1
|
Desbois A, Valton J, Moreau Y, Torelli S, Nivière V. Conformational H-bonding modulation of the iron active site cysteine ligand of superoxide reductase: absorption and resonance Raman studies. Phys Chem Chem Phys 2021; 23:4636-4645. [PMID: 33527107 DOI: 10.1039/d0cp03898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superoxide reductases (SORs) are mononuclear non-heme iron enzymes involved in superoxide radical detoxification in some microorganisms. Their atypical active site is made of an iron atom pentacoordinated by four equatorial nitrogen atoms from histidine residues and one axial sulfur atom from a cysteinate residue, which plays a central role in catalysis. In most SORs, the residue immediately following the cysteinate ligand is an asparagine, which belongs to the second coordination sphere and is expected to have a critical influence on the properties of the active site. In this work, in order to investigate the role of this asparagine residue in the Desulfoarculus baarsii enzyme (Asn117), we carried out, in comparison with the wild-type enzyme, absorption and resonance Raman (RR) studies on a SOR mutant in which Asn117 was changed into an alanine. RR analysis was developed in order to assign the different bands using excitation in the (Cys116)-S-→ Fe3+ charge transfer band. By investigating the correlation between the (Cys116)-S-→ Fe3+ charge transfer band maximum with the frequency of each RR band in different SOR forms, we assessed the contribution of the ν(Fe-S) vibration among the different RR bands. The data showed that Asn117, by making hydrogen bond interactions with Lys74 and Tyr76, allows a rigidification of the backbone of the Cys116 ligand, as well as that of the neighboring residues Ile118 and His119. Such a structural role of Asn117 has a deep impact on the S-Fe bond. It results in a tight control of the H-bond distance between the Ile118 and His119 NH peptidic moiety with the cysteine sulfur ligand, which in turn enables fine-tuning of the S-Fe bond strength, an essential property for the SOR active site. This study illustrates the intricate roles of second coordination sphere residues to adjust the ligand to metal bond properties in the active site of metalloenzymes.
Collapse
Affiliation(s)
- Alain Desbois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
2
|
Martins MC, Romão CV, Folgosa F, Borges PT, Frazão C, Teixeira M. How superoxide reductases and flavodiiron proteins combat oxidative stress in anaerobes. Free Radic Biol Med 2019; 140:36-60. [PMID: 30735841 DOI: 10.1016/j.freeradbiomed.2019.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Microbial anaerobes are exposed in the natural environment and in their hosts, even if transiently, to fluctuating concentrations of oxygen and its derived reactive species, which pose a considerable threat to their anoxygenic lifestyle. To counteract these stressful conditions, they contain a multifaceted array of detoxifying systems that, in conjugation with cellular repairing mechanisms and in close crosstalk with metal homeostasis, allow them to survive in the presence of O2 and reactive oxygen species. Some of these systems are shared with aerobes, but two families of enzymes emerged more recently that, although not restricted to anaerobes, are predominant in anaerobic microbes. These are the iron-containing superoxide reductases, and the flavodiiron proteins, endowed with O2 and/or NO reductase activities, which are the subject of this Review. A detailed account of their physicochemical, physiological and molecular mechanisms will be presented, highlighting their unique properties in allowing survival of anaerobes in oxidative stress conditions, and comparing their properties with the most well-known detoxifying systems.
Collapse
Affiliation(s)
- Maria C Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
3
|
Gao J, Yin J, Tao Z, Liu Y, Lin X, Deng J, Wang S. An Ultrasensitive Fluorescence Sensor with Simple Operation for Cu 2+ Specific Detection in Drinking Water. ACS OMEGA 2018; 3:3045-3050. [PMID: 31458569 PMCID: PMC6641449 DOI: 10.1021/acsomega.7b01497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
Whether short-term or long-term, overexposure to an abnormal amount of copper ion does significant harm to human health. Considering its nonbiodegradability, it is critical to sensitively detect copper ion. Herein, a novel fluorescent strategy with a "turn-on" signal was developed for highly sensitive and specific detection of copper ion (Cu2+). In the present investigation, we found that Cu2+ exhibits excellent peroxidase-like catalytic activity toward oxidizing the nonfluorescent substrate of Amplex Red into the product of resofurin with outstanding fluorescence emission under the aid of H2O2. Thus, an enzyme-free and label-free sensing system was constructed for copper ion detection with quite simple operation. To ensure the detection sensitivity and reproducibility, the amount of H2O2 and incubation time were optimized. The limit of detection can reach as low as 1.0 nM. In addition, the developed assay demonstrated excellent specificity and could be utilized to detect copper ion in water samples including tap water and bottled purified water without standing recovery.
