1
|
Platzek A, Juber S, Yurtseven C, Hasegawa S, Schneider L, Drechsler C, Ebbert KE, Rudolf R, Yan Q, Holstein JJ, Schäfer LV, Clever GH. Endohedrally Functionalized Heteroleptic Coordination Cages for Phosphate Ester Binding. Angew Chem Int Ed Engl 2022; 61:e202209305. [PMID: 36074340 PMCID: PMC9828229 DOI: 10.1002/anie.202209305] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 01/12/2023]
Abstract
Metallosupramolecular hosts of nanoscopic dimensions, which are able to serve as selective receptors and catalysts, are usually composed of only one type of organic ligand, restricting diversity in terms of cavity shape and functional group decoration. We report a series of heteroleptic [Pd2 A2 B2 ] coordination cages that self-assemble from a library of shape complementary bis-monodentate ligands in a non-statistical fashion. Ligands A feature an inward pointing NH function, able to engage in hydrogen bonding and amenable to being functionalized with amide and alkyl substituents. Ligands B comprise tricyclic aromatic backbones of different shape and electronic situation. The obtained heteroleptic coordination cages were investigated for their ability to bind phosphate diesters as guests. All-atom molecular dynamics (MD) simulations in explicit solvent were conducted to understand the mechanistic relationships behind the experimentally determined guest affinities.
Collapse
Affiliation(s)
- André Platzek
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Selina Juber
- Theoretical ChemistryRuhr University Bochum44780BochumGermany
| | - Cem Yurtseven
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Shota Hasegawa
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Laura Schneider
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Christoph Drechsler
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Kristina E. Ebbert
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Robin Rudolf
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Qian‐Qian Yan
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Julian J. Holstein
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Lars V. Schäfer
- Theoretical ChemistryRuhr University Bochum44780BochumGermany
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
2
|
Rim Lee Y, Kwon N, Swamy KMK, Kim G, Yoon J. Rhodamine-thiourea Linked Naphthalimide Derivative to Image ATP in Mitochondria using Two Channels. Chem Asian J 2022; 17:e202200413. [PMID: 35671139 DOI: 10.1002/asia.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Adenosine 5'-triphosphate (ATP), synthesized in mitochondria, is an energy molecule in all living things. ATP not only serves as an energy source for protein synthesis and muscle contraction, but also as an important indicator for various diseases, such as Parkinson's disease, cardiovascular disease, and others. Accordingly, detection and sensing of ATP, especially in mitochondria, are important. In this study, a unique ring-opening process of rhodamine was coupled to recognition of ATP via introduction of a thiourea moiety, which was further linked to a naphthalimide group. A strong fluorescent emission at ∼580 nm was accompanied by a color change from colorless to pink upon addition of ATP at pH 7.4. Fluorescent probe 1 successfully imaged mitochondrial ATP with a Pearson's coefficient of 0.8. In addition, green emission from the naphthalimide moiety at ∼530 nm was observed without any change upon addition of ATP. This emission can be considered equivalent to an internal standard to utilize probe 1 as a dual-channel probe for ATP. Furthermore, probe 1 showed negligible cytotoxicity based on MTT assays.
Collapse
Affiliation(s)
- You Rim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| |
Collapse
|
3
|
Wang Z, Zhou X, Han J, Xie G, Liu J. DNA coated CoZn-ZIF metal-organic frameworks for fluorescent sensing guanosine triphosphate and discrimination of nucleoside triphosphates. Anal Chim Acta 2022; 1207:339806. [DOI: 10.1016/j.aca.2022.339806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
4
|
On-off-on fluorescence detection for biomolecules by a fluorescent cage through host-guest complexation in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Mirzaei S, Espinoza Castro VM, Hernández Sánchez R. Nonspherical anion sequestration by C-H hydrogen bonding. Chem Sci 2022; 13:2026-2032. [PMID: 35308854 PMCID: PMC8849022 DOI: 10.1039/d1sc07041j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 12/05/2022] Open
Abstract
Macrocyclic arenes laid the foundations of supramolecular chemistry and their study established the fundamentals of noncovalent interactions. Advancing their frontier, here we designed rigidified resorcin[4]arenes that serve as hosts for large nonspherical anions. In one synthetic step, we vary the host's anion affinity properties by more than seven orders of magnitude. This is possible by engineering electropositive aromatic C–H bond donors in an idealized square planar geometry embedded within the host's inner cavity. The hydrogen atom's electropositivity is tuned by introducing fluorine atoms as electron withdrawing groups. These novel macrocycles, termed fluorocages, are engineered to sequester large anions. Indeed, experimental data shows an increase in the anion association constant (Ka) as the number of F atoms increase. The observed trend is rationalized by DFT calculations of Hirshfeld Charges (HCs). Most importantly, fluorocages in solution showed weak-to-medium binding affinity for large anions like [PF6]− (102< Ka <104 M−1), and high affinity for [MeSO3]− (Ka >106). Fluorocages: new class of rigidified host utilizing nontraditional C–H hydrogen bonds to capture the nonspherical anions.![]()
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave. Pittsburgh Pennsylvania 15260 USA
| | - Victor M Espinoza Castro
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave. Pittsburgh Pennsylvania 15260 USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave. Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
6
|
Aggregation-induced emission and self-assembly of functional tetraphenylethene-based tetracationic dicyclophanes for selective detection of ATP in water. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Berthiot R, Giudice N, Douce L. Luminescent Imidazolium Salts as Bright Multi‐Faceted Tools for Biology. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Romain Berthiot
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| | - Nicolas Giudice
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| | - Laurent Douce
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| |
Collapse
|
8
|
Ferguson Johns HP, Harrison EE, Stingley KJ, Waters ML. Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water. Chemistry 2021; 27:6620-6644. [PMID: 33048395 DOI: 10.1002/chem.202003759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 01/25/2023]
Abstract
Selective molecular recognition of hydrophilic guests in water plays a fundamental role in a vast number of biological processes, but synthetic mimicry of biomolecular recognition in water still proves challenging both in terms of achieving comparable affinities and selectivities. This Review highlights strategies that have been developed in the field of supramolecular chemistry to selectively and non-covalently bind three classes of biologically relevant molecules: nucleotides, carbohydrates, and amino acids. As several groups have systematically modified receptors for a specific guest, an evolutionary perspective is also provided in some cases. Trends in the most effective binding forces for each class are described, providing insight into selectivity and potential directions for future work.
