1
|
Dishman AF, Volkman BF. Design and discovery of metamorphic proteins. Curr Opin Struct Biol 2022; 74:102380. [PMID: 35561475 PMCID: PMC9664977 DOI: 10.1016/j.sbi.2022.102380] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
Abstract
Metamorphic proteins are single amino acid sequences that reversibly interconvert between multiple, dramatically different native structures, often with distinct functions. Since the discovery of the first metamorphic proteins in the early 2000s, several additional metamorphic proteins have been identified, and it was suggested that up to 4% of proteins in the PDB may switch folds. Metamorphic proteins have been found to share common features such as marginal thermostability and inconsistencies in predicted secondary structures. Outstanding challenges in the field include the search for more metamorphic proteins and the design of new proteins that switch folds. Identification of novel metamorphic proteins in nature will improve therapeutic targeting of fold-switching proteins involved in human pathology and will enhance the design of protein-based therapies. Designed fold switching proteins have applications as biosensors, molecular switches, molecular machines, and self-assembling systems.
Collapse
Affiliation(s)
- Acacia F Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA. https://twitter.com/@cacidish
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Alberstein RG, Guo AB, Kortemme T. Design principles of protein switches. Curr Opin Struct Biol 2022; 72:71-78. [PMID: 34537489 PMCID: PMC8860883 DOI: 10.1016/j.sbi.2021.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023]
Abstract
Protein switches perform essential roles in many biological processes and are exciting targets for de novo protein design, which aims to produce proteins of arbitrary shape and functionality. However, the biophysical requirements for switch function - multiple conformational states, fine-tuned energetics, and stimuli-responsiveness - pose a formidable challenge for design by computation (or intuition). A variety of methods have been developed toward tackling this challenge, usually taking inspiration from the wealth of sequence and structural information available for naturally occurring protein switches. More recently, modular switches have been designed computationally, and new methods have emerged for sampling unexplored structure space, providing promising new avenues toward the generation of purpose-built switches and de novo signaling systems for cellular engineering.
Collapse
Affiliation(s)
- Robert G Alberstein
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
4
|
Structural resolution of switchable states of a de novo peptide assembly. Nat Commun 2021; 12:1530. [PMID: 33750792 PMCID: PMC7943578 DOI: 10.1038/s41467-021-21851-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
De novo protein design is advancing rapidly. However, most designs are for single states. Here we report a de novo designed peptide that forms multiple α-helical-bundle states that are accessible and interconvertible under the same conditions. Usually in such designs amphipathic α helices associate to form compact structures with consolidated hydrophobic cores. However, recent rational and computational designs have delivered open α-helical barrels with functionalisable cavities. By placing glycine judiciously in the helical interfaces of an α-helical barrel, we obtain both open and compact states in a single protein crystal. Molecular dynamics simulations indicate a free-energy landscape with multiple and interconverting states. Together, these findings suggest a frustrated system in which steric interactions that maintain the open barrel and the hydrophobic effect that drives complete collapse are traded-off. Indeed, addition of a hydrophobic co-solvent that can bind within the barrel affects the switch between the states both in silico and experimentally. So far most of the de novo designed proteins are for single states only. Here, the authors present the de novo design and crystal structure determination of a coiled-coil peptide that assembles into multiple, distinct conformational states under the same conditions and further characterise its properties with biophysical experiments, NMR and MD simulations.
Collapse
|
5
|
De novo design of a reversible phosphorylation-dependent switch for membrane targeting. Nat Commun 2021; 12:1472. [PMID: 33674566 PMCID: PMC7935970 DOI: 10.1038/s41467-021-21622-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Modules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a ‘cargo’ molecule reversibly to a permanent membrane ‘anchor’; and (ii) creating a ‘membrane-avidity switch’ that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells. The ability to dynamically control protein-protein interactions and localization of proteins is critical in synthetic biological systems. Here the authors develop a peptide-based molecular switch that regulates dimer formation and lipid membrane targeting via reversible phosphorylation.