Collapse
Affiliation(s)
- Jinting Gao
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinjin Yin
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhanhui Tao
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Liu
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Lin
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiankang Deng
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 30071, China
| |
Collapse
|
4
|
Speciation in iron epoxidation catalysis: A perspective on the discovery and role of non-heme iron(III)-hydroperoxo species in iron-catalyzed oxidation reactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Fujikawa M, Kobayashi K, Tsutsui Y, Tanaka T, Kozawa T. Rational Tuning of Superoxide Sensitivity in SoxR, the [2Fe-2S] Transcription Factor: Implications of Species-Specific Lysine Residues. Biochemistry 2017; 56:403-410. [DOI: 10.1021/acs.biochem.6b01096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mayu Fujikawa
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Yuko Tsutsui
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Tanaka
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| |
Collapse
|
6
|
Horch M, Utesch T, Hildebrandt P, Mroginski MA, Zebger I. Domain motions and electron transfer dynamics in 2Fe-superoxide reductase. Phys Chem Chem Phys 2016; 18:23053-66. [DOI: 10.1039/c6cp03666j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical studies on 2Fe-superoxide reductase provide mechanistic insights into structural dynamics and electron transfer efficiencies.
Collapse
Affiliation(s)
- Marius Horch
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Tillmann Utesch
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Peter Hildebrandt
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | | | - Ingo Zebger
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| |
Collapse
|
7
|
Pinto AF, Romão CV, Pinto LC, Huber H, Saraiva LM, Todorovic S, Cabelli D, Teixeira M. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue. J Biol Inorg Chem 2015; 20:155-164. [PMID: 25476860 DOI: 10.1007/s00775-014-1222-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.
Collapse
Affiliation(s)
- Ana F Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177, Stockholm, Sweden
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Liliana C Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Harald Huber
- Lehrstuhl fuer Mikrobiologie, Universität Regensburg, 93053, Regensburg, Germany
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Diane Cabelli
- Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.
| |
Collapse
|
8
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
9
|
Kobayashi K, Fujikawa M, Kozawa T. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J Inorg Biochem 2013; 133:87-91. [PMID: 24332474 DOI: 10.1016/j.jinorgbio.2013.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
All bacteria are continuously exposed to environmental and/or endogenously active oxygen and nitrogen compounds and radicals. To reduce the deleterious effects of these reactive species, most bacteria have evolved specific sensor proteins that regulate the expression of enzymes that detoxify these species and repair proteins. Some bacterial transcriptional regulators containing an iron-sulfur cluster are involved in coordinating these physiological responses. Mechanistic and structural information can show how these regulators function, in particular, how chemical interactions at the cluster drive subsequent regulatory responses. The [2Fe-2S] transcription factor SoxR (superoxide response) functions as a bacterial sensor of oxidative stress and nitric oxide (NO). This review focuses on the mechanisms by which SoxR proteins respond to oxidative stress.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Mayu Fujikawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
10
|
Tremey E, Bonnot F, Moreau Y, Berthomieu C, Desbois A, Favaudon V, Blondin G, Houée-Levin C, Nivière V. Hydrogen bonding to the cysteine ligand of superoxide reductase: acid–base control of the reaction intermediates. J Biol Inorg Chem 2013; 18:815-30. [DOI: 10.1007/s00775-013-1025-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
|
11
|