Collapse
Affiliation(s)
- Hannah P Ferguson Johns
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Harrison
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyla J Stingley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marcey L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Bartoli F, Conti L, Romano GM, Massai L, Paoli P, Rossi P, Pietraperzia G, Gellini C, Bencini A. Protonation of cyclen-based chelating agents containing fluorescent moieties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03539h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fluorescence emission properties of 1,4,7,10-tetraazacyclododecane-based receptors with appended heteroaromatic fluorophores are tuned by photoinduced electron and proton transfer processes.
Collapse
Affiliation(s)
- Francesco Bartoli
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Conti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giammarco Maria Romano
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Florence, I-50139, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Florence, I-50139, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Cristina Gellini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Andrea Bencini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Affiliation(s)
- Arundhati Nag
- Carlson School of Chemistry and Biochemistry Clark University Worcester MA 01610 Phone: 15084213897 Fax: 15087937117
| | - Samir Das
- Carlson School of Chemistry and Biochemistry Clark University Worcester MA 01610
| |
Collapse
|
11
|
Chung J, Swamy KMK, Kim JA, Kim Y, Kim S, Yoon J. Fluorescent Chemosensors for Zn
2+
and Pyrophosphate. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jeewon Chung
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 120‐750 Republic of Korea
| | - Kunemadihalli Mathada Kotraiah Swamy
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 120‐750 Republic of Korea
- Department of Pharmaceutical Chemistry V. L. College of Pharmacy Raichur 584 103 India
| | - Jin A Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 120‐750 Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 120‐750 Republic of Korea
| | - Sung‐Jin Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 120‐750 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 120‐750 Republic of Korea
| |
Collapse
|
12
|
Biswas R, Ghosh S, Bhaumik SK, Banerjee S. Selective recognition of ATP by multivalent nano-assemblies of bisimidazolium amphiphiles through "turn-on" fluorescence response. Beilstein J Org Chem 2020; 16:2728-2738. [PMID: 33224299 PMCID: PMC7670119 DOI: 10.3762/bjoc.16.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Bisimidazolium receptors, tagged with chromophoric pyrene at one end and linked to an n-alkyl chain at the other, underwent self-assembly in aqueous media depending on the length of the alkyl segment. The amphiphilic derivatives having n-decyl or longer chains, formed nano-assemblies with cyanic-green emission resulting from the stacked pyrene chromophores in the aggregates. The presence of positive surface charges on the multivalent aggregates led to ATP binding which was accompanied by a significant increase in the excimeric emission intensity. This provided a convenient way of monitoring ATP binding in a "turn-on" mode and an efficient detection of ATP was achieved in aqueous buffer and also in buffer containing 150 mM NaCl at physiological pH value. Furthermore, the multivalent aggregates demonstrated a significant selectivity in ATP detection over ADP, AMP and pyrophosphate.
Collapse
Affiliation(s)
- Rakesh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Surya Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Shubhra Kanti Bhaumik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| |
Collapse
|
13
|
Biswas R, Naskar S, Ghosh S, Das M, Banerjee S. A Remarkable Fluorescence Quenching Based Amplification in ATP Detection through Signal Transduction in Self-Assembled Multivalent Aggregates. Chemistry 2020; 26:13595-13600. [PMID: 32776606 DOI: 10.1002/chem.202002648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Indexed: 01/20/2023]
Abstract
Signal transduction is essential for the survival of living organisms, because it allows them to respond to the changes in external environments. In artificial systems, signal transduction has been exploited for the highly sensitive detection of analytes. Herein, a remarkable signal transduction, upon ATP binding, in the multivalent fibrillar nanoaggregates of anthracene conjugated imidazolium receptors is reported. The aggregates of one particular amphiphilic receptor sensed ATP in high pm concentrations with one ATP molecule essentially quenching the emission of thousands of receptors. A cooperative merging of the multivalent binding and signal transduction led to this superquenching and translated to an outstanding enhancement of more than a millionfold in the sensitivity of ATP detection by the nanoaggregates; in comparison to the "molecular" imidazolium receptors. Furthermore, an exceptional selectivity to ATP over other nucleotides was demonstrated.
Collapse
Affiliation(s)
- Rakesh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sumit Naskar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Surya Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Mousumi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
14
|
Bazany-Rodríguez IJ, Salomón-Flores MK, Bautista-Renedo JM, González-Rivas N, Dorazco-González A. Chemosensing of Guanosine Triphosphate Based on a Fluorescent Dinuclear Zn(II)-Dipicolylamine Complex in Water. Inorg Chem 2020; 59:7739-7751. [PMID: 32391691 DOI: 10.1021/acs.inorgchem.0c00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guanosine triphosphate (GTP) is a key biomarker of multiple cellular processes and human diseases. The new fluorescent dinuclear complex [Zn2(L)(S)][OTf]4, 1 (asymmetric ligand, L = 5,8-Bis{[bis(2-pyridylmethyl)amino] methyl}quinoline, S = solvent, and OTf = triflate anion) was synthesized and studied in-depth as a chemosensor for nucleoside polyphosphates and inorganic anions in pure water. Additions at neutral pH of nucleoside triphosphates, guanosine diphosphate, guanosine monophosphate, and pyrophosphate (PPi) to 1 quench its blue emission (λem = 410 nm) with a pronounced selectivity toward GTP over other anions, including adenosine triphosphate (ATP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). The efficient quenching response by the addition of GTP was observed in the presence of coexisting species in blood plasma and urine with a detection limit of 9.2 μmol L-1. GTP also shows much tighter binding to the receptor 1 on a submicromolar level. On the basis of multiple spectroscopic tools (1H, 31P NMR, UV-vis, and fluorescence) and DFT calculations, the binding mode is proposed through three-point recognition involving the simultaneous coordination of the N7 atom of the guanosine motif and two phosphate groups to the two Zn(II) atoms. Spectroscopic studies, MS-ESI, and DFT suggested that GTP bound to 1 in 1:1 and 2:2 models with high overall binding constants of log β1 (1:1) = 6.05 ± 0.01 and log β2 = 10.91 ± 0.03, respectively. The optical change and selectivity are attributed to the efficient binding of GTP to 1 by the combination of a strong electrostatic contribution and synergic effects of coordination bonds. Such GTP selectivity of an asymmetric metal-based receptor in water is still rare.
