1
|
Luo T, Xu TT, Guo YF, Dong H. SnCl 4 Promoted Efficient Cleavage of Acetal/Ketal Groups with the Assistance of Water in CH 2Cl 2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238258. [PMID: 36500346 PMCID: PMC9736348 DOI: 10.3390/molecules27238258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Acetalization and deacetalation are a pair of routine manipulations to protect and deprotect the 4- and 6-hydroxyl groups of glycosides in the synthesis of glycosyl building blocks. In this study, we found that treatment of SnCl4 with various carbohydrates containing acetal/ketal groups with the assistance of water in CH2Cl2 led to deacetalization/deketalization products in almost quantitative yields. In addition, for substrates containing both acetal/ketal and p-methoxylbenzyl groups, we also found that the p-methoxylbenzyl group was selectively cleaved by the use of a catalytic amount of SnCl4, while the acetal/ketal groups remained. Furthermore, based on this, 4,6-benzylidene glycosides can be conveniently converted to 4,6-OAc or 4-OH, 6-OAc glycosides.
Collapse
|
2
|
Feng Y, Yang J, Cai C, Sun T, Zhang Q, Chai Y. Catalytic and highly stereoselective β-mannopyranosylation using a 2,6-lactone-bridged mannopyranosyl ortho-hexynylbenzoate as donor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Wang P, Wang J, Yin W, Wang X, Song N, Ren S, Li M. Direct β-Mannosylation of Primary Alcohol Acceptors: Trisaccharide Iteration Assembly of β-1,6-Oligomannosides Corresponding to Kakelokelose. Org Lett 2022; 24:971-976. [PMID: 35045255 DOI: 10.1021/acs.orglett.1c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gold(I)-catalyzed stereoselective β-glycosylation of primary alcohols is achieved using the orthogonally protected mannosyl α-ortho-hexynylbenzoate (OABz) donors devoid of 4,6-O-tethering groups used in conventionally constructing β-mannosidic bonds. The potential of this methodology is showcased by the first assembly of β-1,6-tri/hexa-/nonamannosides and related sulfated congeners through a convergent strategy. The synthesis features the stereocontrolled β-glycosylation of α-trimannosyl OABz donors and the late-stage sulfonation. This work is expected to expedite the preparation of β-1,6-mannans and functionalized derivatives.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junlin Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Yin
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sumei Ren
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Zubir MZM, Maulida NF, Abe Y, Nakamura Y, Abdelrasoul M, Taniguchi T, Monde K. Deuterium labelling to extract local stereochemical information by VCD spectroscopy in the C-D stretching region: a case study of sugars. Org Biomol Chem 2022; 20:1067-1072. [PMID: 35019932 DOI: 10.1039/d1ob02317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereochemical elucidation of molecules with multiple chiral centers is difficult. Even with VCD spectroscopy, excluding all but one diastereomeric structural candidate is challenging because the stereochemical inversion of one chiral center among many centers does not always result in noticeable differences in their VCD spectra. This work demonstrates that the introduction of a suitable VCD chromophore with absorption in the 2300-1900 cm-1 region can be used for extracting local stereochemical information and for the stereochemical assignment of the C-1 position of various sugars as a case study. Through studies on a series of epimeric pairs of monosaccharides and their derivatives, we found that the introduction of one -OCD3 group to each C-1 position produced almost mirror-image VCD patterns in the 2300-1900 cm-1 region depending on the C-1 stereochemistry irrespective of the other molecular moieties. This work also shows that comparison of the observed VCD signals and the calculated ones enables the stereochemical assignment of a chiral center in the vicinity of the chromophore. This study provides a proof of concept that the use of a VCD chromophore in the 2300-1900 cm-1 region enables the analysis of selected stereochemistry of suitable molecular systems. Further studies on this concept should lead to the development of a method useful for the structural elucidation of other types of complex molecules.
