1
|
Josephy T, Kumar R, Bleher K, Röhs F, Glaser T, Rajaraman G, Comba P. Synthesis, Characterization, and Reactivity of Bispidine-Iron(IV)-Tosylimido Species. Inorg Chem 2024; 63:12109-12119. [PMID: 38875304 DOI: 10.1021/acs.inorgchem.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Reported are the synthesis and detailed studies of the iron(IV)-tosylimido complexes of two isomeric pentadentate bispidine ligands (bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives). This completes a series of five tosylimido complexes with comparable pentadentate amine/pyridine ligands, where the corresponding [(L)FeIV═O]2+ oxidants have been studied in detail. The characterization of the two new complexes in solution (UV-vis-NIR, Mössbauer, HR-ESI-MS) shows that these oxidants have an intermediate spin (S = 1) electronic ground state. The reactivities have been studied as oxidants in C-H activation at 1,3-cyclohexadiene and nitrogen atom transfer to thioanisole. For the latter substrate, the entire set of data for the five ligands and for both nitrogen and oxygen atom transfer is now available and the interesting observation is that oxygen atom transfer is, as expected, generally faster than nitrogen atom transfer, with the exception of the two ligands that have four and three pyridine groups oriented parallel to the Fe-O and Fe-N axes. A thorough DFT analysis indicates that this is due to steric effects in the case of the [(L)FeIV═O]2+ species, which are less important in the [(L)FeIV═NTs]2+ compounds due to partial electron transfer from the thioanisole substrate to the iron(IV)-tosylimido oxidant.
Collapse
Affiliation(s)
- Thomas Josephy
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Katharina Bleher
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Fridolin Röhs
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Bhutto SM, Hooper RX, McWilliams SF, Mercado BQ, Holland PL. Iron(iv) alkyl complexes: electronic structure contributions to Fe-C bond homolysis and migration reactions that form N-C bonds from N 2. Chem Sci 2024; 15:3485-3494. [PMID: 38455018 PMCID: PMC10915813 DOI: 10.1039/d3sc05939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
High-valent iron alkyl complexes are rare, as they are prone to Fe-C bond homolysis. Here, we describe an unusual way to access formally iron(iv) alkyl complexes through double silylation of iron(i) alkyl dinitrogen complexes to form an NNSi2 group. Spectroscopically validated computations show that the disilylehydrazido(2-) ligand stabilizes the formal iron(iv) oxidation state through a strongly covalent Fe-N π-interaction, in which one π-bond fits an "inverted field" description. This means that the two bonding electrons are localized more on the metal than the ligand, and thus an iron(ii) resonance structure is a significant contributor, similar to the previously-reported phenyl analogue. However, in contrast to the phenyl complex which has an S = 1 ground state, the ground state of the alkyl complex is S = 2, which places one electron in the π* orbital, leading to longer and weaker Fe-N bonds. The reactivity of these hydrazido(2-) complexes is dependent on the steric and electronic properties of the specific alkyl group. When the alkyl group is the bulky trimethylsilylmethyl, the formally iron(iv) species is stable at room temperature and no migration of the alkyl ligand is observed. However, the analogous complex with the smaller methyl ligand does indeed undergo migration of the carbon-based ligand to the NNSi2 group to form a new N-C bond. This migration is followed by isomerization of the hydrazido ligand, and the product exists as two isomers that have distinct η1 and η2 binding of the hydrazido group. Lastly, when the alkyl group is benzyl, the Fe-C bond homolyzes to give a three-coordinate hydrazido(2-) complex which is likely due to the greater stability of a benzyl radical compared to that for methyl or trimethylsilylmethyl. These studies demonstrate the availability of a hydrocarbyl migration pathway at formally iron(iv) centers to form new N-C bonds directly to N2, though product selectivity is highly dependent on the identity of the migrating group.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Reagan X Hooper
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Sean F McWilliams
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Patrick L Holland
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| |
Collapse
|
3
|
Mukherjee G, Velmurugan G, Kerscher M, Kumar Satpathy J, Sastri CV, Comba P. Mechanistic Insights into Amphoteric Reactivity of an Iron-Bispidine Complex. Chemistry 2024; 30:e202303127. [PMID: 37942658 DOI: 10.1002/chem.202303127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The reactivity of FeIII -alkylperoxido complexes has remained a riddle to inorganic chemists owing to their thermal instability and impotency towards organic substrates. These iron-oxygen adducts have been known as sluggish oxidants towards oxidative electrophilic and nucleophilic reactions. Herein, we report the synthesis and spectroscopic characterization of a relatively stable mononuclear high-spin FeIII -alkylperoxido complex supported by an engineered bispidine framework. Against the notion, this FeIII -alkylperoxido complex serves as a rare example of versatile reactivity in both electrophilic and nucleophilic reactions. Detailed mechanistic studies and computational calculations reveal a novel reaction mechanism, where a putative superoxido intermediate orchestrates the amphoteric property of the oxidant. The design of the backbone is pivotal to convey stability and reactivity to alkylperoxido and superoxido intermediates. Contrary to the well-known O-O bond cleavage that generates an FeIV -oxido species, the FeIII -alkylperoxido complex reported here undergoes O-C bond scission to generate a superoxido moiety that is responsible for the amphiphilic reactivity.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad, 500007, India
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Jagnyesh Kumar Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Peter Comba
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| |
Collapse
|
4
|
Keilwerth M, Mao W, Jannuzzi SAV, Grunwald L, Heinemann FW, Scheurer A, Sutter J, DeBeer S, Munz D, Meyer K. From Divalent to Pentavalent Iron Imido Complexes and an Fe(V) Nitride via N-C Bond Cleavage. J Am Chem Soc 2023; 145:873-887. [PMID: 36583993 DOI: 10.1021/jacs.2c09072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sergio A V Jannuzzi
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany.,Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zürich, 8093 Zürich, Switzerland
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Serena DeBeer
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Sun C, Oswald VF, Hill EA, Ziller JW, Borovik AS. Investigation of iron-ammine and amido complexes within a C 3-symmetrical phosphinic amido tripodal ligand. Dalton Trans 2021; 50:11197-11205. [PMID: 34338252 DOI: 10.1039/d1dt01032h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The primary and secondary coordination spheres can have large regulatory effects on the properties of metal complexes. To examine their influences on the properties of monomeric Fe complexes, the tripodal ligand containing phosphinic amido groups, N,N',N''-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido) ([poat]3-), was used to prepare [FeII/IIIpoat]-/0 complexes. The FeII complex was four-coordinate with 4 N-atom donors comprising the primary coordination sphere. The FeIII complex was six-coordinate with two additional ligands coming from coordination of O-atom donors on two of the phosphinic amido groups in [poat]3-. In the crystalline phase, each complex was part of a cluster containing potassium ions in which KO[double bond, length as m-dash]P interactions served to connect two metal complexes. The [FeII/IIIpoat]-/0 complexes bound an NH3 molecule to form trigonal bipyramidal structures that also formed three intramolecular hydrogen bonds between the ammine ligand and the O[double bond, length as m-dash]P units of [poat]3-. The relatively negative one-electron redox potential of -1.21 V vs. [FeIII/IICp2]+/0 is attributed to the phosphinic amido group of the [poat]3- ligand. Attempts to form the FeIII-amido complex via deprotonation were not conclusive but isolation of [FeIIIpoat(NHtol)]- using the p-toluidine anion was successful, allowing for the full characterization of this complex.