Collapse
Affiliation(s)
- Iván J Bazany-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México
| | - María K Salomón-Flores
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México
| | - Joanatan M Bautista-Renedo
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, km 14.5 Carrera Toluca-Atlacomulco, Campus UAEMex "El Rosedal" San Cayetano-Toluca, 50200 Toluca de Lerdo, Estado de México, México
| | - Nelly González-Rivas
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, km 14.5 Carrera Toluca-Atlacomulco, Campus UAEMex "El Rosedal" San Cayetano-Toluca, 50200 Toluca de Lerdo, Estado de México, México
| | - Alejandro Dorazco-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México
| |
Collapse
|
15
|
Adak P, Ghosh B, Bauzá A, Frontera A, Herron SR, Chattopadhyay SK. Binuclear and tetranuclear Zn(ii) complexes with thiosemicarbazones: synthesis, X-ray crystal structures, ATP-sensing, DNA-binding, phosphatase activity and theoretical calculations. RSC Adv 2020; 10:12735-12746. [PMID: 35492083 PMCID: PMC9051056 DOI: 10.1039/c9ra10549b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 11/21/2022] Open
Abstract
Two Zinc(ii) complexes [Zn4(L1)4]·2H2O (1) and [Zn2(L2)2]·2H2O (2) of pyruvaldehydethiosemicarbazone ligands are reported. The complexes were characterized by elemental analysis, IR, NMR, UV-vis spectroscopy and by single-crystal X-ray crystallography. X-ray crystal structure determinations of the complexes show that though Zn : ligand stoichiometry is 1 : 1 in both the complexes, the molecular unit is tetranuclear for 1 and binuclear for 2. Both the complexes show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium in the presence of other anions like AcO−, NO3−, F−, Cl−, H2PO4−, HPO42− and P2O72−. The UV-titration experiments of complexes 1 and 2 with ATP results in binding constants of 2.0(±0.07) × 104 M−1 and 7.1(±0.05) × 103 M−1 respectively. The calculated detection limits of 6.7 μM and 1.7 μM for 1 and 2 respectively suggest that the complexes are sensitive detectors of ATP. High selectivity of the complexes is confirmed by the addition of ATP in presence of an excess of other anions. DFT studies confirm that the ATP complexes are more favorable than those with the other inorganic phosphate anions, in agreement with the experimental results. Phosphatase like activity of both complexes is investigated spectrophotometrically using 4-nitrophenylphosphate (NPP) as a substrate, indicating the complexes possess significant phosphate ester hydrolytic efficiency. The kinetics for the hydrolysis of the substrate NPP was studied by the initial rate method at 25 °C. Michaelis–Menten derived kinetic parameters indicate that rate of hydrolysis of the P–O bond by complex 1 is much greater than that of complex 2, the kcat values being 212(±5) and 38(±2) h−1 respectively. The DNA binding studies of the complexes were investigated using electronic absorption spectroscopy and fluorescence quenching. The absorption spectral titrations of the complexes with DNA indicate that the CT-DNA binding affinity (Kb) of complex 1 (2.10(±0.07) × 106 M−1) is slightly greater than that of 2 (1.11(±0.04) × 106 M−1). From fluorescence spectra the apparent binding constant (Kapp) values were calculated and they are found to be 5.41(±0.01) × 105 M−1 for 1 and 3.93(±0.02) × 105 M−1 for 2. The molecular dynamics simulation demonstrates that the Zn(ii) complex 1 is a good intercalator of DNA. A binuclear and a tetranuclear zinc(ii) of pyruvaldehyde thiosemicarbazone show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium. The DNA binding and phosphatase activities of the complexes are also reported.![]()
Collapse
Affiliation(s)
- Piyali Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Bipinbihari Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Antonio Bauzá
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Steven R Herron
- Department of Chemistry, Utah Valley University 800W University Pkwy Orem UT 84058 USA
| | - Shyamal Kumar Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| |
Collapse
|
16
|
Wei ZL, Wang L, Guo SZ, Zhang Y, Dong WK. A high-efficiency salamo-based copper(ii) complex double-channel fluorescent probe. RSC Adv 2019; 9:41298-41304. [PMID: 35540055 PMCID: PMC9076392 DOI: 10.1039/c9ra09017g] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, a salamo-based copper(ii) complex probe L-Cu2+ was synthesized, which combined with copper(ii) ions to form L-Cu2+ for the detection of S2- and had a good fluorescence chemical response. Through spectral analysis, we found that S2- could be identified with high sensitivity and selectivity in the presence of various anions and could be used for the detection of S2- by the naked eye. With the addition of S2-, the solution color changed from colorless to bright yellow. UV absorption, fluorescence and other characterization methods were carried out, and the mechanism of action was determined. In addition, we performed a visual inspection of H2S gas, and the probe L-Cu2+ could detect S2- in the gas molecules, revealing its potential application value in biology and medicine.