Collapse
Affiliation(s)
| | - Nurul Fajry Maulida
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Yoshihiro Abe
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Yuta Nakamura
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Mariam Abdelrasoul
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.,Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| |
Collapse
|
5
|
Alex C, Demchenko AV. Recent Advances in Stereocontrolled Mannosylation: Focus on Glycans Comprising Acidic and/or Amino Sugars. CHEM REC 2021; 21:3278-3294. [PMID: 34661961 DOI: 10.1002/tcr.202100201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
The main focus of this review is to describe accomplishments made in the stereoselective synthesis of β-linked mannosides functionalized with carboxyls or amines/amides. These ManNAc, ManA and ManNAcA residues found in many glycoconjugates, bacterial polysaccharides, and alginates have consistently captured interest of the glycoscience community both due to synthetic challenge and therapeutic potential.
Collapse
Affiliation(s)
- Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA.,Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
6
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Abstract
l-Rhamnose forms the key components of important antigenic oligo- and polysaccharides of a variety of pathogens. Obtaining 1,2-cis stereoselectivity in the glycosylation of l-rhamnoside is quite challenging due to the unavailability of neighboring group participation and disfavoring of the anomeric effect and stereoelectronic effect of the substituents on the C-2 axial position. Nevertheless, various methodologies have been developed exploiting diverse pathways for obtaining β-stereoselectivity in the glycosylation of l-rhamnose. This review describes the recent advances in β-l-rhamnosylation and its applications in the total synthesis of β-l-rhamnose-containing biologically important oligosaccharides.
Collapse
Affiliation(s)
- Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
Synthesis of the pentasaccharide repeating unit of the O-antigenic polysaccharide of enteroaggregative Escherichia coli O44:H18 strain. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Alex C, Visansirikul S, Demchenko AV. A versatile approach to the synthesis of glycans containing mannuronic acid residues. Org Biomol Chem 2021; 19:2731-2743. [PMID: 33687051 DOI: 10.1039/d1ob00188d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Reported herein is a new method for a highly effective synthesis of β-glycosides from mannuronic acid donors equipped with the 3-O-picoloyl group. The stereocontrol of glycosylations was achieved by means of the H-bond-mediated aglycone delivery (HAD). The method was utilized for the synthesis of a tetrasaccharide linked viaβ-(1 → 3)-mannuronic linkages. We have also investigated 3,6-lactonized glycosyl donors that provided moderate to high β-manno stereoselectivity in glycosylations. A method to achieve complete α-manno stereoselectivity with mannuronic acid donors equipped with 3-O-benzoyl group is also reported.
Collapse
Affiliation(s)
- Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | | | | |
Collapse
|
10
|
Liu J, Yin X, Li Z, Wu X, Zheng Z, Fang J, Gu G, Wang PG, Liu X. Facile Enzymatic Synthesis of Diverse Naturally-Occurring β- d-Mannopyranosides Catalyzed by Glycoside Phosphorylases. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xuefei Yin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zitao Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaocong Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaoxuan Zheng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Peng G. Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xianwei Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
11
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Gucchait A, Shit P, Misra AK. Concise synthesis of a tetrasaccharide related to the repeating unit of the cell wall O-antigen of Salmonella enterica O60. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Li Q, Levi SM, Jacobsen EN. Highly Selective β-Mannosylations and β-Rhamnosylations Catalyzed by Bis-thiourea. J Am Chem Soc 2020; 142:11865-11872. [PMID: 32527078 DOI: 10.1021/jacs.0c04255] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report highly β-selective bis-thioureas-catalyzed 1,2-cis-O-pyranosylations employing easily accessible acetonide-protected donors. A wide variety of alcohol nucleophiles, including complex natural products, glycosides, and amino acids were β-mannosylated and β-rhamnosylated successfully using an operationally simple protocol under mild and neutral conditions. Less nucleophilic acceptors such as phenols were also glycosylated efficiently in excellent yields and with high β-selectivities.