Collapse
|
6
|
Lapenta F, Aupič J, Vezzoli M, Strmšek Ž, Da Vela S, Svergun DI, Carazo JM, Melero R, Jerala R. Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nat Commun 2021; 12:939. [PMID: 33574245 PMCID: PMC7878516 DOI: 10.1038/s41467-021-21184-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities. Here, we show the design of a de novo triangular bipyramid fold comprising 18 CC-forming segments and define the strategy for the two-chain self-assembly of the bipyramidal cage from asymmetric and pseudo-symmetric pre-organised structural modules. In addition, by introducing a protease cleavage site and masking the interfacial CC-forming segments in the two-chain bipyramidal cage, we devise a proteolysis-mediated conformational switch. This strategy could be extended to other modular protein folds, facilitating the construction of dynamic multi-chain CC-based complexes. Coiled-coil protein origami is a strategy for the de novo design of polypeptide nanostructures based on coiled-coil dimer forming peptides, where a single chain protein folds into a polyhedral cage. Here, the authors design a single-chain triangular bipyramid and also demonstrate that the bipyramid can be self-assembled as a heterodimeric complex, comprising pre-defined subunits.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | - Roberto Melero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Nagarkar RP, Fichman G, Schneider JP. Engineering and characterization of apH‐sensitive homodimeric antiparallel coiled coil. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Radhika P. Nagarkar
- Department of Chemistry and Biochemistry University of Delaware Newark Delaware USA
| | - Galit Fichman
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| |
Collapse
|
8
|
Wei KY, Moschidi D, Bick MJ, Nerli S, McShan AC, Carter LP, Huang PS, Fletcher DA, Sgourakis NG, Boyken SE, Baker D. Computational design of closely related proteins that adopt two well-defined but structurally divergent folds. Proc Natl Acad Sci U S A 2020; 117:7208-7215. [PMID: 32188784 PMCID: PMC7132107 DOI: 10.1073/pnas.1914808117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The plasticity of naturally occurring protein structures, which can change shape considerably in response to changes in environmental conditions, is critical to biological function. While computational methods have been used for de novo design of proteins that fold to a single state with a deep free-energy minimum [P.-S. Huang, S. E. Boyken, D. Baker, Nature 537, 320-327 (2016)], and to reengineer natural proteins to alter their dynamics [J. A. Davey, A. M. Damry, N. K. Goto, R. A. Chica, Nat. Chem. Biol. 13, 1280-1285 (2017)] or fold [P. A. Alexander, Y. He, Y. Chen, J. Orban, P. N. Bryan, Proc. Natl. Acad. Sci. U.S.A. 106, 21149-21154 (2009)], the de novo design of closely related sequences which adopt well-defined but structurally divergent structures remains an outstanding challenge. We designed closely related sequences (over 94% identity) that can adopt two very different homotrimeric helical bundle conformations-one short (∼66 Å height) and the other long (∼100 Å height)-reminiscent of the conformational transition of viral fusion proteins. Crystallographic and NMR spectroscopic characterization shows that both the short- and long-state sequences fold as designed. We sought to design bistable sequences for which both states are accessible, and obtained a single designed protein sequence that populates either the short state or the long state depending on the measurement conditions. The design of sequences which are poised to adopt two very different conformations sets the stage for creating large-scale conformational switches between structurally divergent forms.