Collapse
Affiliation(s)
- Chen Sun
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | | | | | | | | |
Collapse
|
6
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Sridharan A, Brown AC, Suess DLM. A Terminal Imido Complex of an Iron-Sulfur Cluster. Angew Chem Int Ed Engl 2021; 60:12802-12806. [PMID: 33772994 DOI: 10.1002/anie.202102603] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/10/2022]
Abstract
We report the synthesis and characterization of the first terminal imido complex of an Fe-S cluster, (IMes)3 Fe4 S4 =NDipp (2; IMes=1,3-dimesitylimidazol-2-ylidene, Dipp=2,6-diisopropylphenyl), which is generated by oxidative group transfer from DippN3 to the all-ferrous cluster (IMes)3 Fe4 S4 (PPh3 ). This two-electron process is achieved by formal one-electron oxidation of the imido-bound Fe site and one-electron oxidation of two IMes-bound Fe sites. Structural, spectroscopic, and computational studies establish that the Fe-imido site is best described as a high-spin Fe3+ center, which is manifested in its long Fe-N(imido) distance of 1.763(2) Å. Cluster 2 abstracts hydrogen atoms from 1,4-cyclohexadiene to yield the corresponding anilido complex, demonstrating competency for C-H activation.
Collapse
Affiliation(s)
- Arun Sridharan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Alexandra C Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Sridharan A, Brown AC, Suess DLM. A Terminal Imido Complex of an Iron–Sulfur Cluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arun Sridharan
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Alexandra C. Brown
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Daniel L. M. Suess
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| |
Collapse
|
9
|
Nurdin L, Yang Y, Neate PGN, Piers WE, Maron L, Neidig ML, Lin JB, Gelfand BS. Activation of ammonia and hydrazine by electron rich Fe(ii) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(iii) amido intermediate. Chem Sci 2020; 12:2231-2241. [PMID: 34163989 PMCID: PMC8179247 DOI: 10.1039/d0sc06466a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the use of electron rich iron complexes supported by a dianionic diborate pentadentate ligand system, B2Pz4Py, for the coordination and activation of ammonia (NH3) and hydrazine (NH2NH2). For ammonia, coordination to neutral (B2Pz4Py)Fe(ii) or cationic [(B2Pz4Py)Fe(iii)]+ platforms leads to well characterized ammine complexes from which hydrogen atoms or protons can be removed to generate, fleetingly, a proposed (B2Pz4Py)Fe(iii)–NH2 complex (3Ar-NH2). DFT computations suggest a high degree of spin density on the amido ligand, giving it significant aminyl radical character. It rapidly traps the H atom abstracting agent 2,4,6-tri-tert-butylphenoxy radical (ArO˙) to form a C–N bond in a fully characterized product (2Ar), or scavenges hydrogen atoms to return to the ammonia complex (B2Pz4Py)Fe(ii)–NH3 (1Ar-NH3). Interestingly, when (B2Pz4Py)Fe(ii) is reacted with NH2NH2, a hydrazine bridged dimer, (B2Pz4Py)Fe(ii)–NH2NH2–Fe(ii)(B2Pz4Py) ((1Ar)2-NH2NH2), is observed at −78 °C and converts to a fully characterized bridging diazene complex, 4Ar, along with ammonia adduct 1Ar-NH3 as it is allowed to warm to room temperature. Experimental and computational evidence is presented to suggest that (B2Pz4Py)Fe(ii) induces reductive cleavage of the N–N bond in hydrazine to produce the Fe(iii)–NH2 complex 3Ar-NH2, which abstracts H˙ atoms from (1Ar)2-NH2NH2 to generate the observed products. All of these transformations are relevant to proposed steps in the ammonia oxidation reaction, an important process for the use of nitrogen-based fuels enabled by abundant first row transition metals. Synopsis: a highly reactive Fe(iii)–NH2 complex is generated via activation of ammonia or hydrazine in reactions of relevance to fundamental steps in ammonia oxidation processes mediated by an abundant, first row transition metal.![]()
Collapse
Affiliation(s)
- Lucie Nurdin
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Yan Yang
- LPCNO, Université de Toulouse, INSA, UPS Toulouse France
| | - Peter G N Neate
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| | - Warren E Piers
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS Toulouse France
| | - Michael L Neidig
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
10
|
Sabenya G, Gamba I, Gómez L, Clémancey M, Frisch JR, Klinker EJ, Blondin G, Torelli S, Que L, Martin-Diaconescu V, Latour JM, Lloret-Fillol J, Costas M. Octahedral iron(iv)-tosylimido complexes exhibiting single electron-oxidation reactivity. Chem Sci 2019; 10:9513-9529. [PMID: 32055323 PMCID: PMC6979323 DOI: 10.1039/c9sc02526j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/17/2019] [Indexed: 11/28/2022] Open
Abstract
High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.