Collapse
Affiliation(s)
- Qiuhan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Samuel M Levi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Pistorio SG, Geringer SA, Stine KJ, Demchenko AV. Manual and Automated Syntheses of the N-Linked Glycoprotein Core Glycans. J Org Chem 2019; 84:6576-6588. [PMID: 31066275 DOI: 10.1021/acs.joc.8b03056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein are two complementary approaches to the synthesis of the core N-glycan pentasaccharide. The first, a traditional manual approach in solution, makes use of the H-bond-mediated aglycone delivery method for the highly diastereoselective introduction of the β-mannosidic linkage at room temperature. The synthesis of the core pentasaccharide was also accomplished using an high-performance liquid chromatography-assisted automated approach. The overall assembly was swift (8 h) and efficient (31%).
Collapse
Affiliation(s)
- Salvatore G Pistorio
- Department of Chemistry and Biochemistry , University of Missouri-St. Louis One University Boulevard , St. Louis , Missouri 63121 , United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry , University of Missouri-St. Louis One University Boulevard , St. Louis , Missouri 63121 , United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry , University of Missouri-St. Louis One University Boulevard , St. Louis , Missouri 63121 , United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry , University of Missouri-St. Louis One University Boulevard , St. Louis , Missouri 63121 , United States
| |
Collapse
|
15
|
Van Huy L, Tanaka C, Imai T, Yamasaki S, Miyamoto T. Synthesis of 12- O-Mono- and Diglycosyl-oxystearates, a New Class of Agonists for the C-type Lectin Receptor Mincle. ACS Med Chem Lett 2019; 10:44-49. [PMID: 30655945 DOI: 10.1021/acsmedchemlett.8b00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022] Open
Abstract
Fifteen glycosyl-oxystearates were synthesized by Crich's 4,6-benzylidene and Köening-Knorr strategies. Assessment of structure-activity relationships using macrophage-inducible C-type lectin (Mincle) receptor cells expressing nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) revealed that four dimannopyranosyl-oxystearate analogues were Mincle agonists and that 12-O-(2-O-α-d-mannopyranosyl)-α-d-mannopyranosyl-oxystearate was as an activator of both mouse and human Mincle.
Collapse
Affiliation(s)
- Le Van Huy
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Imai
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Gucchait A, Misra AK. Influence of remote functional groups towards the formation of 1,2-cis glycosides: special emphasis on β-mannosylation. Org Biomol Chem 2019; 17:4605-4610. [DOI: 10.1039/c9ob00670b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of remote functional groups for the stereoselective formation of 1,2-cis glycosides and β-mannosides is reported.
Collapse
Affiliation(s)
- Arin Gucchait
- Bose Institute
- Division of Molecular Medicine
- Kolkata 700054
- India
| | | |
Collapse
|
17
|
Grimaud F, Pizzut-Serin S, Tarquis L, Ladevèze S, Morel S, Putaux JL, Potocki-Veronese G. In Vitro Synthesis and Crystallization of β-1,4-Mannan. Biomacromolecules 2018; 20:846-853. [DOI: 10.1021/acs.biomac.8b01457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florent Grimaud
- LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France
| | | | - Laurence Tarquis
- LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France
| | - Simon Ladevèze
- LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France
| | - Sandrine Morel
- LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France
| | - Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | | |
Collapse
|
18
|
Li W, Gao Y, Li Q, Li ZJ. Ionic-liquid supported rapid synthesis of an N-glycan core pentasaccharide on a 10 g scale. Org Biomol Chem 2018; 16:4720-4727. [DOI: 10.1039/c8ob01046c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A hetero-branched N-glycan core pentasaccharide was rapidly assembled on a new ionic liquid support on a 10 g scale.