Collapse
Affiliation(s)
- Zhi-Li Wei
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Lan Wang
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Shuang-Zhu Guo
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Yang Zhang
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Wen-Kui Dong
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| |
Collapse
|
17
|
Navarro-García E, Velasco MD, Zapata F, Bauzá A, Frontera A, Ramírez de Arellano C, Caballero A. Exploiting 1,4-naphthoquinone and 3-iodo-1,4-naphthoquinone motifs as anion binding sites by hydrogen or halogen-bonding interactions. Dalton Trans 2019; 48:11813-11821. [PMID: 31304497 DOI: 10.1039/c9dt02012h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe here the utilization of 1,4-naphthoquinone and 3-iodo-1,4-naphthoquinone motifs as new anion binding sites by hydrogen- or halogen-bonding interactions, respectively. These binding sites have been integrated in bidentate ester based receptors. Emission experiments reveal that both receptors selectively recognize sulfate anions, which induced a remarkable increase of a new emission band attributed to the formation of π-stacking interactions between two 1,4-naphthoquinone units. Absorption spectroscopy and mass spectrometry indicate the disruption of the ester group of the 1,4-naphthoquinone based receptor in the presence of HP2O73-, H2PO4-, F-, AcO- and C6H5CO2- and in the halogenated receptor with HP2O73-, F- and AcO- anions, while the presence of sulfate anions showed the clasical complexation behaviour. The 1H-NMR experiment showed a slow exchange process of the receptors with their sulfate complexes. The binding mode of the receptors with sulfate has been studied by DFT calculations along with the Molecular Electrostatic Potential (MEP) surface computational tool that reveals those parts of the receptors which are more suitable for interacting with anions.
Collapse
Affiliation(s)
| | - María D Velasco
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Fabiola Zapata
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa Km75, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa Km75, 07122 Palma de Mallorca, Baleares, Spain
| | | | - Antonio Caballero
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
18
|
Agafontsev AM, Shumilova TA, Rüffer T, Lang H, Kataev EA. Anthracene-Based Cyclophanes with Selective Fluorescent Responses for TTP and GTP: Insights into Recognition and Sensing Mechanisms. Chemistry 2019; 25:3541-3549. [PMID: 30644598 DOI: 10.1002/chem.201806130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Three anthracene-based cyclophanes were synthesized and their binding properties towards nucleoside triphosphates were studied. A new polycyclic amine derived from dearomatized anthracene was identified as a major side product in the cyclization reaction between 9,10-anthracenedicarboxaldehyde and diethylenetriamine. Its structure was determined by single-crystal X-ray analysis. The cyclophanes were found to form 1:1 complexes with all nucleoside triphosphates as well as with pyrophosphate in a buffered aqueous solution at pH 6.2. A turn-on fluorescence response was observed for all nucleotides except for GTP, which demonstrated strong fluorescence quenching. The strongest turn-on fluorescence was observed for the largest receptor 3 in the presence of thymidine triphosphate (TTP). Based on the NMR and fluorescence experiments, two major binding modes for nucleotide complexes were identified.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tobias Rüffer
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Heinrich Lang
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
19
|
|
20
|
Farshbaf S, Anzenbacher P. Fluorimetric sensing of ATP in water by an imidazolium hydrazone based sensor. Chem Commun (Camb) 2019; 55:1770-1773. [PMID: 30666327 DOI: 10.1039/c8cc09857c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bisantrene, a simple anthracene derivative carrying two imidazolium hydrazone moieties, has been used as a highly selective sensor of ATP in water.
Collapse
Affiliation(s)
- Sepideh Farshbaf
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University, Bowling Green
- Ohio 43403
- USA
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University, Bowling Green
- Ohio 43403
- USA
| |
Collapse
|
21
|
Aulsebrook ML, Starck M, Grace MR, Graham B, Thordarson P, Pal R, Tuck KL. Interaction of Nucleotides with a Trinuclear Terbium(III)-Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity. Inorg Chem 2018; 58:495-505. [PMID: 30561998 DOI: 10.1021/acs.inorgchem.8b02731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in-depth study of the interaction of a trinuclear terbium(III)-dizinc(II) complex with an array of nucleotides differing in the type of nucleobase and number of phosphate groups, as well as cyclic versus acyclic variants, is presented. The study examined the nature of the interaction and the efficiency at which guanine was able to sensitize terbium(III) luminescence. Competitive binding and titration studies were performed to help establish the nature/mode of the interactions. These established that (1) interaction occurs by the coordination of phosphate groups to zinc(II) (in addition to uridine in the case of uridine monophosphate), (2) acyclic nucleotides bind more strongly than cyclic counterparts because of their higher negative charge, (3) guanine-containing nucleotides are able to sensitize terbium(III) luminescence with the efficiency of sensitization following the order guanosine monophosphate (GMP) > guanosine diphosphate > guanosine triphosphate because of the mode of binding, and (4) nucleoside monophosphates bind to a single zinc(II) ion, whereas di- and triphosphates appear to bind in a bridging mode between two host molecules. Furthermore, it has been shown that guanine is a sensitizer of terbium(III) luminescence. On the basis of the ability of GMP to effectively sensitize terbium(III)-based luminescence while cyclic GMP (cGMP) does not, the complex has been utilized to monitor the catalytic conversion of cGMP to GMP by a phosphodiesterase enzyme in real time using time-gated luminescence on a benchtop fluorimeter. The complex has the potential to find broad application in monitoring the activity of enzymes that process nucleotides (co)substrates, including high-throughput drug-screening programs.