Collapse
Affiliation(s)
- Gerard Sabenya
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Laura Gómez
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Martin Clémancey
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Jonathan R Frisch
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Eric J Klinker
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Geneviève Blondin
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Stéphane Torelli
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Lawrence Que
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Jean-Marc Latour
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Julio Lloret-Fillol
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
- Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluïs Companys, 23 , 08010 , Barcelona , Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| |
Collapse
|
11
|
Hakey BM, Darmon JM, Akhmedov NG, Petersen JL, Milsmann C. Reactivity of Pyridine Dipyrrolide Iron(II) Complexes with Organic Azides: C–H Amination and Iron Tetrazene Formation. Inorg Chem 2019; 58:11028-11042. [PMID: 31364852 DOI: 10.1021/acs.inorgchem.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jonathan M. Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
Ozvat TM, Peña ME, Zadrozny JM. Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry. Chem Sci 2019; 10:6727-6734. [PMID: 31367328 PMCID: PMC6625495 DOI: 10.1039/c9sc01689a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
This manuscript details the first investigation of ligand encapsulation on thermometry by cobalt-59 nuclear spins.
Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design is lacking. We present the first systematic evidence that encapsulation of this spin system amplifies the temperature sensitivity. We tested the temperature dependence of the 59Co chemical shift (Δδ/ΔT) in a series of five low-spin cobalt(iii) complexes as a function of increasing encapsulation within the 1st coordination sphere. This study spans from [Co(NH3)6]Cl3, with no interligand connectivity, to a fully encapsulated dinitrosarcophagine (diNOsar) complex, [Co(diNOsar)]Cl3. We discovered Δδ/ΔT values that span from 1.44(2) ppm °C–1 in [Co(NH3)6]Cl3 to 2.04(2) ppm °C–1 in [Co(diNOsar)]Cl3, the latter among the highest for a molecular complex. The data herein suggest that designing 59Co NMR thermometers toward high chemical stability can be coincident with high Δδ/ΔT. To better understand this phenomenon, variable-temperature UV-Vis, 59Co NMR relaxation, Raman spectroscopic, and variable-solvent investigations were performed. Data from these measurements highlight an unexpected impact of encapsulation – an increasingly dynamic and flexible inner coordination sphere. These results comprise the first systematic studies to reveal insight into the molecular factors that govern Δδ/ΔT and provide the first evidence of 59Co nuclear-spin control via vibrational means.
Collapse
Affiliation(s)
- Tyler M Ozvat
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Manuel E Peña
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Joseph M Zadrozny
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| |
Collapse
|
13
|
Cheng J, Liu J, Leng X, Lohmiller T, Schnegg A, Bill E, Ye S, Deng L. A Two-Coordinate Iron(II) Imido Complex with NHC Ligation: Synthesis, Characterization, and Its Diversified Reactivity of Nitrene Transfer and C-H Bond Activation. Inorg Chem 2019; 58:7634-7644. [PMID: 31083985 PMCID: PMC6750749 DOI: 10.1021/acs.inorgchem.9b01147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Iron
terminal imido species are typically implicated as reaction intermediates
in iron-catalyzed transformations. While a large body of work has
been devoted to mid- and high-valent iron imidos, to date the chemistry
of iron(II) imidos has remained largely unexplored due to the difficulty
in accessing them. Herein, we present a study on the two-coordinate
iron(II) imido complex [(IPr)Fe(NArTrip)] (3; IPr = 1,3-bis(2′,6′-diisopropylphenyl)imidazol-2-ylidene;
ArTrip = 2,6-bis(2′,4′,6′-triisopropylphenyl)phenyl)
prepared from the reaction of an iron(0) complex with the bulky azide
ArTripN3. Spectroscopic investigations in combination
with DFT calculations established a high-spin S =
2 ground spin state for 3, consistent with its long Fe–N
multiple bond of 1.715(2) Å revealed by X-ray diffraction analysis.