Collapse
Affiliation(s)
- Wei Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yu Gao
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Qing Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Zhong-Jun Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
19
|
Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae. Chem Rev 2017; 117:11337-11405. [DOI: 10.1021/acs.chemrev.7b00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Kinnaert
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mathilde Daugaard
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Krylov VB, Paulovičová L, Paulovičová E, Tsvetkov YE, Nifantiev NE. Recent advances in the synthesis of fungal antigenic oligosaccharides. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe driving force for the constant improvement and development of new synthetic methodologies in carbohydrate chemistry is a growing demand for biologically important oligosaccharide ligands and neoglycoconjugates thereof for numerous biochemical investigations such as cell-to-pathogen interactions, immune response, cell adhesion, etc. Here we report our syntheses of the spacer-armed antigenic oligosaccharides related to three groups of the polysaccharides of the fungal cell-wall including α- and β-mannan, α- and β-glucan and galactomannan chains, which include new rationally designed synthetic blocks, efficient solutions for the stereoselective construction of glycoside bonds, and novel strategy for preparation of furanoside-containing oligosaccharides based on recently discovered pyranoside-into-furanoside (PIF) rearrangement.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia,
| |
Collapse
|
21
|
Mukherjee MM, Ghosh R. Synthetic Routes toward Acidic Pentasaccharide Related to the O-Antigen of E. coli 120 Using One-Pot Sequential Glycosylation Reactions. J Org Chem 2017; 82:5751-5760. [DOI: 10.1021/acs.joc.7b00561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
22
|
Blockwise synthesis of a pentasaccharide structurally related to the mannan fragment from the Candida albicans cell wall corresponding to the antigenic factor 6. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1251-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Tang SL, Pohl NLB. Automated fluorous-assisted solution-phase synthesis of β-1,2-, 1,3-, and 1,6-mannan oligomers. Carbohydr Res 2016; 430:8-15. [PMID: 27155895 PMCID: PMC4893899 DOI: 10.1016/j.carres.2016.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Abstract
Automated solution-phase syntheses of β-1,2-, 1,3-, and 1,6-mannan oligomers have been accomplished by applying a β-directing C-5 carboxylate strategy. Fluorous-tag-assisted purification after each reaction cycle allowed the synthesis of short β-mannan oligomers with limited loading of glycosyl donor-as low as 3.0 equivalents for each glycosylation cycle. This study showed the capability of the automated solution-phase synthesis protocol for synthesizing various challenging glycosides, including use of a C-5 ester as a protecting group that could be converted under reductive conditions to a hydroxymethyl group for chain extension.
Collapse
Affiliation(s)
- Shu-Lun Tang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Nicola L B Pohl
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
24
|
Karelin AA, Tsvetkov YE, Paulovičová E, Paulovičová L, Nifantiev NE. A Blockwise Approach to the Synthesis of (1→2)-Linked Oligosaccharides Corresponding to Fragments of the Acid-Stable β-Mannan from theCandida albicansCell Wall. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Abstract
![]()
The
first automated solution-phase synthesis of β-1,4-mannuronate
and β-1,4-mannan oligomers has been accomplished by using a
β-directing C-5 carboxylate strategy. By utilizing fluorous-tag
assisting purification after repeated reaction cycles, β-1,4-mannuronate
was synthesized up to a hexasaccharide with limited loading of a glycosyl
donor (up to 3.5 equiv) for each glycosylation cycle due to the homogeneous
solution-phase reaction condition. After a global reduction of the
uronates, the β-1,4-mannan hexasaccharide was obtained, thereby
demonstrating a new approach to β-mannan synthesis.
Collapse
Affiliation(s)
- Shu-Lun Tang
- †Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Nicola L B Pohl
- †Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
26
|
Nigudkar SS, Demchenko AV. Stereocontrolled 1,2- cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem Sci 2015; 6:2687-2704. [PMID: 26078847 PMCID: PMC4465199 DOI: 10.1039/c5sc00280j] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/05/2015] [Indexed: 01/21/2023] Open
Abstract
Recent developments in stereoselective 1,2-cis glycosylation that have emerged during the past decade are surveyed herein. Recent developments in stereoselective 1,2-cis glycosylation that have emerged during the past decade are surveyed herein. For detailed coverage of the previous achievements in the field the reader is referred to our earlier reviews: A. V. Demchenko, Curr. Org. Chem. , 2003, 7 , 35–79 and Synlett , 2003, 1225–1240.
Collapse
Affiliation(s)
- Swati S. Nigudkar
- Department of Chemistry and Biochemistry , University of Missouri – St. Louis , One University Blvd , St. Louis , MO 63121 , USA .