Fujikawa M, Kobayashi K, Kozawa T. Direct oxidation of the [2Fe-2S] cluster in SoxR protein by superoxide: distinct differential sensitivity to superoxide-mediated signal transduction. J Biol Chem 2012; 287:35702-35708. [PMID: 22908228 PMCID: PMC3471711 DOI: 10.1074/jbc.m112.395079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/17/2012] [Indexed: 11/06/2022] Open
Abstract
The [2Fe-2S] transcription factor SoxR is activated by reversible one-electron oxidation of its [2Fe-2S] cluster, leading to enhanced production of various antioxidant proteins through induction of the soxRS regulon in Escherichia coli. Recently, there has been considerable debate about whether superoxide (O(2)(•)) activates SoxR directly. To elucidate the underlying activation mechanism, we investigated SoxR interaction with O(2)(•) using pulse radiolysis. Radiolytically generated hydrated electrons reduced the oxidized form of the [2Fe-2S] cluster of SoxR within 2 μs. A subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Addition of human copper/zinc superoxide dismutase inhibited this delayed oxidation in a concentration-dependent fashion (I(50) = 1.0 μm), indicating that O(2)(•) oxidized the reduced form of SoxR directly. The second-order rate constant of this process was estimated to be 5 × 10(8) m(-1) s(-1). A similar result was observed after pulse radiolysis of Pseudomonas aeruginosa SoxR. However, superoxide dismutase inhibited the oxidation of reduced SoxR much more effectively in P. aeruginosa, even at a lower concentration (I(50) = 80 nm), indicating that the soxRS response is much more sensitive to O(2)(•) in E. coli than in P. aeruginosa. These results suggest that SoxR proteins play a distinct regulatory role in the activation of O(2)(•).
Collapse
Affiliation(s)
- Mayu Fujikawa
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuo Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Takahiro Kozawa
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
12
|
Bonnot F, Molle T, Ménage S, Moreau Y, Duval S, Favaudon V, Houée-Levin C, Nivière V. Control of the Evolution of Iron Peroxide Intermediate in Superoxide Reductase from Desulfoarculus baarsii. Involvement of Lysine 48 in Protonation. J Am Chem Soc 2012; 134:5120-30. [DOI: 10.1021/ja209297n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florence Bonnot
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Thibaut Molle
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Stéphane Ménage
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Yohann Moreau
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Simon Duval
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Vincent Favaudon
- Institut Curie, Inserm U612, Bâtiment 110-112,
Centre Universitaire 91405
Orsay Cedex, France
| | - Chantal Houée-Levin
- Laboratoire
de Chimie Physique,
UMR8000 CNRS/Université Paris-Sud, Bâtiment 350, Centre Universitaire 91405 Orsay Cedex, France
| | - Vincent Nivière
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| |
Collapse
|
13
|
Testa F, Mastronicola D, Cabelli DE, Bordi E, Pucillo LP, Sarti P, Saraiva LM, Giuffrè A, Teixeira M. The superoxide reductase from the early diverging eukaryote Giardia intestinalis. Free Radic Biol Med 2011; 51:1567-74. [PMID: 21839165 DOI: 10.1016/j.freeradbiomed.2011.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/02/2011] [Accepted: 07/20/2011] [Indexed: 12/13/2022]
Abstract
Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.
Collapse
Affiliation(s)
- Fabrizio Testa
- Department of Biochemical Sciences, CNR Institute of Molecular Biology and Pathology, Sapienza Università di Roma, I-00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway. Biochem J 2011; 438:485-94. [DOI: 10.1042/bj20110836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two iron-centre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8×107 M−1·s−1 and 1.3×106 M−1·s−1 for SORFe(IIII)-Fe(II) and for SORFe(IIII)-Fe(III) forms respectively, and 3.2×106 M−1·s−1 for the SORZn(II)-Fe(III) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.
Collapse
|
15
|
Lucchetti-Miganeh C, Goudenège D, Thybert D, Salbert G, Barloy-Hubler F. SORGOdb: Superoxide Reductase Gene Ontology curated DataBase. BMC Microbiol 2011; 11:105. [PMID: 21575179 PMCID: PMC3116461 DOI: 10.1186/1471-2180-11-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.