Collapse
Affiliation(s)
| | - Matthieu Starck
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| | - Michael R Grace
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Robert Pal
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| | - Kellie L Tuck
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
22
|
Kwon N, Hu Y, Yoon J. Fluorescent Chemosensors for Various Analytes Including Reactive Oxygen Species, Biothiol, Metal Ions, and Toxic Gases. ACS OMEGA 2018; 3:13731-13751. [PMID: 31458074 PMCID: PMC6644585 DOI: 10.1021/acsomega.8b01717] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/14/2018] [Indexed: 06/10/2023]
Abstract
The development of fluorescent chemosensors for various analytes has been actively pursued by chemists. Since their inception, these efforts have led to many new sensors that have found wide applications in the fields of chemistry, biology, environmental science, and physiology. The search for fluorescent chemosensors was initiated by a few pioneering groups in the late 1970s and 1980s and blossomed during the last two decades to include more than hundreds of research groups around the world. The targets for these sensors vary from metal ions, anions, reactive oxygen/nitrogen species, biothiols, and toxic gases. Our group has made contributions to this area in last 18 years. In this perspective, we briefly introduce the history of chemosensors and review studies that we have carried out.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Ying Hu
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
- College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| |
Collapse
|
23
|
Yao Q, Li H, Xian L, Xu F, Xia J, Fan J, Du J, Wang J, Peng X. Differentiating RNA from DNA by a molecular fluorescent probe based on the “door-bolt” mechanism biomaterials. Biomaterials 2018; 177:78-87. [DOI: 10.1016/j.biomaterials.2018.05.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
|
24
|
Sabater P, Zapata F, Caballero A, Alkorta I, Ramirez de Arellano C, Elguero J, Molina P. Synthesis, Structure and Anion Sensing Properties of a Dicationic Bis(imidazolium)-Based Cyclophane. ChemistrySelect 2018. [DOI: 10.1002/slct.201800809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paula Sabater
- Departamento de Química Orgánica; Universidad de Murcia, Campus de Espinardo; E-30100 Murcia Spain
| | - Fabiola Zapata
- Departamento de Química Orgánica; Universidad de Murcia, Campus de Espinardo; E-30100 Murcia Spain
| | - Antonio Caballero
- Departamento de Química Orgánica; Universidad de Murcia, Campus de Espinardo; E-30100 Murcia Spain
| | - Ibon Alkorta
- Instituto de Química Médica; Consejo Superior de Investigaciones Científicas (CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| | | | - Jose Elguero
- Instituto de Química Médica; Consejo Superior de Investigaciones Científicas (CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| | - Pedro Molina
- Departamento de Química Orgánica; Universidad de Murcia, Campus de Espinardo; E-30100 Murcia Spain
| |
Collapse
|
25
|
Ohshiro T, Verma RK, Yokota K, Tsutsui M, Mukherjee S, Kawai T, Nakatani K, Taniguchi M. Electrical Nucleotide Sensor Based on Synthetic Guanine-Receptor-Modified Electrodes. ChemistrySelect 2018. [DOI: 10.1002/slct.201702341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Takahito Ohshiro
- Bio-nanotechnology Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Rajiv Kumar Verma
- Regulatory Bioorganic Chemistry Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Kazumichi Yokota
- Bio-nanotechnology Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Makusu Tsutsui
- Bio-nanotechnology Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Sanjukta Mukherjee
- Regulatory Bioorganic Chemistry Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Tomoji Kawai
- Bio-nanotechnology Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Kazuhiko Nakatani
- Regulatory Bioorganic Chemistry Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Masateru Taniguchi
- Bio-nanotechnology Laboratory, The Institute of Scientific and Industrial Research (ISIR); Osaka University; 8-1, Mihogaoka, Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
26
|
Zhang X, Ko G, Joung JF, Li M, Jeong Y, Swamy KMK, Lee D, Liu Y, Lee S, Park S, James TD, Yoon J. A naphthoimidazolium-cholesterol derivative as a ratiometric fluorescence based chemosensor for the chiral recognition of carboxylates. Chem Commun (Camb) 2018; 54:13264-13267. [DOI: 10.1039/c8cc06262e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a naphthoimidazolium-cholesterol derivative (NI-chol 1) as a fluorescence based chemosensor for chiral recognition via imidazolium (C–H)+–anion binding.
Collapse
Affiliation(s)
- Xin Zhang
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University
- Shijiazhuang
- China
| | - Gyeongju Ko
- Department of Chemistry and Nano Science, Ewha Womans University
- Seoul
- Korea
| | | | - Meng Li
- Department of Chemistry, University of Bath
- Bath
- UK
- Department of Environmental Science and Technology, North China Electric Power University
- Baoding
| | - Yerin Jeong
- Department of Chemistry and Nano Science, Ewha Womans University
- Seoul
- Korea
| | - K. M. K. Swamy
- Department of Chemistry and Nano Science, Ewha Womans University
- Seoul
- Korea
| | - Dayoung Lee
- Department of Chemistry and Nano Science, Ewha Womans University
- Seoul
- Korea
| | - Yifan Liu
- Department of Chemistry and Nano Science, Ewha Womans University
- Seoul
- Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University
- Busan
- Korea
| | - Sungnam Park
- Department of Chemistry, Korea University
- Seoul
- Korea
| | | | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University
- Seoul
- Korea
| |
Collapse
|
27
|
Zhao ZX, Hu ZL, Yu SC, Liu QX. NHC Hg( ii) and Pd( ii) complexes based on 1,8-dihydroxy-9,10-anthraquinone: synthesis, structure and catalysis. NEW J CHEM 2018. [DOI: 10.1039/c8nj02029a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NHC Ag(i) and Hg(ii) complexes were prepared and characterized, and the catalytic activities of the NHC Pd(ii) complex in the Suzuki–Miyaura reaction were investigated.
