followed by the gradual unzipping of another two metallic tubes, (9, 3) and (10, 1), at a relatively higher potential (1.16 V). The semiconducting SWNTs with chiralities (11, 7) and (12, 5), however, get open up gradually at ±1.66 V. A rapid decrease followed by a subsequent gradual decrease in the metallicity of the SWNT ensemble as revealed from a remarkable variation of the peak width of the G band complies well with the variations of RBM. Cyclic voltammetry also gives direct evidence for unzipping in terms of improved capacitance after oxidation followed by more important removal of oxygen functionalities during the reduction step, as reflected in subtle changes of the morphology confirming the formation of graphene nanoribbons. The density functional-based tight binding calculations show additional dependence of chirality and diameter of nanotubes on the epoxide binding energies, which is in agreement with the Raman spectroscopic results and suggests a possible mechanism of unzipping determined by combined effects of the structural characteristics of SWNTs and applied field.
Collapse
Affiliation(s)
- Robin John
- Department of Physics, Indian Institute of Technology Madras , Chennai 600 036, India
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Obitayo W, Luo S, Xiao Z, Liu T, Guan J. Gel electrophoresis and Raman mapping for determining the length distribution of SWCNTs. RSC Adv 2014. [DOI: 10.1039/c4ra05885b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple method (GEP-SRSPL) combines gel electrophoresis and simultaneous Raman scattering and photoluminescence spectroscopy for length distribution measurements of SWCNTs.
Collapse
Affiliation(s)
- Waris Obitayo
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Sida Luo
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Zhiwei Xiao
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Tao Liu
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering
- FAMU-FSU College of Engineering
- Florida State University
- Tallahassee, USA
| |
Collapse
|
40
|
Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors. ELECTRONICS 2013. [DOI: 10.3390/electronics2040332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Naumov AV, Tsyboulski DA, Bachilo SM, Weisman RB. Length-dependent optical properties of single-walled carbon nanotube samples. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Size-dependent biodistribution of carbon nanohorns in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:657-64. [DOI: 10.1016/j.nano.2012.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/08/2012] [Accepted: 11/30/2012] [Indexed: 02/03/2023]
|
43
|
Korani A, Salimi A. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode. Biosens Bioelectron 2013; 50:186-93. [PMID: 23850787 DOI: 10.1016/j.bios.2013.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
In this study, the preparation of an integrated modified electrode based on the covalent attachment of glucose dehydrogenase (GDH) enzyme and safranin O to amine-derivative multiwalled carbon nanotubes (MWCNTs-NH2) modified glassy carbon (GC) electrode using G2.5-carboxylated PAMAM dendrimer (Den) as linking agent is reported. The obtained results indicated that the proposed system has effective bioelectrocatalytic activity toward glucose oxidation at 100 mV with onset potential of -130 mV (vs. Ag/AgCl). The performance of the prepared hybrid system of GC/MWCNTs-NH2/Den/GDH/Safranin as anode in a membraneless enzyme-based glucose/O2 biofuel cell is further evaluated. The biocathode in this system was composed of bilirubin oxidase (BOX) enzyme immobilized onto a bilirubin modified carbon nanotube GC electrode. Immobilized BOX onto CNTs/bilirubin not only show direct electron transfer but also it has excellent electrocatalytic activity toward oxygen reduction at a positive potential of 610 mV. The open circuit voltage of the cell was 590 mV. The maximum current density was 0.5 mA cm(-2), while maximum power density of 108 μW cm(-2) was achieved at voltage of 330 mV. The immobilized enzymes in anode and cathode are very stable and output power of the BFC is approximately constant after 12 h continues operation.