Collapse
Affiliation(s)
- Kathy Y Wei
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Danai Moschidi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
- Department of Computer Science, University of California, Santa Cruz, CA 95064
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Lauren P Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Joint UC Berkeley-UC San Francisco Graduate Group in Bioengineering, Berkeley, CA 94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
9
|
Zamora-Carreras H, Maestro B, Sanz JM, Jiménez MA. Turncoat Polypeptides: We Adapt to Our Environment. Chembiochem 2019; 21:432-441. [PMID: 31456307 DOI: 10.1002/cbic.201900446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 01/25/2023]
Abstract
A common interpretation of Anfinsen's hypothesis states that one amino acid sequence should fold into a single, native, ordered state, or a highly similar set thereof, coinciding with the global minimum in the folding-energy landscape, which, in turn, is responsible for the function of the protein. However, this classical view is challenged by many proteins and peptide sequences, which can adopt exchangeable, significantly dissimilar conformations that even fulfill different biological roles. The similarities and differences of concepts related to these proteins, mainly chameleon sequences, metamorphic proteins, and switch peptides, which are all denoted herein "turncoat" polypeptides, are reviewed. As well as adding a twist to the conventional view of protein folding, the lack of structural definition adds clear versatility to the activity of proteins and can be used as a tool for protein design and further application in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química-Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Beatriz Maestro
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5. Pabellón, 28029, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química-Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
10
|
Towards functional de novo designed proteins. Curr Opin Chem Biol 2019; 52:102-111. [DOI: 10.1016/j.cbpa.2019.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
11
|
Rhys GG, Wood CW, Beesley JL, Zaccai NR, Burton AJ, Brady RL, Thomson AR, Woolfson DN. Navigating the Structural Landscape of De Novo α-Helical Bundles. J Am Chem Soc 2019; 141:8787-8797. [PMID: 31066556 DOI: 10.1021/jacs.8b13354] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association of amphipathic α helices in water leads to α-helical-bundle protein structures. However, the driving force for this-the hydrophobic effect-is not specific and does not define the number or the orientation of helices in the associated state. Rather, this is achieved through deeper sequence-to-structure relationships, which are increasingly being discerned. For example, for one structurally extreme but nevertheless ubiquitous class of bundle-the α-helical coiled coils-relationships have been established that discriminate between all-parallel dimers, trimers, and tetramers. Association states above this are known, as are antiparallel and mixed arrangements of the helices. However, these alternative states are less well understood. Here, we describe a synthetic-peptide system that switches between parallel hexamers and various up-down-up-down tetramers in response to single-amino-acid changes and solution conditions. The main accessible states of each peptide variant are characterized fully in solution and, in most cases, to high resolution with X-ray crystal structures. Analysis and inspection of these structures helps rationalize the different states formed. This navigation of the structural landscape of α-helical coiled coils above the dimers and trimers that dominate in nature has allowed us to design rationally a well-defined and hyperstable antiparallel coiled-coil tetramer (apCC-Tet). This robust de novo protein provides another scaffold for further structural and functional designs in protein engineering and synthetic biology.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Christopher W Wood
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Joseph L Beesley
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Nathan R Zaccai
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Antony J Burton
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - R Leo Brady
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Andrew R Thomson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Derek N Woolfson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
- BrisSynBio , University of Bristol , Life Sciences Building, Tyndall Avenue , Bristol BS8 1TQ , United Kingdom
| |
Collapse
|
12
|
Alberstein R, Suzuki Y, Paesani F, Tezcan FA. Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly. Nat Chem 2018; 10:732-739. [PMID: 29713036 DOI: 10.1038/s41557-018-0053-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
De novo design and construction of stimuli-responsive protein assemblies that predictably switch between discrete conformational states remains an essential but highly challenging goal in biomolecular design. We previously reported synthetic, two-dimensional protein lattices self-assembled via disulfide bonding interactions, which endows them with a unique capacity to undergo coherent conformational changes without losing crystalline order. Here, we carried out all-atom molecular dynamics simulations to map the free-energy landscape of these lattices, validated this landscape through extensive structural characterization by electron microscopy and established that it is predominantly governed by solvent reorganization entropy. Subsequent redesign of the protein surface with conditionally repulsive electrostatic interactions enabled us to predictably perturb the free-energy landscape and obtain a new protein lattice whose conformational dynamics can be chemically and mechanically toggled between three different states with varying porosities and molecular densities.