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry , University of Missouri – St. Louis , One University Blvd , St. Louis , MO 63121 , USA .
| |
Collapse
|
27
|
Bundle DR, Tam PH, Tran HA, Paszkiewicz E, Cartmell J, Sadowska JM, Sarkar S, Joe M, Kitov PI. Oligosaccharides and peptide displayed on an amphiphilic polymer enable solid phase assay of hapten specific antibodies. Bioconjug Chem 2014; 25:685-97. [PMID: 24601638 DOI: 10.1021/bc400486w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copovidone, a copolymer of vinyl acetate and N-vinyl-2-pyrrolidone, was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and after deacetylation the polymer was functionalized by introduction of amino, azide, and alkyne pendant groups to allow attachment of glycans and peptide. Candida albicans β-mannan trisaccharides 1 and 2 and M. tuberculosis arabinan hexasaccharide 3 with appropriate tethers were conjugated to the polymers by squarate or click chemistry. C. albicans T-cell peptide 4 bearing a C-terminal ε-azidolysine was also conjugated to copovidone by click chemistry. The resulting conjugates provide convenient non-protein-based antigens that are readily adsorbed on ELISA plates, and display excellent characteristics for assay of antibody binding to the haptenic group of interest. Copovidone and BSA glycoconjugates exhibited similar adsorption characteristics when used to coat ELISA plates, and both conjugates were optimal when used as coating solutions at low nanogram/mL concentrations. Provided that the copovidone conjugated glycan is stable to acid, assay plates can be easily processed for reuse at least three times without detectable variation or degradation in ELISA readout.
Collapse
Affiliation(s)
- David R Bundle
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pistorio SG, Yasomanee JP, Demchenko AV. Hydrogen-bond-mediated aglycone delivery: focus on β-mannosylation. Org Lett 2014; 16:716-9. [PMID: 24471826 DOI: 10.1021/ol403396j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
O-Picoloyl groups at remote positions can mediate the course of glycosylation reactions by providing high facial selectivity for the H-bond-mediated attack of the glycosyl acceptor. A new practical method for the stereoselective synthesis of β-mannosides at ambient temperature is presented.
Collapse
Affiliation(s)
- Salvatore G Pistorio
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , One University Boulevard, St. Louis, Missouri 63121, United States
| | | | | |
Collapse
|
29
|
Rahkila J, Ekholm FS, Panchadhayee R, Ardá A, Cañada FJ, Jiménez-Barbero J, Leino R. Synthesis and conformational analysis of phosphorylated β-(1→2) linked mannosides. Carbohydr Res 2014; 383:58-68. [DOI: 10.1016/j.carres.2013.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/28/2022]
|
30
|
Ohara K, Lin CC, Yang PJ, Hung WT, Yang WB, Cheng TJR, Fang JM, Wong CH. Synthesis and Bioactivity of β-(1→4)-Linked Oligomannoses and Partially Acetylated Derivatives. J Org Chem 2013; 78:6390-411. [DOI: 10.1021/jo4005266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiichiro Ohara
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Chien Lin
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Jung Yang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Ting Hung
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Bin Yang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Jim-Min Fang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Huey Wong
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
31
|
Yang L, Qin Q, Ye XS. Preactivation: An Alternative Strategy in Stereoselective Glycosylation and Oligosaccharide Synthesis. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201200136] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Ekholm FS, Ardá A, Eklund P, André S, Gabius HJ, Jiménez-Barbero J, Leino R. Studies related to Norway spruce galactoglucomannans: chemical synthesis, conformation analysis, NMR spectroscopic characterization, and molecular recognition of model compounds. Chemistry 2012; 18:14392-405. [PMID: 23008171 DOI: 10.1002/chem.201200510] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/16/2012] [Indexed: 12/20/2022]
Abstract
Galactoglucomannan (GGM) is a polysaccharide mainly consisting of mannose, glucose, and galactose. GGM is the most abundant hemicellulose in the Norway spruce (Picea abies), but is also found in the cell wall of flax seeds, tobacco plants, and kiwifruit. Although several applications for GGM polysaccharides have been developed in pulp and paper manufacturing and the food and medical industries, attempts to synthesize and study distinct fragments of this polysaccharide have not been reported previously. Herein, the synthesis of one of the core trisaccharide units of GGM together with a less-abundant tetrasaccharide fragment is described. In addition, detailed NMR spectroscopic characterization of the model compounds, comparison of the spectral data with natural GGM, investigation of the acetyl-group migration phenomena that takes place in the polysaccharide by using small model compounds, and a binding study between the tetrasaccharide model fragment and a galactose-binding protein (the toxin viscumin) are reported.