Collapse
Affiliation(s)
- Zhi-Xiang Zhao
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Ze-Liang Hu
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Shao-Cong Yu
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Qing-Xiang Liu
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| |
Collapse
|
28
|
Vinodha M, Senthilkumar K. Counter anion effect on structural, opto-electronic and charge transport properties of fused π-conjugated imidazolium compound. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1414965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Vinodha
- Department of Physics, Bharathiar University, Coimbatore, India
| | - K. Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore, India
| |
Collapse
|
29
|
Lee D, Lee C, Jun EJ, Lee M, Park S, Yoon J. Selective Recognition of Fluoride by using a Benzobisimidazolium Derivative through Aggregation-Induced Fluorescence. ChemistryOpen 2017; 6:476-479. [PMID: 28794938 PMCID: PMC5542744 DOI: 10.1002/open.201700109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 12/27/2022] Open
Abstract
A new benzobisimidazolium derivative (1) bearing four naphthalene moieties was synthesized and demonstrated as an F- ion-selective fluorescent chemosensor. The fluorescence of 1 in acetonitrile (CH3CN) is significantly stronger with F- and acetate (CH3CO2-), but not with other anions (Cl-, Br-, I-, HSO4-, and H2PO4-). The fluorescence of 1 is enhanced selectively with F- in the presence of a small amount of water. Our DFT calculations indicate that the electrostatic interactions between the positively charged benzobisimidazolium moieties and F- play an important role in the formation of stable aggregates. The formation of stable aggregates of 1 with F- in CH3CN is a key step for the selective sensing of F-, and the fluorescence of the aggregates is further enhanced in a mixture of 95 % CH3CN and 5 % water, which can be attributed to the aggregation-induced emission.
Collapse
Affiliation(s)
- Dayoung Lee
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760Korea
| | - Chiho Lee
- Department of ChemistryKorea UniversitySeoul02841Korea
| | - Eun Jin Jun
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760Korea
| | - Minji Lee
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760Korea
| | - Sungnam Park
- Department of ChemistryKorea UniversitySeoul02841Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760Korea
| |
Collapse
|
30
|
Maity D, Li M, Ehlers M, Gigante A, Schmuck C. A metal-free fluorescence turn-on molecular probe for detection of nucleoside triphosphates. Chem Commun (Camb) 2017; 53:208-211. [PMID: 27918032 DOI: 10.1039/c6cc08386b] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a fluorescence probe 1, which contains a naphthalimide fluorophore with two symmetric peptidic arms equipped with a tailor-made anion-binding motif, the guanidiniocarbonyl pyrrole moiety, for the detection of nucleoside triphosphates. Upon binding to nucleoside triphosphates, especially ATP, 1 shows significant turn-on fluorescence response. Probe 1 can also be applied for the imaging of ATP in cells.
Collapse
Affiliation(s)
- Debabrata Maity
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany.
| | - Mao Li
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany.
| | - Martin Ehlers
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany.
| | | | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany.
| |
Collapse
|
31
|
Jain A, Gupta R, Agarwal M. Coumarin Based Receptor for Naked Eye Detection of Inorganic Fluoride Ion in Aqueous Media. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/22297928.2017.1306459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anshu Jain
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
32
|
Dey S, Sarkar T, Majumdar A, Pathak T, Ghosh K. 1,4-Disubstituted 1,2,3-Triazole- and 1,5-Disubstituted 1,2,3-Triazole-based Bis-Sulfonamides in Selective Fluorescence Sensing of ATP. ChemistrySelect 2017. [DOI: 10.1002/slct.201601933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Santu Dey
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur-721302 India
| | - Tanmay Sarkar
- Department of Chemistry; University of Kalyani; Kalyani-741235 India
| | - Anupam Majumdar
- Department of Chemistry; University of Kalyani; Kalyani-741235 India
| | - Tanmaya Pathak
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur-721302 India
| | - Kumaresh Ghosh
- Department of Chemistry; University of Kalyani; Kalyani-741235 India
| |
Collapse
|
33
|
Tamgho IS, Chaudhuri S, Verderame M, DiScenza DJ, Levine M. A highly versatile fluorenone-based macrocycle for the sensitive detection of polycyclic aromatic hydrocarbons and fluoride anions. RSC Adv 2017. [DOI: 10.1039/c7ra05404a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reported herein is the high yielding synthesis of a new fluorenone-based triazolophane and its sensing capabilities for polycyclic aromatic hydrocarbons (PAHs) and fluoride anions.
Collapse
Affiliation(s)
| | | | - Molly Verderame
- Department of Chemistry
- University of Rhode Island
- Kingston
- USA
| | | | - Mindy Levine
- Department of Chemistry
- University of Rhode Island
- Kingston
- USA
| |
Collapse
|
34
|
|
35
|
Wierzbicka C, Liu M, Bauer D, Irgum K, Sellergren B. Cationic pTyr/pSer imprinted polymers based on a bis-imidazolium host monomer: phosphopeptide recognition in aqueous buffers demonstrated by μ-liquid chromatography and monolithic columns. J Mater Chem B 2017; 5:953-960. [DOI: 10.1039/c6tb02864k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Capillary monoliths featuring grafted molecularly imprinted polymer films incorporating on a bis-imidazolium host monomer, displayed a remarkable crossreactivity with phosphorylated peptides in buffered media.