Collapse
Affiliation(s)
- Céline Lucchetti-Miganeh
- CNRS UMR 6026, ICM, Equipe Sp@rte, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.
| | | | | | | | | |
Collapse
|
16
|
Nam E, Alokolaro PE, Swartz RD, Gleaves MC, Pikul J, Kovacs JA. Investigation of the mechanism of formation of a thiolate-ligated Fe(III)-OOH. Inorg Chem 2011; 50:1592-602. [PMID: 21284379 DOI: 10.1021/ic101776m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic studies aimed at determining the most probable mechanism for the proton-dependent [Fe(II)(S(Me2)N(4)(tren))](+) (1) promoted reduction of superoxide via a thiolate-ligated hydroperoxo intermediate [Fe(III)(S(Me2)N(4)(tren))(OOH)](+) (2) are described. Rate laws are derived for three proposed mechanisms, and it is shown that they should conceivably be distinguishable by kinetics. For weak proton donors with pK(a(HA)) > pK(a(HO(2))) rates are shown to correlate with proton donor pK(a), and display first-order dependence on iron, and half-order dependence on superoxide and proton donor HA. Proton donors acidic enough to convert O(2)(-) to HO(2) (in tetrahydrofuran, THF), that is, those with pK(a(HA)) < pK(a(HO(2))), are shown to display first-order dependence on both superoxide and iron, and rates which are independent of proton donor concentration. Relative pK(a) values were determined in THF by measuring equilibrium ion pair acidity constants using established methods. Rates of hydroperoxo 2 formation displays no apparent deuterium isotope effect, and bases, such as methoxide, are shown to inhibit the formation of 2. Rate constants for p-substituted phenols are shown to correlate linearly with the Hammett substituent constants σ(-). Activation parameters ((ΔH(++) = 2.8 kcal/mol, ΔS(++) = -31 eu) are shown to be consistent with a low-barrier associative mechanism that does not involve extensive bond cleavage. Together, these data are shown to be most consistent with a mechanism involving the addition of HO(2) to 1 with concomitant oxidation of the metal ion, and reduction of superoxide (an "oxidative addition" of sorts), in the rate-determining step. Activation parameters for MeOH- (ΔH(++) = 13.2 kcal/mol and ΔS(++) = -24.3 eu), and acetic acid- (ΔH(++) = 8.3 kcal/mol and ΔS(++) = -34 eu) promoted release of H(2)O(2) to afford solvent-bound [Fe(III)(S(Me2)N(4)(tren))(OMe)](+) (3) and [Fe(III)(S(Me2)N(4)(tren))(O(H)Me)](+) (4), respectively, are shown to be more consistent with a reaction involving rate-limiting protonation of an Fe(III)-OOH, than with one involving rate-limiting O-O bond cleavage. The observed deuterium isotope effect (k(H)/k(D) = 3.1) is also consistent with this mechanism.