Collapse
Affiliation(s)
- Filip S Ekholm
- Laboratory of Organic Chemistry, Åbo Akademi University, Piispankatu 8, 20500 Åbo, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Evaluation of immunostimulatory activities of synthetic mannose-containing structures mimicking the β-(1->2)-linked cell wall mannans of Candida albicans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1889-93. [PMID: 22993407 DOI: 10.1128/cvi.00298-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunostimulatory properties of synthetic structures mimicking the β-(1→2)-linked mannans of Candida albicans were evaluated in vitro. Contrary to earlier observations, tumor necrosis factor (TNF) production was not detected after stimulation with mannotetraose in mouse macrophages. Divalent disaccharide 1,4-bis(α-D-mannopyranosyloxy)butane induced TNF and some molecules induced low levels of gamma interferon (IFN-γ) in human peripheral blood mononuclear cells (PBMC).
Collapse
|
34
|
Ajisaka K, Yagura M, Miyazaki T. A novel two-step synthesis of α-linked mannobioses based on an acid-assisted reverse hydrolysis reaction. Carbohydr Res 2012; 347:147-50. [DOI: 10.1016/j.carres.2011.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
35
|
Crich D, Rahaman MY. Synthesis and structural verification of the xylomannan antifreeze substance from the freeze-tolerant Alaskan beetle Upis ceramboides. J Org Chem 2011; 76:8611-20. [PMID: 21955117 DOI: 10.1021/jo201780e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetra-, hexa-, and octasaccharide subunits of the [→4)-β-D-Manp-(1→4)-β-D-Xylp-(1→](n) xylomannan motif proposed as the structure of a novel nonprotein, thermal hysteresis-producing antifreeze substance from the freeze-tolerant Alaskan beetle Upis ceramboides have been accessed by total chemical synthesis. Comparison of their NMR spectral data with data of the isolate lends strong support to the proposed structure. Synthetic tetrasaccharides representing various linkage isomers considered (α- rather than β-manno, and linkage through mannose O3 rather than O4) show more significant chemical shift differences with the isolate and are therefore excluded from further consideration.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.
| | | |
Collapse
|
36
|
Lichtenthaler FW. 2-Oxoglycosyl ("ulosyl") and 2-oximinoglycosyl bromides: versatile donors for the expedient assembly of oligosaccharides with β-D-mannose, β-L-rhamnose, N-acetyl-β-D-mannosamine, and N-acetyl-β-D-mannosaminuronic acid units. Chem Rev 2011; 111:5569-609. [PMID: 21751781 DOI: 10.1021/cr100444b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frieder W Lichtenthaler
- Clemens-Schöpf-Institut für Organische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany.
| |
Collapse
|
37
|
Ma Q, Sun S, Meng XB, Li Q, Li SC, Li ZJ. Assembly of Homolinear α(1→2)-Linked Nonamannoside on Ionic Liquid Support. J Org Chem 2011; 76:5652-60. [DOI: 10.1021/jo2006126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qing Ma
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Sheng Sun
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiang-Bao Meng
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Qing Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Shu-Chun Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhong-Jun Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
38
|
Mydock LK, Kamat MN, Demchenko AV. Direct synthesis of diastereomerically pure glycosyl sulfonium salts. Org Lett 2011; 13:2928-31. [PMID: 21563800 DOI: 10.1021/ol2009818] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is reported that stable glycosyl sulfonium salts can be generated via direct anomeric S-methylation of ethylthioglycosides. Mechanistically, this pathway represents the first step in the activation of thioglycosides for glycosidation; however, it can further allow for the synthesis and isolation of quasi-stable sulfonium ions, representing a new approach for studying these key intermediates.