Complex 3 exhibits unusual activity of nitrene transfer
and C–H bond activation in comparison to the reported iron
imido complexes. Specifically, the reactions of 3 with
CH2=CHArCF3, an electron-deficient alkene,
and CO, a strong π acid, readily afford nitrene transfer products,
ArCF3CH=CHNHArTrip and ArTripNCO, respectively, yet no similar reaction occurs when 3 is treated with electron-rich alkenes and PMe3. Moreover, 3 is inert toward the weak C(sp3)–H bonds
in 1,4-cyclohexadiene, THF, and toluene, whereas it can cleave the
stronger C(sp)–H bond in p-trifluoromethylphenylacetylene
to form an iron(II) amido alkynyl complex. Interestingly, intramolecular
C(sp3)–H bond functionalization was observed by
adding (p-Tol)2CN2 to 3. The unique reactivity of 3 is attributed to
its low-coordinate nature and the high negative charge population
on the imido N atom, which render its iron–imido unit nucleophilic
in nature. The two-coordinate iron(II)
imido complex (IPr)Fe(NArTrip) (3) exhibits
a high-spin ground state (S = 2) and was found to
be reactive toward electron-deficient alkene, diazo compounds, terminal
alkyne, et al., in which diversified reactivities of nitrene transfer,
C−H bond activation, and C−N bond formation have been
observed. The reactivity pattern reflects the nucleophilic nature
of the imido moiety of the high-spin iron(II) complex.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Jian Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Thomas Lohmiller
- Berlin Joint EPR Lab , Helmholtz-Zentrum Berlin für Materialien und Energie , Berlin , Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion , Mülheim an der Ruhr D-45470 , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Mülheim an der Ruhr D-45470 , Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , Mülheim an der Ruhr D-45470 , Germany
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
14
|
Bagchi V, Kalra A, Das P, Paraskevopoulou P, Gorla S, Ai L, Wang Q, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Comparative Nitrene-Transfer Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) Triphenylamido-Amine Reagents and M(II) Congeners (M = Fe, Co, Ni) Favoring Aromatic over Aliphatic Alkenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01941] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Patrina Paraskevopoulou
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Saidulu Gorla
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
15
|
Dehbanipour Z, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Chloromethylated polystyrene supported copper (II) bis
-thiazole complex: Preparation, characterization and its application as a heterogeneous catalyst for chemoselective and homoselective synthesis of aryl azides. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zahra Dehbanipour
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | | |
Collapse
|
16
|
Powers IG, Andjaba JM, Luo X, Mei J, Uyeda C. Catalytic Azoarene Synthesis from Aryl Azides Enabled by a Dinuclear Ni Complex. J Am Chem Soc 2018; 140:4110-4118. [PMID: 29488760 DOI: 10.1021/jacs.8b00503] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ian G. Powers
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John M. Andjaba
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xuyi Luo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Das UK, Daifuku SL, Iannuzzi TE, Gorelsky SI, Korobkov I, Gabidullin B, Neidig ML, Baker RT. Iron(II) Complexes of a Hemilabile SNS Amido Ligand: Synthesis, Characterization, and Reactivity. Inorg Chem 2017; 56:13766-13776. [PMID: 29112382 DOI: 10.1021/acs.inorgchem.7b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report an easily prepared bis(thioether) amine ligand, SMeNHSMe, along with the synthesis, characterization, and reactivity of the paramagnetic iron(II) bis(amido) complex, [Fe(κ3-SMeNSMe)2] (1). Binding of the two different thioethers to Fe generates both five- and six-membered rings with Fe-S bonds in the five-membered rings (av 2.54 Å) being significantly shorter than those in the six-membered rings (av 2.71 Å), suggesting hemilability of the latter thioethers. Consistent with this hypothesis, magnetic circular dichroism (MCD) and computational (TD-DFT) studies indicate that 1 in solution contains a five-coordinate component [Fe(κ3-SMeNSMe)(κ2-SMeNSMe)] (2). This ligand hemilability was demonstrated further by reactivity studies of 1 with 2,2'-bipyridine, 1,2-bis(dimethylphosphino)ethane, and 2,6-dimethylphenyl isonitrile to afford iron(II) complexes [L2Fe(κ2-SMeNSMe)2] (3-5). Addition of a Brønsted acid, HNTf2, to 1 produces the paramagnetic, iron(II) amine-amido cation, [Fe(κ3-SMeNSMe)(κ3-SMeNHSMe)](NTf2) (6; Tf = SO2CF3). Cation 6 readily undergoes amine ligand substitution by triphos, affording the 16e- complex [Fe(κ2-SMeNSMe)(κ3-triphos)](NTf2) (7; triphos = bis(2-diphenylphosphinoethyl)phenylphosphine). These complexes are characterized by elemental analysis; 1H NMR, Mössbauer, IR, and UV-vis spectroscopy; and single-crystal X-ray diffraction. Preliminary results of amine-borane dehydrogenation catalysis show complex 7 to be a selective and particularly robust precatalyst.
Collapse
Affiliation(s)
- Uttam K Das
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie L Daifuku
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Theresa E Iannuzzi
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Serge I Gorelsky
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Michael L Neidig
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
18
|
Bucinsky L, Breza M, Lee WT, Hickey AK, Dickie DA, Nieto I, DeGayner JA, Harris TD, Meyer K, Krzystek J, Ozarowski A, Nehrkorn J, Schnegg A, Holldack K, Herber RH, Telser J, Smith JM. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorg Chem 2017; 56:4752-4769. [PMID: 28379707 DOI: 10.1021/acs.inorgchem.7b00512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High-oxidation-state metal complexes with multiply bonded ligands are of great interest for both their reactivity as well as their fundamental bonding properties. This paper reports a combined spectroscopic and theoretical investigation into the effect of the apical multiply bonded ligand on the spin-state preferences of threefold symmetric iron(IV) complexes with tris(carbene) donor ligands. Specifically, singlet (S = 0) nitrido [{PhB(ImR)3}FeN], R = tBu (1), Mes (mesityl, 2) and the related triplet (S = 1) imido complexes, [{PhB(ImR)3}Fe(NR')]+, R = Mes, R' = 1-adamantyl (3), tBu (4), were investigated by electronic absorption and Mössbauer effect spectroscopies. For comparison, two other Fe(IV) nitrido complexes, [(TIMENAr)FeN]+ (TIMENAr = tris[2-(3-aryl-imidazol-2-ylidene)ethyl]amine; Ar = Xyl (xylyl), Mes), were investigated by 57Fe Mössbauer spectroscopy, including applied-field measurements. The paramagnetic imido complexes 3 and 4 were also studied by magnetic susceptibility measurements (for 3) and paramagnetic resonance spectroscopy: high-frequency and -field electron paramagnetic resonance (for 3 and 4) and frequency-domain Fourier-transform (FD-FT) terahertz electron paramagnetic resonance (for 3), which reveal their zero-field splitting parameters. Experimentally correlated theoretical studies comprising ligand-field theory and quantum chemical theory, the latter including both density functional theory and ab initio methods, reveal the key role played by the Fe 3dz2 (a1) orbital in these systems: the nature of its interaction with the nitrido or imido ligand dictates the spin-state preference of the complex. The ability to tune the spin state through the energy and nature of a single orbital has general relevance to the factors controlling spin states in complexes with applicability as single molecule devices.