Collapse
Affiliation(s)
- Elaine Nam
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
D’Anna F, Marullo S, Vitale P, Noto R. Electronic and Steric Effects: How Do They Work in Ionic Liquids? The Case of Benzoic Acid Dissociation. J Org Chem 2010; 75:4828-34. [DOI: 10.1021/jo100914p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Francesca D’Anna
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| | - Salvatore Marullo
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| | - Paola Vitale
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| | - Renato Noto
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| |
Collapse
|
19
|
Bonnot F, Houée-Levin C, Favaudon V, Nivière V. Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide: re-evaluation of the reaction mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:762-7. [PMID: 19962458 DOI: 10.1016/j.bbapap.2009.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/30/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022]
Abstract
Superoxide reductase SOR is an enzyme involved in superoxide detoxification in some microorganisms. Its active site consists of a non-heme ferrous center in an unusual [Fe(NHis)(4) (SCys)(1)] square pyramidal pentacoordination that efficiently reduces superoxide into hydrogen peroxide. In previous works, the reaction mechanism of the SOR from Desulfoarculus baarsii enzyme, studied by pulse radiolysis, was shown to involve the formation of two reaction intermediates T1 and T2. However, the absorption spectrum of T2 was reported with an unusual sharp band at 625 nm, very different from that reported for other SORs. In this work, we show that the sharp band at 625 nm observed by pulse radiolysis reflects the presence of photochemical processes that occurs at the level of the transient species formed during the reaction of SOR with superoxide. These processes do not change the stoichiometry of the global reaction. These data highlight remarkable photochemical properties for these reaction intermediates, not previously suspected for iron-peroxide species formed in the SOR active site. We have reinvestigated the reaction mechanism of the SOR from D. baarsii by pulse radiolysis in the absence of these photochemical processes. The T1 and T2 intermediates now appear to have absorption spectra similar to those reported for the Archaeoglobus fulgidus SOR enzymes. Although for some enzymes of the family only one transient was reported, on the whole, the reaction mechanisms of the different SORs studied so far seem very similar, which is in agreement with the strong sequence and structure homologies of their active sites.
Collapse
Affiliation(s)
- Florence Bonnot
- Laboratoire de Chimie et Biologie des Métaux, CEA iRTSV, CNRS, Université Joseph Fourier, UMR 5249, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
20
|
Pinto AF, Rodrigues JV, Teixeira M. Reductive elimination of superoxide: Structure and mechanism of superoxide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:285-97. [PMID: 19857607 DOI: 10.1016/j.bbapap.2009.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Superoxide anion is among the deleterious reactive oxygen species, towards which all organisms have specialized detoxifying enzymes. For quite a long time, superoxide elimination was thought to occur through its dismutation, catalyzed by Fe, Cu, and Mn or, as more recently discovered, by Ni-containing enzymes. However, during the last decade, a novel type of enzyme was established that eliminates superoxide through its reduction: the superoxide reductases, which are spread among anaerobic and facultative microorganisms, from the three life kingdoms. These enzymes share the same unique catalytic site, an iron ion bound to four histidines and a cysteine that, in its reduced form, reacts with superoxide anion with a diffusion-limited second order rate constant of approximately 10(9) M(-1) s(-1). In this review, the properties of these enzymes will be thoroughly discussed.
Collapse
Affiliation(s)
- Ana Filipa Pinto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
21
|
Contribution of human manganese superoxide dismutase tyrosine 34 to structure and catalysis. Biochemistry 2009; 48:3417-24. [PMID: 19265433 PMCID: PMC2756076 DOI: 10.1021/bi8023288] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Superoxide dismutase (SOD) enzymes are critical in controlling levels of reactive oxygen species (ROS) that are linked to aging, cancer, and neurodegenerative disease. Superoxide (O(2)(*-)) produced during respiration is removed by the product of the SOD2 gene, the homotetrameric manganese superoxide dismutase (MnSOD). Here, we examine the structural and catalytic roles of the highly conserved active-site residue Tyr34, based upon structure-function studies of MnSOD enzymes with mutations at this site. Substitution of Tyr34 with five different amino acids retained the active-site protein structure and assembly but caused a substantial decrease in the catalytic rate constant for the reduction of superoxide. The rate constant for formation of the product inhibition complex also decreases but to a much lesser extent, resulting in a net increase in the level of product inhibited form of the mutant enzymes. Comparisons of crystal structures and catalytic rates also suggest that one mutation, Y34V, interrupts the hydrogen-bonded network, which is associated with a rapid dissociation of the product-inhibited complex. Notably, with three of the Tyr34 mutants, we also observe an intermediate in catalysis, which has not been reported previously. Thus, these mutants establish a means of trapping a catalytic intermediate that promises to help elucidate the mechanism of catalysis.