Collapse
Affiliation(s)
- Laurel K Mydock
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | | | | |
Collapse
|
39
|
Rapid, simple, and efficient deprotection of benzyl/benzylidene protected carbohydrates by utilization of flow chemistry. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Liang H, MacKay M, Grindley TB, Robertson KN, Cameron TS. Configurations and conformations of glycosyl sulfoxides. CAN J CHEM 2010. [DOI: 10.1139/v10-091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-ray crystallographic studies of two axial glycosyl sulfoxides having RS configurations (derivatives of phenyl 2-azido-2-deoxy-1-thio-α-d-galactopyranoside S-oxide) show that they adopt anti conformations in the solid state, in contrast to previous observations and assumptions. Density functional theory (DFT) calculations at the B3lYP6–311G+(d,p)/6–31G(d) level confirm that anti conformations of both phenyl and methyl RS glycosyl sulfoxides of 2-azido-2-deoxy-α-d-pyranosides are more stable than exo-anomeric conformations in the gas phase. 1D NOE measurements indicate that the more polar exo-anomeric conformers are only populated to a slight extent in solution. The anti conformations are distorted so that the glycosyl substituents are closer to being eclipsed with H1. This distortion allows S n → σ* overlap if the sulfur lone pair is a p-type lone pair. Evidence for this overlap comes from short C1–S bond distances, as short as the comparable bond distances in the X-ray crystal structure and in the results from DFT calculations for the SS glycoside, which does adopt the expected exo-anomeric conformation, both in the solid state and in solution, and has normal n → σ* overlap. For 2-deoxy derivatives not bearing a 2-azido group, gas-phase DFT calculations at the same level indicate that the anti- and exo-anomeric conformers have comparable stabilities. Comparison of the results of the two series shows that electronegative substituents in equatorial orientations at C2 destabilize conformations with parallel S–O arrangements, the conformation favored by having an endocyclic C–O dipole antiparallel to the S–O dipole, by about 2.5 kcal mol–1 (1 cal = 4.184 J). An equatorial glycosyl sulfoxide, (SS) phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside S-oxide, also adopts an anti conformation in the solid state as shown by X-ray diffraction. It also adopts this conformation in solution, in contrast to studies of other equatorial glycosyl sulfoxides.
Collapse
Affiliation(s)
- Hong Liang
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4J3, Canada
| | - Micheline MacKay
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4J3, Canada
| | - T. Bruce Grindley
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4J3, Canada
| | | | - T. Stanley Cameron
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4J3, Canada
| |
Collapse
|
41
|
Maity SK, Patra A, Ghosh R. Convergent synthesis of the tetrasaccharide repeating unit related to the O-antigenic polysaccharide of Escherichia coli 78. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Ekholm FS, Sinkkonen J, Leino R. Fully deprotected β-(1→2)-mannotetraose forms a contorted α-helix in solution: convergent synthesis and conformational characterization by NMR and DFT. NEW J CHEM 2010. [DOI: 10.1039/b9nj00702d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Karelin AA, Tsvetkov YE, Paulovicová L, Bystrický S, Paulovicová E, Nifantiev NE. Synthesis of 3,6-branched oligomannoside fragments of the mannan from Candida albicans cell wall corresponding to the antigenic factor 4. Carbohydr Res 2009; 345:1283-90. [PMID: 20096401 DOI: 10.1016/j.carres.2009.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/25/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
3-Aminopropyl glycosides of 3,6-branched penta- and hexamannoside fragments of the cell wall mannan from Candida albicans, corresponding to the antigenic factor 4, have been synthesized. Subsequent coupling of both oligosaccharides with BSA using the squarate procedure provided corresponding neoglycoconjugates.