Collapse
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wei-Tsung Lee
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Diane A Dickie
- Department of Chemistry and Chemical Biology, The University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Ismael Nieto
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Jordan A DeGayner
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - T David Harris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg , Egerlandstraße 1, D-91058 Erlangen, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Joscha Nehrkorn
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | - Rolfe H Herber
- Racah Institute of Physics, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University , Chicago, Illinois 60605, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| |
Collapse
|
19
|
Pappas I, Chirik PJ. Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. J Am Chem Soc 2016; 138:13379-13389. [DOI: 10.1021/jacs.6b08009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iraklis Pappas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
McDonald CE, Ramsey JD, McAtee CC, Mauck JR, Hale EM, Cumens JA. The Use of Ureates as Activators for Samarium Diiodide. J Org Chem 2016; 81:5903-14. [DOI: 10.1021/acs.joc.6b00733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chriss E. McDonald
- Department
of Chemistry, Lycoming College, 700 College Place, Williamsport, Pennsylvania 17701, United States
| | - Jeremy D. Ramsey
- Department
of Chemistry, Lycoming College, 700 College Place, Williamsport, Pennsylvania 17701, United States
| | - Christopher C. McAtee
- Department
of Chemistry, Lycoming College, 700 College Place, Williamsport, Pennsylvania 17701, United States
| | - Joseph R. Mauck
- Department
of Chemistry, Lycoming College, 700 College Place, Williamsport, Pennsylvania 17701, United States
| | - Erin M. Hale
- Department
of Chemistry, Lycoming College, 700 College Place, Williamsport, Pennsylvania 17701, United States
| | - Justin A. Cumens
- Department
of Chemistry, Lycoming College, 700 College Place, Williamsport, Pennsylvania 17701, United States
| |
Collapse
|
21
|
Spasyuk DM, Carpenter SH, Kefalidis CE, Piers WE, Neidig ML, Maron L. Facile hydrogen atom transfer to iron(iii) imido radical complexes supported by a dianionic pentadentate ligand. Chem Sci 2016; 7:5939-5944. [PMID: 30034736 PMCID: PMC6024611 DOI: 10.1039/c6sc01433j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/28/2016] [Indexed: 12/28/2022] Open
Abstract
Facile hydrogen atom transfer from toluene.
A dianionic tetrapodal pentadentate diborate ligand is introduced. This ligand forms a high spin neutral iron(ii) complex that reacts with a variety of organoazides to yield transient Fe(iii) imido radicals that are extremely potent hydrogen atom abstractors. The nature of these species is supported by full characterization of the Fe(iii) amido products, kinetic studies, density functional computations and Mössbauer spectroscopy on the –C6H4-p-tBu substituted derivative.
Collapse
Affiliation(s)
- Denis M Spasyuk
- University of Calgary , Department of Chemistry , 2500 University Drive N.W. , Calgary , Alberta , Canada T2N 1N4 .
| | - Stephanie H Carpenter
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA
| | - Christos E Kefalidis
- LPCNO , Université de Toulouse , INSA , UPS , CNRS , 135 avenue de Rangueil , F-31077 Toulouse , France
| | - Warren E Piers
- University of Calgary , Department of Chemistry , 2500 University Drive N.W. , Calgary , Alberta , Canada T2N 1N4 .
| | - Michael L Neidig
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA
| | - Laurent Maron
- LPCNO , Université de Toulouse , INSA , UPS , CNRS , 135 avenue de Rangueil , F-31077 Toulouse , France
| |
Collapse
|
22
|
Vardhaman AK, Lee YM, Jung J, Ohkubo K, Nam W, Fukuzumi S. Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)-Imido Complex as Compared to the Iron(IV)-Oxo Analogue. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anil Kumar Vardhaman
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Kei Ohkubo
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
- Faculty of Science and Engineering, ALCA, SENTAN; Japan Science and Technology Agency (JST); Meijo University; Nagoya Aichi 468-0073 Japan
- Department of Material and Life Science, Graduate School of Engineering, ALCA, SENTAN; Japan Science and Technology Agency (JST); Osaka University; Suita Osaka 565-0871 Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
- Faculty of Science and Engineering, ALCA, SENTAN; Japan Science and Technology Agency (JST); Meijo University; Nagoya Aichi 468-0073 Japan
| |
Collapse
|
23
|
Vardhaman AK, Lee YM, Jung J, Ohkubo K, Nam W, Fukuzumi S. Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)-Imido Complex as Compared to the Iron(IV)-Oxo Analogue. Angew Chem Int Ed Engl 2016; 55:3709-13. [PMID: 26890463 DOI: 10.1002/anie.201600287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/26/2016] [Indexed: 01/09/2023]
Abstract
Reactions of N,N-dimethylaniline (DMA) with nonheme iron(IV)-oxo and iron(IV)-tosylimido complexes occur via different mechanisms, such as an N-demethylation of DMA by a nonheme iron(IV)-oxo complex or an electron transfer dimerization of DMA by a nonheme iron(IV)-tosylimido complex. The change in the reaction mechanism results from the greatly enhanced electron transfer reactivity of the iron(IV)-tosylimido complex, such as the much more positive one-electron reduction potential and the smaller reorganization energy during electron transfer, as compared to the electron transfer properties of the corresponding iron(IV)-oxo complex.