Collapse
|
22
|
Todorovic S, Rodrigues JV, Pinto AF, Thomsen C, Hildebrandt P, Teixeira M, Murgida DH. Resonance Raman study of the superoxide reductase from Archaeoglobus fulgidus, E12 mutants and a ‘natural variant’. Phys Chem Chem Phys 2009; 11:1809-15. [DOI: 10.1039/b815489a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Brioukhanov AL. Nonheme iron proteins as an alternative system of antioxidant defense in the cells of strictly anaerobic microorganisms: A review. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s0003683808040017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Kitagawa T, Dey A, Lugo-Mas P, Benedict JB, Kaminsky W, Solomon E, Kovacs JA. A functional model for the cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR). J Am Chem Soc 2007; 128:14448-9. [PMID: 17090014 PMCID: PMC2532059 DOI: 10.1021/ja064870d] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superoxide reductases (SORs) are cysteine-ligated, non-heme iron enzymes that reduce toxic superoxide radicals (O2-). The functional role of the trans cysteinate, as well as the mechanism by which SOR reduces O2-, is unknown. Herein is described a rare example of a functional metalloenzyme analogue, which catalytically reduces superoxide in a proton-dependent mechanism, via a trans thiolate-ligated iron-peroxo intermediate, the first example of its type. Acetic-acid-promoted H2O2 release, followed by Cp2Co reduction, regenerates the active Fe(II) catalyst. The thiolate ligand and its trans positioning relative to the substrate are shown to contribute significantly to the catalyst's function, by lowering the redox potential, changing the spin state, and dramatically lowering the nuFe-O stretching frequency well-below that of any other reported iron-peroxo, while leaving nuO-O high, so as to favor superoxide reduction and Fe-O, as opposed to O-O, bond cleavage. Thus we provide critical insight into the relationship between the SOR structure and its function, as well as important benchmark parameters for characterizing highly unstable thiolate-ligated iron-peroxo intermediates.
Collapse
|
25
|
Dey A, Jenney FE, Adams MWW, Johnson MK, Hodgson KO, Hedman B, Solomon EI. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity. J Am Chem Soc 2007; 129:12418-31. [PMID: 17887751 PMCID: PMC2533108 DOI: 10.1021/ja064167p] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results from the product release at the end of the O2- reduction cycle is calculated to be capable of reacting with a second O2-, resulting in superoxide dismutase (SOD) activity. However, in contrast to FeSOD, the 5C FeIII site of SOR, which is more positively charged, is calculated to have a high affinity for binding a sixth anionic ligand, which would inhibit its SOD activity.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Francis E. Jenney
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael W. W. Adams
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael K. Johnson
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| |
Collapse
|
26
|
Kovacs JA, Brines LM. Understanding how the thiolate sulfur contributes to the function of the non-heme iron enzyme superoxide reductase. Acc Chem Res 2007; 40:501-9. [PMID: 17536780 PMCID: PMC3703784 DOI: 10.1021/ar600059h] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Toxic superoxide radicals, generated via adventitious reduction of dioxygen, have been implicated in a number of disease states. The cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR) degrades superoxide via reduction. Biomimetic analogues which provide insight into why nature utilizes a trans-thiolate to promote SOR function are described. Spectroscopic and/or structural characterization of the first examples of thiolate-ligated Fe (III)-peroxo complexes provides important benchmark parameters for the identification of biological intermediates. Oxidative addition of superoxide is favored by low redox potentials. The trans influence of the thiolate appears to significantly weaken the Fe-O peroxo bond, favoring proton-induced release of H 2O 2 from a high-spin Fe(III)-OOH complex.