Collapse
Affiliation(s)
- Aazam Korani
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | | |
Collapse
|
44
|
Zhao Y, Tang Y, Star A. Synthesis and functionalization of nitrogen-doped carbon nanotube cups with gold nanoparticles as cork stoppers. J Vis Exp 2013:e50383. [PMID: 23712285 DOI: 10.3791/50383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nitrogen-doped carbon nanotubes consist of many cup-shaped graphitic compartments termed as nitrogen-doped carbon nanotube cups (NCNCs). These as-synthesized graphitic nanocups from chemical vapor deposition (CVD) method were stacked in a head-to-tail fashion held only through noncovalent interactions. Individual NCNCs can be isolated out of their stacking structure through a series of chemical and physical separation processes. First, as-synthesized NCNCs were oxidized in a mixture of strong acids to introduce oxygen-containing defects on the graphitic walls. The oxidized NCNCs were then processed using high-intensity probe-tip sonication which effectively separated the stacked NCNCs into individual graphitic nanocups. Owing to their abundant oxygen and nitrogen surface functionalities, the resulted individual NCNCs are highly hydrophilic and can be effectively functionalized with gold nanoparticles (GNPs), which preferentially fit in the opening of the cups as cork stoppers. These graphitic nanocups corked with GNPs may find promising applications as nanoscale containers and drug carriers.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Chemistry, University of Pittsburgh, USA
| | | | | |
Collapse
|
45
|
Zhang D, Yang J, Li Y. Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1284-1304. [PMID: 23529997 DOI: 10.1002/smll.201202986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Indexed: 06/02/2023]
Abstract
The chiral structure of single-walled carbon nanotubes (SWNTs) and the edge structure of graphene nanoribbons (GNRs) play an important role in determining their electronic and phonon structures. Spectroscopic methods, which require simple sample preparation and cause minimal sample damage, are the most commonly utilized techniques for determining the structures of SWNTs and graphene. In this review the current status of various spectroscopic methods are presented in detail, including resonance Raman, photoluminescence (PL), and Rayleigh scattering spectroscopies, for determination of the chiral structure of individual SWNTs and the edge structure of isolated graphene, especially of graphene nanoribbons. The different photophysical processes involved in each spectroscopic method are reviewed to achieve a comprehensive understanding of the electronic and phonon properties of SWNTs and graphene. The advantages and limitations of each spectroscopic method as well as the challenges in this area are discussed.
Collapse
Affiliation(s)
- Daqi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | | | | |
Collapse
|
46
|
Khripin CY, Tu X, Heddleston JM, Silvera-Batista C, Hight Walker AR, Fagan J, Zheng M. High-Resolution Length Fractionation of Surfactant-Dispersed Carbon Nanotubes. Anal Chem 2013; 85:1382-8. [DOI: 10.1021/ac303349q] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Constantine Y. Khripin
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - Xiaomin Tu
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - John M. Heddleston
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - Carlos Silvera-Batista
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - Angela R. Hight Walker
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - Jeffrey Fagan
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - Ming Zheng
- National Institute of Standards and Technology, 100
Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| |
Collapse
|
47
|
Shi Y, Ren L, Li D, Gao H, Yang B. Optimization Conditions for Single-Walled Carbon Nanotubes Dispersion. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jsemat.2013.31002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Gavrel G, Jousselme B, Filoramo A, Campidelli S. Supramolecular Chemistry of Carbon Nanotubes. MAKING AND EXPLOITING FULLERENES, GRAPHENE, AND CARBON NANOTUBES 2013; 348:95-126. [DOI: 10.1007/128_2013_450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Zhao Z, Liu Y, Yan H. DNA origami templated self-assembly of discrete length single wall carbon nanotubes. Org Biomol Chem 2013. [DOI: 10.1039/c2ob26942b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zhang M, Zhou X, Iijima S, Yudasaka M. Small-sized carbon nanohorns enabling cellular uptake control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2524-2531. [PMID: 22674899 DOI: 10.1002/smll.201102595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/02/2012] [Indexed: 06/01/2023]
Abstract
Carbon nanotubes perform well in preclinical tests for drug delivery and diagnostic imaging, but controlling the size at less than 100 nm to avoid nonspecific uptake by reticuloendothelial systems while targeting delivery to cells of interest via receptor-mediated endocytosis is difficult, which currently limits their widespread use. Herein, 20-50-nm graphene tubules, small-sized single-walled carbon nanohorns (S-SWNHs), are obtained with a yield of 20% or higher by an oxidative exfoliation of 100 nm pristine SWNH aggregates. S-SWNHs are highly hydrophilic and remarkably resistant to cellular uptake by macrophages (RAW 264.7 cells), tumor cells (HeLa or KB), or normal cells (FHs 173We). The nonstimulatory property to cell membranes therefore makes cellular uptake control of S-SWNHs by functionalization easy. By attaching phospholipid polyethylene glycol, the cellular internalization of S-SWNHs is almost completely inhibited in RAW 264.7 macrophages. When functionalized with tumor-targeting folic acid (FA), FA-S-SWNHs are taken up by FA receptor-overexpressing KB cells but not by normal human embryonic cells (FHs 173We), which do not express the FA receptor. With a high rate of stealth and targeting in vitro, S-SWNHs are one of the most promising nanoparticles for medical use.
Collapse
Affiliation(s)
- Minfang Zhang
- Nanotube Research Center, National Institute of Advanced, Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | |
Collapse
|