Collapse
Affiliation(s)
- Anil Kumar Vardhaman
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Kei Ohkubo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, ALCA, SENTAN, Japan Science and Technology Agency (JST), Meijo University, Nagoya, Aichi, 468-0073, Japan.,Department of Material and Life Science, Graduate School of Engineering, ALCA, SENTAN, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, ALCA, SENTAN, Japan Science and Technology Agency (JST), Meijo University, Nagoya, Aichi, 468-0073, Japan
| |
Collapse
|
24
|
Wang L, Hu L, Zhang H, Chen H, Deng L. Three-Coordinate Iron(IV) Bisimido Complexes with Aminocarbene Ligation: Synthesis, Structure, and Reactivity. J Am Chem Soc 2015; 137:14196-207. [DOI: 10.1021/jacs.5b09579] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Wang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Lianrui Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hezhong Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hui Chen
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liang Deng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
25
|
|
26
|
Zhai F, Jordan RF. Hydrogen Bonding Behavior of Amide-Functionalized α-Diimine Palladium Complexes. Organometallics 2014. [DOI: 10.1021/om500978n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Feng Zhai
- Department of Chemistry, The University of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| | - Richard F. Jordan
- Department of Chemistry, The University of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Cook SA, Ziller JW, Borovik AS. Iron(II) complexes supported by sulfonamido tripodal ligands: endogenous versus exogenous substrate oxidation. Inorg Chem 2014; 53:11029-35. [PMID: 25264932 PMCID: PMC4203402 DOI: 10.1021/ic501531g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
High-valent
iron species are known to act as powerful oxidants in both natural
and synthetic systems. While biological enzymes have evolved to prevent
self-oxidation by these highly reactive species, development of organic
ligand frameworks that are capable of supporting a high-valent iron
center remains a challenge in synthetic chemistry. We describe here
the reactivity of an Fe(II) complex that is supported by a tripodal
sulfonamide ligand with both dioxygen and an oxygen-atom transfer
reagent, 4-methylmorpholine-N-oxide (NMO). An Fe(III)–hydroxide
complex is obtained from reaction with dioxygen, while NMO gives
an Fe(III)–alkoxide product resulting from activation of a
C–H bond of the ligand. Inclusion of Ca2+ ions in
the reaction with NMO prevented this ligand activation and resulted
in isolation of an Fe(III)–hydroxide complex in which the Ca2+ ion is coordinated to the tripodal sulfonamide ligand and
the hydroxo ligand. Modification of the ligand allowed the Fe(III)–hydroxide
complex to be isolated from NMO in the absence of Ca2+ ions,
and a C–H bond of an external substrate could be activated
during the reaction. This study highlights the importance of robust
ligand design in the development of synthetic catalysts that utilize
a high-valent iron center. Oxidation of an
Fe(II) complex supported by a sulfonamido tripodal ligand was explored
with dioxygen and an O-atom transfer reagent. While dioxygen gave
an Fe(III)−hydroxido complex, the O-atom transfer reagent resulted
in C−H activation of the ligand to form an Fe(III)−alkoxide
species. Modification of the ligand prevented this ligand oxidation
and allowed for activation of C−H bonds on an external substrate.
Collapse
Affiliation(s)
- Sarah A Cook
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences II, Irvine, California 92697, United States
| | | | | |
Collapse
|
28
|
Milsmann C, Semproni SP, Chirik PJ. N–N Bond Cleavage of 1,2-Diarylhydrazines and N–H Bond Formation via H-Atom Transfer in Vanadium Complexes Supported by a Redox-Active Ligand. J Am Chem Soc 2014; 136:12099-107. [DOI: 10.1021/ja5062196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carsten Milsmann
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Scott P. Semproni
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Gouré E, Avenier F, Dubourdeaux P, Sénèque O, Albrieux F, Lebrun C, Clémancey M, Maldivi P, Latour JM. A Diiron(III,IV) Imido Species Very Active in Nitrene-Transfer Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201307429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Gouré E, Avenier F, Dubourdeaux P, Sénèque O, Albrieux F, Lebrun C, Clémancey M, Maldivi P, Latour JM. A Diiron(III,IV) Imido Species Very Active in Nitrene-Transfer Reactions. Angew Chem Int Ed Engl 2014; 53:1580-4. [DOI: 10.1002/anie.201307429] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/14/2013] [Indexed: 11/06/2022]
|
31
|
Singh R, Bordeaux M, Fasan R. P450-catalyzed intramolecular sp3 C-H amination with arylsulfonyl azide substrates. ACS Catal 2014; 4:546-552. [PMID: 24634794 PMCID: PMC3949735 DOI: 10.1021/cs400893n] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The direct amination of aliphatic
C–H bonds represents a
most valuable transformation in organic chemistry. While a number
of transition-metal-based catalysts have been developed and investigated
for this purpose, the possibility to execute this transformation with
biological catalysts has remained largely unexplored. Here, we report
that cytochrome P450 enzymes can serve as efficient catalysts for
mediating intramolecular benzylic C–H amination reactions in
a variety of arylsulfonyl azide compouds. Under optimized conditions,
the P450 catalysts were found to support up to 390 total turnovers
leading to the formation of the desired sultam products with excellent
regioselectivity. In addition, the chiral environment provided by
the enzyme active site allowed for the reaction to proceed in a stereo-
and enantioselective manner. The C–H amination activity, substrate
profile, and enantio/stereoselectivity of these catalysts could be
modulated by utilizing enzyme variants with engineered active sites.