Collapse
Affiliation(s)
- Robert Alberstein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yuta Suzuki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. .,Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. .,Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Lapenta F, Aupič J, Strmšek Ž, Jerala R. Coiled coil protein origami: from modular design principles towards biotechnological applications. Chem Soc Rev 2018; 47:3530-3542. [DOI: 10.1039/c7cs00822h] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review illustrates the current state in designing coiled-coil-based proteins with an emphasis on coiled coil protein origami structures and their potential.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
- EN-FIST Centre of Excellence
| |
Collapse
|
14
|
Anderson JM, Andersen NH. A pH Switch for β-Sheet Protein Folding. Angew Chem Int Ed Engl 2017; 56:7074-7077. [PMID: 28523654 PMCID: PMC5607017 DOI: 10.1002/anie.201700860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/26/2017] [Indexed: 01/24/2023]
Abstract
Protein design advancements have led to biotechnological strategies based on more stable and more specific structures. Herein we present a 6-residue sequence (HPATGK) that acts as a stable structure-nucleating turn at physiological and higher pH but is notably unfavorable for chain direction reversal at low pH. When placed into the turn of a β-sheet, this leads to a pH switch of folding. Using a standard 3-stranded β-sheet model, the WW domain, it was found that the pH switch sequence insertion caused minimal change at pH 8 but a ca. 50 °C drop in the melting temperature (Tm ) was observed at pH 2.5: ΔΔGF ≥11.3 kJ mol-1 . Using the strategies demonstrated in this article, the redesign of β-sheets to contain a global, or local, pH-dependent conformational switch should be possible.
Collapse
|
15
|
A pH Switch for β-Sheet Protein Folding. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Folmert K, Broncel M, V Berlepsch H, Ullrich CH, Siegert MA, Koksch B. Inhibition of peptide aggregation by means of enzymatic phosphorylation. Beilstein J Org Chem 2017; 12:2462-2470. [PMID: 28144314 PMCID: PMC5238555 DOI: 10.3762/bjoc.12.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase) that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.
Collapse
Affiliation(s)
- Kristin Folmert
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Hans V Berlepsch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Mary-Ann Siegert
- Department of Organic Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Beate Koksch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
17
|
Laitaoja M, Isoniemi S, Valjakka J, Mándity IM, Jänis J. Deciphering metal ion preference and primary coordination sphere robustness of a designed zinc finger with high-resolution mass spectrometry. Protein Sci 2016; 26:198-207. [PMID: 27750369 DOI: 10.1002/pro.3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022]
Abstract
Small zinc finger (ZnF) motifs are promising molecular scaffolds for protein design owing to their structural robustness and versatility. Moreover, their characterization provides important insights into protein folding in general. ZnF motifs usually possess an exceptional specificity and high affinity towards Zn(II) ion to drive folding. While the Zn(II) ion is canonically coordinated by two cysteine and two histidine residues, many other coordination spheres also exist in small ZnFs, all having four amino acid ligands. Here we used high-resolution mass spectrometry to study metal ion binding specificity and primary coordination sphere robustness of a designed zinc finger, named MM1. Based on the results, MM1 possesses high specificity for zinc with sub-micromolar binding affinity. Surprisingly, MM1 retains metal ion binding affinity even in the presence of selective alanine mutations of the primary zinc coordinating amino acid residues.
Collapse
Affiliation(s)
- Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Sari Isoniemi
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Jarkko Valjakka
- BioMediTech, University of Tampere, Tampere, FI-33520, Finland
| | - István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| |
Collapse
|
18
|
Donadio G, Di Martino R, Oliva R, Petraccone L, Del Vecchio P, Di Luccia B, Ricca E, Isticato R, Di Donato A, Notomista E. A new peptide-based fluorescent probe selective for zinc(ii) and copper(ii). J Mater Chem B 2016; 4:6979-6988. [PMID: 32263564 DOI: 10.1039/c6tb00671j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal ion-sensitive fluorescent peptidyl-probe has been designed based on the most common five-residue repeat in mammalian histidine rich glycoproteins (HRGs). A dansyl-amide moiety at the N-terminus and a tryptophan residue at the C-terminus of the peptide were added as they can act as a FRET (fluorescence resonance energy transfer) pair. The dansyl fluorophore was chosen also because it frequently shows strong CHEF (chelation enhanced fluorescence) and solvatochromic effects. The designed peptide, dansyl-HPHGHW-NH2 (dH3w), showed a selective fluorescence turn-on response to Zn2+ in aqueous solutions at pH 7.0 when excited at both 295 nm and 340 nm, thus indicating that both FRET and CHEF or solvatochromic effects are active in the metal/peptide complex. Steady-state fluorescence and isothermal titration calorimetry (ITC) measurements demonstrated that two peptide molecules bind to one zinc ion with an association constant Ka = 5.7 × 105 M-1 at 25 °C and pH 7.0. The fluorescence response to Zn2+ was not influenced by Pb2+, Cd2+, Mn2+, Fe2+, Fe3+, Mg2+, Ca2+, K+ and Na+ ions and only slightly influenced by Co2+ and Ni2+. Copper(ii), at concentrations as low as 5 μM, caused a strong quenching of both free and Zn2+ complexed dH3w. The determination of the binding parameters for Cu2+ has shown that one copper ion binds to one dH3w molecule with an association constant of 1.2 × 106 M-1 thus confirming the higher affinity of peptide for Cu2+ than for Zn2+. Finally, we demonstrated that dH3w can penetrate into HeLa cells and could thus be used for the determination of intracellular Zn2+ and Cu2+ concentrations.