Collapse
Affiliation(s)
- Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
44
|
Yerneni CK, Pathak V, Pathak AK. Imidazolium cation supported solution-phase assembly of homolinear alpha(1-->6)-linked octamannoside: an efficient alternate approach for oligosaccharide synthesis. J Org Chem 2009; 74:6307-10. [PMID: 19624152 PMCID: PMC2888776 DOI: 10.1021/jo901169u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient, simple convergent assembly of a homolinear alpha(1-->6)-linked octamannosyl thioglycoside was obtained starting from imidazolium cation-tagged mannosyl fluoride and thiomannoside using block couplings. During chain elongation glycosylation reactions no column chromatographic purifications were used.
Collapse
Affiliation(s)
- Charu K. Yerneni
- Department of Chemistry; Western Illinois University, 1 University Circle, Macomb, IL 61455, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Feng Cai
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
46
|
Crich D, Li L, Shirai M. The 4-(tert-butyldiphenylsiloxy)-3-fluorobenzyl group: a new alcohol protecting group, fully orthogonal with the p-methoxybenzyl group and removable under desilylation conditions. J Org Chem 2009; 74:2486-93. [PMID: 19243158 PMCID: PMC3102264 DOI: 10.1021/jo900026e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new benzyl ether-type protecting group for alcohols, the 4-(tert-butyldiphenylsiloxy)-3-fluorobenzyl group, is introduced. The protecting group is introduced by means of the readily prepared benzyl bromide and is cleaved with tetrabutylammonium fluoride in dimethylformamide under microwave irradiation. The fluoride substituent provides stability to oxidizing conditions, such that the new protecting group is fully compatible with the removal of p-methoxybenzyl ethers with DDQ. Applications of the new protecting group in the direct stereocontrolled synthesis of beta-mannopyranosides are presented.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
47
|
Pornsuriyasak P, Ranade SC, Li A, Parlato MC, Sims CR, Shulga OV, Stine KJ, Demchenko AV. STICS: surface-tethered iterative carbohydrate synthesis. Chem Commun (Camb) 2009:1834-6. [PMID: 19319417 DOI: 10.1039/b817684a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new surface-tethered iterative carbohydrate synthesis (STICS) technology is presented in which a surface functionalized 'stick' made of chemically stable high surface area porous gold allows one to perform cost efficient and simple synthesis of oligosaccharide chains; at the end of the synthesis, the oligosaccharide can be cleaved off and the stick reused for subsequent syntheses.
Collapse
Affiliation(s)
- Papapida Pornsuriyasak
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Poláková M, Roslund MU, Ekholm FS, Saloranta T, Leino R. Synthesis of β-(1→2)-Linked Oligomannosides. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Tanaka K, Mori Y, Fukase K. Practical Synthesis of a Manβ(1-4)GlcNTroc Fragment via Microfluidic β-Mannosylation. J Carbohydr Chem 2009. [DOI: 10.1080/07328300802571129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Aqueel MS, Pathak V, Pathak AK. Concise assembly of linear alpha(1-->6)-linked octamannan fluorescent probe. Tetrahedron Lett 2008; 49:7157-7160. [PMID: 20011026 PMCID: PMC2598757 DOI: 10.1016/j.tetlet.2008.09.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthesis of a fluorescently labelled (dansylated) linear alpha(1-->6)-linked octamannan, using glycosyl fluoride donors and thioglycosyl acceptors is described. A selective and convergent two-stage activation progression was executed to construct di-, tetra and octa-mannosyl thioglycosides in three glycosylation steps with excellent yield. Further a 5-N,N-Dimethylaminonaphthalene-1-sulfonamidoethyl (dansyl) group was coupled to 1-azidoethyl octamannosyl thioglycoside. Global deprotection of the coupled product afforded the desired dansylated homo-linear alpha(1-->6)-linked octamannan.
Collapse
Affiliation(s)
- Mohammad S. Aqueel
- Department of Chemistry, Western IllinoisUniversity, Macomb, IL 61455, USA
| | - Vibha Pathak
- Department of Chemistry, Western IllinoisUniversity, Macomb, IL 61455, USA
| | - Ashish K. Pathak
- Department of Chemistry, Western IllinoisUniversity, Macomb, IL 61455, USA
| |
Collapse
|