Collapse
Affiliation(s)
- Ritesh Singh
- Department
of Chemistry, University of Rochester, Rochester, NY 14627
| | - Melanie Bordeaux
- Department
of Chemistry, University of Rochester, Rochester, NY 14627
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, NY 14627
| |
Collapse
|
32
|
Sazama GT, Betley TA. Multiple, disparate redox pathways exhibited by a tris(pyrrolido)ethane iron complex. Inorg Chem 2013; 53:269-81. [PMID: 24320208 DOI: 10.1021/ic402210j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron(III) complexes of the tris(pyrrolide)ethane trianion have been synthesized by reaction of one- and two-electron oxidants with [(tpe)Fe(THF)][Li(THF)4] (tpe = tris(5-mesitylpyrrolyl)ethane). X-ray crystallography, (57)Fe Mössbauer, (1)H NMR and EPR spectroscopy, SQUID magnetometry, and density functional theory calculations were employed to rigorously establish the iron 3+ oxidation state. All oxidants employed are proposed to operate via an inner-sphere electron transfer mechanism. Dialkyl peroxides and dibenzyldisulfide served to oxidize iron by one electron, and group transfer of an aryl nitrene unit to the Fe(2+) starting material resulted in formation of Fe(3+) amido species following H-atom abstraction by a presumed nitrenoid intermediate. Single electron transfer to and from diphenyldiazoalkane was also observed to yield a diphenyldiazomethanyl radical anion antiferromagnetically coupled to the S = 5/2 Fe(3+). Isolation of Fe(3+) complexes of tpe, in comparison with previous results wherein the tpe ligand was the redox active moiety, presents an unusual juxtaposition of two noncommunicating redox reservoirs, each accessible via different reaction pathways (namely, inner- and outer-sphere electron transfer).
Collapse
Affiliation(s)
- Graham T Sazama
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
33
|
Xiao J, Deng L. Iron-mediated C-H bond amination by organic azides on a tripodal bis(anilido)iminophosphorane platform. Dalton Trans 2013; 42:5607-10. [PMID: 23478513 DOI: 10.1039/c3dt50518a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bis(anilido)iminophosphorane complex, abbreviated as [((Mes)N2N(Ad))Fe(THF)], can react with alkyl azides to yield ligand-based C-H bond amination products suggesting the high reactivity of iron(IV)-imido species supported by the tripodal bis(anilido)iminophosphorane ligand platform [(Mes)N2N(Ad)](2-).
Collapse
Affiliation(s)
- Jie Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | | |
Collapse
|
34
|
Liu Y, Guan X, Wong ELM, Liu P, Huang JS, Che CM. Nonheme iron-mediated amination of C(sp3)-H bonds. Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations. J Am Chem Soc 2013; 135:7194-204. [PMID: 23634746 DOI: 10.1021/ja3122526] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The 7-coordinate complex [Fe(qpy)(MeCN)2](ClO4)2 (1, qpy = 2,2':6',2″:6″,2''':6''',2''''-quinquepyridine) is a highly active nonheme iron catalyst for intra- and intermolecular amination of C(sp(3))-H bonds. This complex effectively catalyzes the amination of limiting amounts of not only benzylic and allylic C(sp(3))-H bonds of hydrocarbons but also the C(sp(3))-H bonds of cyclic alkanes and cycloalkane/linear alkane moieties in sulfamate esters, such as those derived from menthane and steroids cholane and androstane, using PhI═NR or "PhI(OAc)2 + H2NR" [R = Ts (p-toluenesulfonyl), Ns (p-nitrobenzenesulfonyl)] as nitrogen source, with the amination products isolated in up to 93% yield. Iron imide/nitrene intermediates [Fe(qpy)(NR)(X)](n+) (CX, X = NR, solvent, or anion) are proposed in these amination reactions on the basis of experimental studies including ESI-MS analysis, crossover experiments, Hammett plots, and correlation with C-H bond dissociation energies and with support by DFT calculations. Species consistent with the formulations of [Fe(qpy)(NTs)2](2+) (CNTs) and [Fe(qpy)(NTs)](2+) (C) were detected by high-resolution ESI-MS analysis of the reaction mixture of 1 with PhI═NTs (4 equiv). DFT calculations revealed that the reaction barriers for H-atom abstraction of cyclohexane by the ground state of 7-coordinate CNTs and ground state of C are 15.3 and 14.2 kcal/mol, respectively, in line with the observed high activity of 1 in catalyzing the C-H amination of alkanes under mild conditions.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | | | | | |
Collapse
|
35
|
Lacy DC, Mukherjee J, Lucas RL, Day VW, Borovik A. Metal complexes with varying intramolecular hydrogen bonding networks. Polyhedron 2013; 52:261-267. [PMID: 24904193 PMCID: PMC4043334 DOI: 10.1016/j.poly.2012.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alfred Werner described the attributes of the primary and secondary coordination spheres in his development of coordination chemistry. To examine the effects of the secondary coordination sphere on coordination chemistry, a series of tripodal ligands containing differing numbers of hydrogen bond (H-bond) donors were used to examine the effects of H-bonds on Fe(II), Mn(II)-acetato, and Mn(III)-OH complexes. The ligands containing varying numbers of urea and amidate donors allowed for systematic changes in the secondary coordination spheres of the complexes. Two of the Fe(II) complexes that were isolated as their Bu4N+ salts formed dimers in the solid-state as determined by X-ray diffraction methods, which correlates with the number of H-bonds present in the complexes (i.e., dimerization is favored as the number of H-bond donors increases). Electron paramagnetic resonance (EPR) studies suggested that the dimeric structures persist in acetonitrile. The Mn(II) complexes were all isolated as their acetato adducts. Furthermore, the synthesis of a rare Mn(III)-OH complex via dioxygen activation was achieved that contains a single intramolecular H-bond; its physical properties are discussed within the context of other Mn(III)-OH complexes.