Collapse
Affiliation(s)
- Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
27
|
Pereira AS, Tavares P, Folgosa F, Almeida RM, Moura I, Moura JJG. Superoxide Reductases. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200700008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice S. Pereira
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Pedro Tavares
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Filipe Folgosa
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Rui M. Almeida
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Isabel Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - José J. G. Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| |
Collapse
|
28
|
Mathé C, Weill CO, Mattioli TA, Berthomieu C, Houée-Levin C, Tremey E, Nivière V. Assessing the role of the active-site cysteine ligand in the superoxide reductase from Desulfoarculus baarsii. J Biol Chem 2007; 282:22207-16. [PMID: 17545670 DOI: 10.1074/jbc.m700279200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide reductase is a novel class of non-heme iron proteins that catalyzes the one-electron reduction of O(2)(.) to H(2)O(2), providing an antioxidant defense in some bacteria. Its active site consists of an unusual non-heme Fe(2+) center in a [His(4) Cys(1)] square pyramidal pentacoordination. In this class of enzyme, the cysteine axial ligand has been hypothesized to be an essential feature in the reactivity of the enzyme. Previous Fourier transform infrared spectroscopy studies on the enzyme from Desulfoarculus baarsii revealed that a protonated carboxylate group, proposed to be the side chain of Glu(114), is in interaction with the cysteine ligand. In this work, using pulse radiolysis, Fourier transform infrared, and resonance Raman spectroscopies, we have investigated to what extent the presence of this Glu(114) carboxylic lateral chain affects the strength of the S-Fe bond and the reaction of the iron active site with superoxide. The E114A mutant shows significantly modified pulse radiolysis kinetics for the protonation process of the first reaction intermediate. Resonance Raman spectroscopy demonstrates that the E114A mutation results in both a strengthening of the S-Fe bond and an increase in the extent of freeze-trapping of a Fe-peroxo species after treatment with H(2)O(2) by a specific strengthening of the Fe-O bond. A fine tuning of the strength of the S-Fe bond by the presence of Glu(114) appears to be an essential factor for both the strength of the Fe-O bond and the pK(a) value of the Fe(3+)-peroxo intermediate species to form the reaction product H(2)O(2).
Collapse
Affiliation(s)
- Christelle Mathé
- Laboratoire de Chimie et Biologie des Métaux, iRTSV-CEA Grenoble/CNRS/Université Joseph Fourier, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Katona G, Carpentier P, Nivière V, Amara P, Adam V, Ohana J, Tsanov N, Bourgeois D. Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme. Science 2007; 316:449-53. [PMID: 17446401 DOI: 10.1126/science.1138885] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Iron-peroxide intermediates are central in the reaction cycle of many iron-containing biomolecules. We trapped iron(III)-(hydro)peroxo species in crystals of superoxide reductase (SOR), a nonheme mononuclear iron enzyme that scavenges superoxide radicals. X-ray diffraction data at 1.95 angstrom resolution and Raman spectra recorded in crystallo revealed iron-(hydro)peroxo intermediates with the (hydro)peroxo group bound end-on. The dynamic SOR active site promotes the formation of transient hydrogen bond networks, which presumably assist the cleavage of the iron-oxygen bond in order to release the reaction product, hydrogen peroxide.
Collapse
Affiliation(s)
- Gergely Katona
- Institut de Biologie Structurale (IBS) Jean-Pierre Ebel, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Brines LM, Kovacs JA. Understanding the Mechanism of Superoxide Reductase Promoted Reduction of Superoxide. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lisa M. Brines
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA, Fax: +1‐206‐685‐8665
| | - Julie A. Kovacs
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA, Fax: +1‐206‐685‐8665
| |
Collapse
|
31
|
Rodrigues JV, Saraiva LM, Abreu IA, Teixeira M, Cabelli DE. Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin. J Biol Inorg Chem 2006; 12:248-56. [PMID: 17066300 DOI: 10.1007/s00775-006-0182-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Superoxide reductases (SORs) are non-heme iron-containing enzymes that remove superoxide by reducing it to hydrogen peroxide. The active center of SORs consists of a ferrous ion coordinated by four histidines and one cysteine in a square-pyramidal geometry. In the 2Fe-SOR, a distinct family of SORs, there is an additional desulforedoxin-like site that does not appear to be involved in SOR activity. Our previous studies on recombinant Archaeoglobus fulgidus neelaredoxin (1Fe-SOR) have shown that the reaction with superoxide involves the formation of a transient ferric form that, upon protonation, decays to yield an Fe(3+)-OH species, followed by binding of glutamate to the ferric ion via replacement of hydroxide (Rodrigues et al. in Biochemistry 45:9266-9278, 2006). Here, we report the characterization of recombinant desulfoferrodoxin from the same organism, which is a member of the 2Fe-SOR family, and show that the steps involved in the superoxide reduction are similar in both families of SOR. The electron donation to the SOR from its redox partner, rubredoxin, is also presented here.