Collapse
Affiliation(s)
- Celina Wierzbicka
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- Malmö
- Sweden
| | - Mingquan Liu
- Department of Chemistry
- Umeå University
- 901 87 Umeå
- Sweden
| | - David Bauer
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- Malmö
- Sweden
| | - Knut Irgum
- Department of Chemistry
- Umeå University
- 901 87 Umeå
- Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- Malmö
- Sweden
| |
Collapse
|
36
|
Li XM, Zheng KW, Hao YH, Tan Z. Exceptionally Selective and Tunable Sensing of Guanine Derivatives and Analogues by Structural Complementation in a G-Quadruplex. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin-min Li
- State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Ke-wei Zheng
- State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Yu-hua Hao
- State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| |
Collapse
|
37
|
Li XM, Zheng KW, Hao YH, Tan Z. Exceptionally Selective and Tunable Sensing of Guanine Derivatives and Analogues by Structural Complementation in a G-Quadruplex. Angew Chem Int Ed Engl 2016; 55:13759-13764. [PMID: 27714981 DOI: 10.1002/anie.201607195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/11/2016] [Indexed: 01/08/2023]
Abstract
A guanine-vacancy-bearing G-quadruplex (GVBQ) interacts with guanine and derivatives by a structural complementation to form a more stable and intact G-quadruplex. Sensors using GVBQs are devised to detect guanine and other nucleobases, and their derivatives derived from structurally similar compounds. A strict requirement of Hoogsteen hydrogen bonds between the GVBQ and analyte in the structural complementation confers exceptional selectivity on the analyte. As such, subtle modifications on analytes affecting even a single hydrogen bond can preclude the recognition. In principle, the strategy may also be expanded to detect many planar cyclic compounds. Because nucleobases and derivatives/metabolites are involved in many physiological and pathological processes, this type of sensor may find applications in risk assessment of pathogenesis and therapeutics related to nucleic acid metabolism.
Collapse
Affiliation(s)
- Xin-Min Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Ke-Wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| | - Yu-Hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
38
|
Yoo S, Kim S, Eom MS, Kang S, Lim SH, Han MS. Development of a highly sensitive colorimetric thymidine triphosphate chemosensor using gold nanoparticles and the p-xylyl-bis(Hg2+-cyclen) complex: improved selectivity by metal ion tuning. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Liu Y, Hu Y, Lee S, Lee D, Yoon J. Fluorescent and Colorimetric Chemosensors for Anions, Metal Ions, Reactive Oxygen Species, Biothiols, and Gases. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yifan Liu
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Ying Hu
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Songyi Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Dayoung Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
40
|
Bartoli F, Bencini A, Garau A, Giorgi C, Lippolis V, Lunghi A, Totti F, Valtancoli B. Di- and Triphosphate Recognition and Sensing with Mono- and Dinuclear Fluorescent Zinc(II) Complexes: Clues for the Design of Selective Chemosensors for Anions in Aqueous Media. Chemistry 2016; 22:14890-14901. [PMID: 27573342 DOI: 10.1002/chem.201602079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/09/2022]
Abstract
The synthesis of a new ligand (L1) containing two 1,4,7-triazacyclononane ([9]aneN3 ) moieties linked by a 4,5-dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+ , Zn2+ , Cd2+ , and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6''-dimethylen-2,2':6',2''-terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.
Collapse
Affiliation(s)
- Francesco Bartoli
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy
| | - Claudia Giorgi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy.
| | - Alessandro Lunghi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Federico Totti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Barbara Valtancoli
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
41
|
Park JS, Nam E, Lee HK, Lim MH, Rhee HW. In Cellulo Mapping of Subcellular Localized Bilirubin. ACS Chem Biol 2016; 11:2177-85. [PMID: 27232847 DOI: 10.1021/acschembio.6b00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bilirubin (BR) is a de novo synthesized metabolite of human cells. However, subcellular localization of BR in the different organelles of human cells has been largely unknown. Here, utilizing UnaG as a genetically encoded fluorescent BR sensor, we report the existence of relatively BR-enriched and BR-depleted microspaces in various cellular organelles of live cells. Our studies indicate that (i) the cytoplasmic facing membrane of the endoplasmic reticulum (ER) and the nucleus are relatively BR-enriched spaces and (ii) mitochondrial intermembrane space and the ER lumen are relatively BR-depleted spaces. Thus, we demonstrate a relationship between such asymmetrical BR distribution in the ER membrane and the BR metabolic pathway. Furthermore, our results suggest plausible BR-transport and BR-regulating machineries in other cellular compartments, including the nucleus and mitochondria.
Collapse
Affiliation(s)
- Jong-Seok Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hye-Kyeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
42
|
Halides with Fifteen Aliphatic C-H···Anion Interaction Sites. Sci Rep 2016; 6:30123. [PMID: 27444513 PMCID: PMC4957075 DOI: 10.1038/srep30123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A− interactions (A− = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A− interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.
Collapse
|
43
|
Kataev EA, Shumilova TA, Fiedler B, Anacker T, Friedrich J. Understanding Stacking Interactions between an Aromatic Ring and Nucleobases in Aqueous Solution: Experimental and Theoretical Study. J Org Chem 2016; 81:6505-14. [PMID: 27314892 DOI: 10.1021/acs.joc.6b01130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stacking interactions between aromatic compounds and nucleobases are crucial in recognition of nucleotides and nucleic acids, but a comprehensive understanding of the strength and selectivity of these interactions in aqueous solution has been elusive. To this end, model complexes have been designed and analyzed by experiment and theory. For the first time, stacking free energies between five nucleobases and anthracene were determined experimentally from thermodynamic double mutant cycles. Three different experimental methods were proposed and evaluated. The dye prefers to bind nucleobases in the order (kcal/mol): G (1.3) > T (0.9) > U (0.8) > C (0.5) > A (0.3). The respective trend of interaction free energies extracted from DFT calculations correlates to that obtained experimentally. Analysis of the data suggests that stacking interactions dominate over hydrophobic effects in an aqueous solution and can be predicted with DFT calculations.
Collapse
Affiliation(s)
- Evgeny A Kataev
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Benjamin Fiedler
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Tony Anacker
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Joachim Friedrich
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| |
Collapse
|
44
|
Raju G, Vishwanath S, Prasad A, Patel BK, Prabusankar G. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Huang F, Hao G, Wu F, Feng G. Fluorescence sensing of ADP over ATP and PPi in 100% aqueous solution. Analyst 2016. [PMID: 26213259 DOI: 10.1039/c5an01291k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An anthracene-bridged dinuclear zinc(ii)-dipicolylamine complex was found to show high selectivity for ADP with a significant fluorescence enhancement over ATP, PPi and other common analytes in 100% aqueous solution. This complex can be used for fluorescence detection of ADP in living cells and for monitoring the activity of kinases.