Collapse
Affiliation(s)
- Giuliana Donadio
- Department of Biology University of Naples Federico II, Via Cintia, 80126, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lizatović R, Aurelius O, Stenström O, Drakenberg T, Akke M, Logan D, André I. A De Novo Designed Coiled-Coil Peptide with a Reversible pH-Induced Oligomerization Switch. Structure 2016; 24:946-55. [DOI: 10.1016/j.str.2016.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/01/2022]
|
20
|
Božič Abram S, Aupič J, Dražić G, Gradišar H, Jerala R. Coiled-coil forming peptides for the induction of silver nanoparticles. Biochem Biophys Res Commun 2016; 472:566-71. [DOI: 10.1016/j.bbrc.2016.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/27/2022]
|
21
|
Abstract
Allosteric transition, defined as conformational changes induced by ligand binding, is one of the fundamental properties of proteins. Allostery has been observed and characterized in many proteins, and has been recently utilized to control protein function via regulation of protein activity. Here, we review the physical and evolutionary origin of protein allostery, as well as its importance to protein regulation, drug discovery, and biological processes in living systems. We describe recently developed approaches to identify allosteric pathways, connected sets of pairwise interactions that are responsible for propagation of conformational change from the ligand-binding site to a distal functional site. We then present experimental and computational protein engineering approaches for control of protein function by modulation of allosteric sites. As an example of application of these approaches, we describe a synergistic computational and experimental approach to rescue the cystic-fibrosis-associated protein cystic fibrosis transmembrane conductance regulator, which upon deletion of a single residue misfolds and causes disease. This example demonstrates the power of allosteric manipulation in proteins to both elucidate mechanisms of molecular function and to develop therapeutic strategies that rescue those functions. Allosteric control of proteins provides a tool to shine a light on the complex cascades of cellular processes and facilitate unprecedented interrogation of biological systems.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Eaton KV, Anderson WJ, Dubrava MS, Kumirov VK, Dykstra EM, Cordes MHJ. Studying protein fold evolution with hybrids of differently folded homologs. Protein Eng Des Sel 2015; 28:241-50. [PMID: 25991865 DOI: 10.1093/protein/gzv027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
To study the sequence determinants governing protein fold evolution, we generated hybrid sequences from two homologous proteins with 40% identity but different folds: Pfl 6 Cro, which has a mixed α + β structure, and Xfaso 1 Cro, which has an all α-helical structure. First, we first examined eight chimeric hybrids in which the more structurally conserved N-terminal half of one protein was fused to the more structurally divergent C-terminal half of the other. None of these chimeras folded, as judged by circular dichroism spectra and thermal melts, suggesting that both halves have strong intrinsic preferences for the native global fold pattern, and/or that the interfaces between the halves are not readily interchangeable. Second, we examined 10 hybrids in which blocks of the structurally divergent C-terminal region were exchanged. These hybrids showed varying levels of thermal stability and suggested that the key residues in the Xfaso 1 C terminus specifying the all-α fold were concentrated near the end of helix 4 in Xfaso 1, which aligns to the end of strand 2 in Pfl 6. Finally, we generated hybrid substitutions for each individual residue in this critical region and measured thermal stabilities. The results suggested that R47 and V48 were the strongest factors that excluded formation of the α + β fold in the C-terminal region of Xfaso 1. In support of this idea, we found that the folding stability of one of the original eight chimeras could be rescued by back-substituting these two residues. Overall, the results show not only that the key factors for Cro fold specificity and evolution are global and multifarious, but also that some all-α Cro proteins have a C-terminal subdomain sequence within a few substitutions of switching to the α + β fold.