Collapse
Affiliation(s)
- João V Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2784-505, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
32
|
Rodrigues JV, Abreu IA, Cabelli D, Teixeira M. Superoxide reduction mechanism of Archaeoglobus fulgidus one-iron superoxide reductase. Biochemistry 2006; 45:9266-78. [PMID: 16866373 DOI: 10.1021/bi052489k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductases (SORs), iron-centered enzymes responsible for reducing superoxide (O2(-)) to hydrogen peroxide, are found in many anaerobic and microaerophilic prokaryotes. The rapid reaction with an exogenous electron donor renders the reductase activity catalytic. Here, we demonstrate using pulse radiolysis that the initial reaction between O2(-) and Archaeoglobus fulgidus neelaredoxin, a one-iron SOR, leads to a short-lived transient that immediately disappears to yield a solvent-bound ferric species in acid-base equilibrium. Through comparison of wild-type neelaredoxin with mutants lacking the ferric ion coordinating glutamate, we demonstrate that the remaining step is related to the final coordination of this ligand to the oxidized metal center and kinetically characterize it for the first time, by pulse radiolysis and stopped-flow kinetics. The way exogenous phosphate perturbs the kinetics of superoxide reduction by neelaredoxin and mutant proteins was also investigated.
Collapse
Affiliation(s)
- João V Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2784-505 Oeiras, Portugal
| | | | | | | |
Collapse
|
33
|
Tse Sum Bui B, Mattioli TA, Florentin D, Bolbach G, Marquet A. Escherichia coli Biotin Synthase Produces Selenobiotin. Further Evidence of the Involvement of the [2Fe-2S]2+ Cluster in the Sulfur Insertion Step. Biochemistry 2006; 45:3824-34. [PMID: 16533066 DOI: 10.1021/bi052388m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotin synthase, a member of the "radical SAM" family, catalyzes the final step of the biotin biosynthetic pathway, namely, the insertion of a sulfur atom into dethiobiotin. The as-isolated enzyme contains a [2Fe-2S](2+) cluster, but the active enzyme requires an additional [4Fe-4S](2+) cluster, which is formed in the presence of Fe(NH(4))(2)(SO(4))(2) and Na(2)S in the in vitro assay. The role of the [4Fe-4S](2+) cluster is to mediate the electron transfer to SAM, while the [2Fe-2S](2+) cluster is involved in the sulfur insertion step. To investigate the selenium version of the reaction, we have depleted the enzyme of its iron and sulfur and reconstituted the resulting apoprotein with FeCl(3) and Na(2)Se to yield a [2Fe-2Se](2+) cluster. This enzyme was assayed in vitro with Na(2)Se in place of Na(2)S to enable the formation of a [4Fe-4Se](2+) cluster. Selenobiotin was produced, but the activity was lower than that of the as-isolated [2Fe-2S](2+) enzyme in the presence of Na(2)S. The [2Fe-2Se](2+) enzyme was additionally assayed with Na(2)S, to reconstitute a [4Fe-4S](2+) cluster, in case the latter was more efficient than a [4Fe-4Se](2+) cluster for the electron transfer. Indeed, the activity was improved, but in that case, a mixture of biotin and selenobiotin was produced. This was unexpected if one considers the [2Fe-2S](2+) center as the sulfur source (either as the ultimate donor or via another intermediate), unless some exchange of the chalcogenide has taken place in the cluster. This latter point was seen in the resonance Raman spectrum of the reacted enzyme which clearly indicated the presence of both the [2Fe-2Se](2+) and [2Fe-2S](2+) clusters. No exchange was observed in the absence of reaction. These observations bring supplementary proof that the [2Fe-2S](2+) cluster is implicated in the sulfur insertion step.
Collapse
|