Collapse
Affiliation(s)
- David C. Lacy
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697, United States
| | - Jhumpa Mukherjee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697, United States
| | - Robie L. Lucas
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - A.S. Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697, United States
| |
Collapse
|
36
|
Tang H, Guan J, Liu H, Huang X. Comparative Insight into Electronic Properties and Reactivities toward C–H Bond Activation by Iron(IV)–Nitrido, Iron(IV)–Oxo, and Iron(IV)–Sulfido Complexes: A Theoretical Investigation. Inorg Chem 2013; 52:2684-96. [DOI: 10.1021/ic302766f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hao Tang
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Jia Guan
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Huiling Liu
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Xuri Huang
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| |
Collapse
|
37
|
Wang X, Mo Z, Xiao J, Deng L. Monomeric Bis(anilido)iron(II) Complexes with N-Heterocyclic Carbene Ligation: Synthesis, Characterization, and Redox Reactivity toward Aryl Halides. Inorg Chem 2012; 52:59-65. [DOI: 10.1021/ic301894e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, P.
R. China, 200032
| | - Zhenbo Mo
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, P.
R. China, 200032
| | - Jie Xiao
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, P.
R. China, 200032
| | - Liang Deng
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, P.
R. China, 200032
| |
Collapse
|
38
|
Cellulose sulphuric acid as a biodegradable catalyst for conversion of aryl amines into azides at room temperature under mild conditions. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0261-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Cowley RE, Holland PL. Ligand effects on hydrogen atom transfer from hydrocarbons to three-coordinate iron imides. Inorg Chem 2012; 51:8352-61. [PMID: 22800175 DOI: 10.1021/ic300870y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new β-diketiminate ligand with 2,4,6-tri(phenyl)phenyl N-substituents provides protective bulk around the metal without exposing any weak C-H bonds. This ligand improves the stability of reactive iron(III) imido complexes with Fe═NAd and Fe═NMes functional groups (Ad = 1-adamantyl; Mes = mesityl). The new ligand gives iron(III) imido complexes that are significantly more reactive toward 1,4-cyclohexadiene than the previously reported 2,6-diisopropylphenyl diketiminate variants. Analysis of X-ray crystal structures implicates Fe═N-C bending, a longer Fe═N bond, and greater access to the metal as potential reasons for the increase in C-H bond activation rates.
Collapse
Affiliation(s)
- Ryan E Cowley
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | |
Collapse
|
40
|
Zhang Q, Xiang L, Deng L. Dinuclear Iron–Imido Complexes with N-Heterocyclic Carbene Ligation: Synthesis, Structure, and Redox Reactivity. Organometallics 2012. [DOI: 10.1021/om300319n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qiang Zhang
- State Key
Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345
Lingling Road, Shanghai 200032, People’s Republic of
China
| | - Li Xiang
- State Key
Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345
Lingling Road, Shanghai 200032, People’s Republic of
China
| | - Liang Deng
- State Key
Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345
Lingling Road, Shanghai 200032, People’s Republic of
China
| |
Collapse
|
41
|
|
42
|
Jaccob M, Rajaraman G. A computational examination on the structure, spin-state energetics and spectroscopic parameters of high-valent FeIVNTs species. Dalton Trans 2012; 41:10430-9. [DOI: 10.1039/c2dt31071f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Wang Q, Tang K, Jin X, Huang X, Liu W, Yao X, Tang Y. Lanthanide complexes assembled from two flexible amide-type tripodal ligands: terminal groups effect on photoluminescence behavior. Dalton Trans 2012; 41:3431-8. [DOI: 10.1039/c2dt11761d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Synthesis of two-coordinate iron aryloxides and their reactions with organic azide: Intramolecular C–H bond amination. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.06.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Karimi Zarchi MA, Nabaei R. Solvent-free diazotization-azidation of aryl amine using a polymer-supported azide ion. J Appl Polym Sci 2011. [DOI: 10.1002/app.35294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Bowman AC, Milsmann C, Bill E, Turner ZR, Lobkovsky E, DeBeer S, Wieghardt K, Chirik PJ. Synthesis and electronic structure determination of N-alkyl-substituted bis(imino)pyridine iron imides exhibiting spin crossover behavior. J Am Chem Soc 2011; 133:17353-69. [PMID: 21985461 DOI: 10.1021/ja205736m] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.
Collapse
Affiliation(s)
- Amanda C Bowman
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cowley RE, Eckert NA, Vaddadi S, Figg TM, Cundari TR, Holland PL. Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex. J Am Chem Soc 2011; 133:9796-811. [DOI: 10.1021/ja2005303] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ryan E. Cowley
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Nathan A. Eckert
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Sridhar Vaddadi
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas, 76203, United States
| | - Travis M. Figg
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas, 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas, 76203, United States
| | - Patrick L. Holland
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| |
Collapse
|
48
|
Saouma CT, Peters JC. M≡E and M=E Complexes of Iron and Cobalt that Emphasize Three-fold Symmetry (E = O, N, NR). Coord Chem Rev 2011; 255:920-937. [PMID: 21625302 PMCID: PMC3103469 DOI: 10.1016/j.ccr.2011.01.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mid-to-late transition metal complexes that feature terminal, multiply bonded ligands such as oxos, imides, and nitrides have been invoked as intermediates in several catalytic transformations of synthetic and biological significance. Until about ten years ago, isolable examples of such species were virtually unknown. Over the past decade or so, numerous chemically well-defined examples of such species have been discovered. In this context, the presentreview summarizes the development of 4- and 5-coordinate Fe(E) and Co(E) species under local three-fold symmetry.
Collapse
Affiliation(s)
- Caroline T. Saouma
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
49
|
Soo HS, Sougrati MT, Grandjean F, Long GJ, Chang CJ. A seven-coordinate iron platform and its oxo and nitrene reactivity. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.12.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
England J, Farquhar ER, Guo Y, Cranswick MA, Ray K, Münck E, Que L. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners. Inorg Chem 2011; 50:2885-96. [PMID: 21381646 DOI: 10.1021/ic102094d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.
Collapse
Affiliation(s)
- Jason England
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|