Collapse
Affiliation(s)
- Karen V Eaton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Matthew S Dubrava
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Emily M Dykstra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
23
|
Cheng YJ, Cheng H, Zhao X, Xu XD, Zhuo RX, He F. Self-assembled micelles of a multi-functional amphiphilic fusion (MFAF) peptide for targeted cancer therapy. Polym Chem 2015. [DOI: 10.1039/c5py00125k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new MFAF peptide was designed and prepared. The micelles of this MFAF peptide can efficiently use their tumor-targeting, membrane-penetrating and endosome-escaping functions to deliver the drug into targeted tumor cells, leading to the apoptosis of tumor cells.
Collapse
Affiliation(s)
- Yin-Jia Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Hong Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xin Zhao
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital
- Harvard Medical School
- Cambridge
| | - Xiao-Ding Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Feng He
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
24
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
25
|
Chen CS, Xu XD, Li SY, Zhuo RX, Zhang XZ. Photo-switched self-assembly of a gemini α-helical peptide into supramolecular architectures. NANOSCALE 2013; 5:6270-6274. [PMID: 23736848 DOI: 10.1039/c3nr01967e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An azobenzene-linked symmetrical gemini α-helical peptide was designed and prepared to realize the light-switched self-assembly. With the reversible molecular structure transition between Z- and U-structures, the morphology of the self-assembled gemini α-helical peptide can reversibly change between nanofibers and nanospheres in acidic medium, and between nanospheres and vesicles in basic medium.
Collapse
Affiliation(s)
- Chang-Sheng Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
26
|
Leonard S, Cormier A, Pang X, Zimmerman M, Zhou HX, Paravastu A. Solid-state NMR evidence for β-hairpin structure within MAX8 designer peptide nanofibers. Biophys J 2013; 105:222-30. [PMID: 23823242 PMCID: PMC3699732 DOI: 10.1016/j.bpj.2013.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023] Open
Abstract
MAX8, a designer peptide known to undergo self-assembly following changes in temperature, pH, and ionic strength, has demonstrated usefulness for tissue engineering and drug delivery. It is hypothesized that the self-assembled MAX8 nanofiber structure consists of closed β-hairpins aligned into antiparallel β-sheets. Here, we report evidence from solid-state NMR spectroscopy that supports the presence of the hypothesized β-hairpin conformation within the nanofiber structure. Specifically, our (13)C-(13)C two-dimensional exchange data indicate spatial proximity between V3 and K17, and (13)C-(13)C dipolar coupling measurements reveal proximity between the V3 and V18 backbone carbonyls. Moreover, isotopic dilution of labeled MAX8 nanofibers did not result in a loss of the (13)C-(13)C dipolar couplings, showing that these couplings are primarily intramolecular. NMR spectra also indicate the existence of a minor conformation, which is discussed in terms of previously hypothesized nanofiber physical cross-linking and possible nanofiber polymorphism.
Collapse
Affiliation(s)
- Sarah R. Leonard
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Ashley R. Cormier
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Maxwell I. Zimmerman
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Anant K. Paravastu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| |
Collapse
|
27
|
Smith C, Shi C, Chroust M, Bliska T, Kelly M, Jacobson M, Kortemme T. Design of a Phosphorylatable PDZ Domain with Peptide-Specific Affinity Changes. Structure 2013; 21:54-64. [DOI: 10.1016/j.str.2012.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/13/2012] [Accepted: 10/18/2012] [Indexed: 01/06/2023]
|
28
|
Peng Q, Kong N, Wang HCE, Li H. Designing redox potential-controlled protein switches based on mutually exclusive proteins. Protein Sci 2012; 21:1222-30. [PMID: 22733630 DOI: 10.1002/pro.2109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synthetic/artificial protein switches provide an efficient means of controlling protein functions using chemical signals and stimuli. Mutually exclusive proteins, in which only the host or guest domain can remain folded at a given time owing to conformational strain, have been used to engineer novel protein switches that can switch enzymatic functions on and off in response to ligand binding. To further explore the potential of mutually exclusive proteins as protein switches and sensors, we report here a new redox-based approach to engineer a mutually exclusive folding-based protein switch. By introducing a disulfide bond into the host domain of a mutually exclusive protein, we demonstrate that it is feasible to use redox potential to switch the host domain between its folded and unfolded conformations via the mutually exclusive folding mechanism, and thus switching the functionality of the host domain on and off. Our study opens a new and potentially general avenue that uses mutually exclusive proteins to design novel switches able to control the function of a variety of proteins.