Collapse
Affiliation(s)
- Feihu Huang
- Key laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.
| | | | | | | |
Collapse
|
46
|
Amendola V, Bergamaschi G, Boiocchi M, Legnani L, Presti EL, Miljkovic A, Monzani E, Pancotti F. Chloride-binding in organic–water mixtures: the powerful synergy of C–H donor groups within a bowl-shaped cavity. Chem Commun (Camb) 2016; 52:10910-3. [DOI: 10.1039/c6cc04978h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
2,3,4,5-Tetrafluorobenzyl and imidazolium groups within an open-chain receptor allow for the effective binding of chloride in organic–water solution.
Collapse
Affiliation(s)
- Valeria Amendola
- Dipartimento di Chimica
- Università degli Studi di Pavia
- Pavia
- Italy
| | | | | | - Laura Legnani
- Dipartimento di Chimica
- Università degli Studi di Pavia
- Pavia
- Italy
| | - Eliana Lo Presti
- Dipartimento di Chimica
- Università degli Studi di Pavia
- Pavia
- Italy
| | - Ana Miljkovic
- Dipartimento di Chimica
- Università degli Studi di Pavia
- Pavia
- Italy
| | - Enrico Monzani
- Dipartimento di Chimica
- Università degli Studi di Pavia
- Pavia
- Italy
| | | |
Collapse
|
47
|
Sandhu S, Kumar R, Singh P, Walia A, Vanita V, Kumar S. Ratiometric fluorophore for quantification of iodide under physiological conditions: applications in urine analysis and live cell imaging. Org Biomol Chem 2016; 14:3536-43. [DOI: 10.1039/c6ob00373g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ratio of fluorescence intensity of fluorophoreI395 nm/I475 nmvs.log [I−] undergoes linear change over a broad iodide concentration range of 10−9to 10−5M and finds application in urine analysis and live cell imaging.
Collapse
Affiliation(s)
- Sana Sandhu
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Rahul Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Prabhpreet Singh
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Amandeep Walia
- Department of Human Genetics
- Guru Nanak Dev University
- Amritsar143005
- India
| | - Vanita Vanita
- Department of Human Genetics
- Guru Nanak Dev University
- Amritsar143005
- India
| | - Subodh Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar 143005
- India
| |
Collapse
|
48
|
Choi Y, Kim T, Jang S, Kang J. The contribution of polar C–H hydrogen bonds to anion binding. NEW J CHEM 2016. [DOI: 10.1039/c5nj01457c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding abilities depend on the magnitude of C–H polarization.
Collapse
Affiliation(s)
- Yusun Choi
- Department of Chemistry
- Sejong University
- Seoul
- South Korea
| | - Taehoon Kim
- Department of Chemistry
- Sejong University
- Seoul
- South Korea
| | - Soonmin Jang
- Department of Chemistry
- Sejong University
- Seoul
- South Korea
| | - Jongmin Kang
- Department of Chemistry
- Sejong University
- Seoul
- South Korea
| |
Collapse
|
49
|
Bartoli F, Bencini A, Conti L, Giorgi C, Valtancoli B, Paoli P, Rossi P, Le Bris N, Tripier R. Catching anions with coloured assemblies: binding of pH indicators by a giant-size polyammonium macrocycle for anion naked-eye recognition. Org Biomol Chem 2016; 14:8309-21. [DOI: 10.1039/c6ob01474g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among inorganic anions, only triphosphate displaces bromocresol purple from its assembly with a tetra-cyclam macrocycle, allowing for its selective colorimetric detection.
Collapse
Affiliation(s)
- Francesco Bartoli
- Dipartimento di Chimica ‘Ugo Schiff’
- Università degli Studi di Firenze
- Sesto Fiorentino
- Italy
| | - Andrea Bencini
- Dipartimento di Chimica ‘Ugo Schiff’
- Università degli Studi di Firenze
- Sesto Fiorentino
- Italy
| | - Luca Conti
- Dipartimento di Chimica ‘Ugo Schiff’
- Università degli Studi di Firenze
- Sesto Fiorentino
- Italy
| | - Claudia Giorgi
- Dipartimento di Chimica ‘Ugo Schiff’
- Università degli Studi di Firenze
- Sesto Fiorentino
- Italy
| | - Barbara Valtancoli
- Dipartimento di Chimica ‘Ugo Schiff’
- Università degli Studi di Firenze
- Sesto Fiorentino
- Italy
| | - Paola Paoli
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Firenze
- Firenze
- Italy
| | - Patrizia Rossi
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Firenze
- Firenze
- Italy
| | - Nathalie Le Bris
- UMR-CNRS 6521
- UFR des Sciences et Techniques
- 6 avenue Victor le Gorgeu
- C.S. 93837
- Université de Bretagne Occidentale
| | - Raphael Tripier
- UMR-CNRS 6521
- UFR des Sciences et Techniques
- 6 avenue Victor le Gorgeu
- C.S. 93837
- Université de Bretagne Occidentale
| |
Collapse
|
50
|
Chowdhury B, Dutta R, Khatua S, Ghosh P. A Cyanuric Acid Platform Based Tripodal Bis-heteroleptic Ru(II) Complex of Click Generated Ligand for Selective Sensing of Phosphates via C-H···Anion Interaction. Inorg Chem 2015; 55:259-71. [PMID: 26653882 DOI: 10.1021/acs.inorgchem.5b02243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 μM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions.
Collapse
Affiliation(s)
| | | | | | - Pradyut Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|