Collapse
Affiliation(s)
- Qing Peng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
29
|
Wang X, Bergenfeld I, Arora PS, Canary JW. Reversible Redox Reconfiguration of Secondary Structures in a Designed Peptide. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Wang X, Bergenfeld I, Arora PS, Canary JW. Reversible Redox Reconfiguration of Secondary Structures in a Designed Peptide. Angew Chem Int Ed Engl 2012; 51:12099-101. [DOI: 10.1002/anie.201206009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 01/30/2023]
|
31
|
Abstract
Protein conformational switches alter their shape upon receiving an input signal, such as ligand binding, chemical modification, or change in environment. The apparent simplicity of this transformation--which can be carried out by a molecule as small as a thousand atoms or so--belies its critical importance to the life of the cell as well as its capacity for engineering by humans. In the realm of molecular switches, proteins are unique because they are capable of performing a variety of biological functions. Switchable proteins are therefore of high interest to the fields of biology, biotechnology, and medicine. These molecules are beginning to be exploited as the core machinery behind a new generation of biosensors, functionally regulated enzymes, and "smart" biomaterials that react to their surroundings. As inspirations for these designs, researchers continue to analyze existing examples of allosteric proteins. Recent years have also witnessed the development of new methodologies for introducing conformational change into proteins that previously had none. Herein we review examples of both natural and engineered protein switches in the context of four basic modes of conformational change: rigid-body domain movement, limited structural rearrangement, global fold switching, and folding-unfolding. Our purpose is to highlight examples that can potentially serve as platforms for the design of custom switches. Accordingly, we focus on inducible conformational changes that are substantial enough to produce a functional response (e.g., in a second protein to which it is fused), yet are relatively simple, structurally well-characterized, and amenable to protein engineering efforts.
Collapse
Affiliation(s)
| | - Stewart N. Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (USA), Tel: (315)464-8731, Fax: (315)464-8750
| |
Collapse
|
32
|
|
33
|
Xie M, Li H, Ye M, Zhang Y, Hu J. Peptide Self-Assembly on Mica under Ethanol-Containing Atmospheres: Effects of Ethanol on Epitaxial Growth of Peptide Nanofilaments. J Phys Chem B 2012; 116:2927-33. [DOI: 10.1021/jp2089438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Muyun Xie
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences
- Graduate School of the Chinese Academy of Sciences
| | - Hai Li
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences
| | - Ming Ye
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences
| | - Yi Zhang
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences
| | - Jun Hu
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences
| |
Collapse
|
34
|
Engineering a zinc binding site into the de novo designed protein DS119 with a βαβ structure. Protein Cell 2012; 2:1006-13. [PMID: 22231358 DOI: 10.1007/s13238-011-1121-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022] Open
Abstract
Functional proteins designed de novo have potential application in chemical engineering, agriculture and healthcare. Metal binding sites are commonly used to incorporate functions. Based on a de novo designed protein DS119 with a βαβ structure, we have computationally engineered zinc binding sites into it using a home-made searching program. Seven out of the eight designed sequences tested were shown to bind Zn(2+) with micromolar affinity, and one of them bound Zn(2+) with 1:1 stoichiometry. This is the first time that metalloproteins with an α, β mixed structure have been designed from scratch.
Collapse
|
35
|
Xu XD, Chen JX, Cheng H, Zhang XZ, Zhuo RX. Controlled peptide coated nanostructures via the self-assembly of functional peptide building blocks. Polym Chem 2012. [DOI: 10.1039/c2py20299a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Gerling UIM, Brandenburg E, Berlepsch HV, Pagel K, Koksch B. Structure Analysis of an Amyloid-Forming Model Peptide by a Systematic Glycine and Proline Scan. Biomacromolecules 2011; 12:2988-96. [DOI: 10.1021/bm200587m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ulla I. M. Gerling
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Enrico Brandenburg
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beate Koksch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
37
|
Stratton MM, Loh SN. Converting a protein into a switch for biosensing and functional regulation. Protein Sci 2011; 20:19-29. [PMID: 21064163 DOI: 10.1002/pro.541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent-free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co-opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock-and-key binding protein into a molecular switch?
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | | |
Collapse
|
38
|
Shankar S, Pillai MR. Translating cancer research by synthetic biology. MOLECULAR BIOSYSTEMS 2011; 7:1802-10. [PMID: 21437339 DOI: 10.1039/c1mb05016h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic biology concerns applying engineering principles to biological systems. Engineering properties such as fine tuning, novel specificity, and modularity could be components of a synthetic toolkit that can be exploited to explore various issues in cancer research such as elucidation of mechanisms and pathways, creating new diagnostic tools and novel therapeutic approaches. A repertoire of synthetic biology toolkits involving DNA, RNA and protein bio-parts, have been applied to address the issues of drug target identification, drug discovery and therapeutic treatment in cancer research, thereby projecting a new dimension in oncology research.
Collapse
Affiliation(s)
- Sumitra Shankar
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud. PO, Thiruvananthapuram, 695 014, Kerala State, India
| | | |
Collapse
|
39
|
Abian O, Vega S, Neira JL, Velazquez-Campoy A. Conformational stability of hepatitis C virus NS3 protease. Biophys J 2011; 99:3811-20. [PMID: 21112306 DOI: 10.1016/j.bpj.2010.10.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 11/17/2022] Open
Abstract
The hepatitis C virus NS3 protease is responsible for the processing of the nonstructural region of viral precursor polyprotein in infected hepatic cells. NS3 has been considered a target for drug discovery for a long time. NS3 is a zinc-dependent serine protease. However, the zinc ion is not involved in the catalytic mechanism, because it is bound far away from the active site. Thus, zinc is essential for the structural integrity of the protein and it is considered to have a structural role. The first thermodynamic study on the conformational equilibrium and stability of NS3 and the effect of zinc on such equilibrium is presented here. In agreement with a previous calorimetric study on the binding of zinc to NS3, the global unfolding heat capacity is dominated by the zinc dissociation step, suggesting that the binding of zinc induces a significant structural rearrangement of the protein. In addition, contrary to other homologous zinc-dependent proteases, the zinc-free NS3 protease is not completely unstructured. It is apparent that the conformational landscape of hepatitis C virus NS3 protease is fairly complex due to its intrinsic plasticity, and to the interactions with its different effectors (zinc and the accessory viral protein NS4A) and their modulation of the population of the different conformational states.
Collapse
Affiliation(s)
- Olga Abian
- Institute of Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | |
Collapse
|
40
|
Carlton DD, Schug KA. A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta 2011; 686:19-39. [DOI: 10.1016/j.aca.2010.11.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
|
41
|
Golynskiy MV, Koay MS, Vinkenborg JL, Merkx M. Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology. Chembiochem 2011; 12:353-61. [DOI: 10.1002/cbic.201000642] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Indexed: 12/31/2022]
|
42
|
Bromley EHC, Channon KJ. Alpha-helical peptide assemblies giving new function to designed structures. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:231-75. [PMID: 21999998 PMCID: PMC7150058 DOI: 10.1016/b978-0-12-415906-8.00001-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The design of alpha-helical tectons for self-assembly is maturing as a science. We have now reached the point where many different coiled-coil topologies can be reliably produced and validated in synthetic systems and the field is now moving on towards more complex, discrete structures and applications. Similarly the design of infinite or fiber assemblies has also matured, with the creation fibers that have been modified or functionalized in a variety of ways. This chapter discusses the progress made in both of these areas as well as outlining the challenges still to come.
Collapse
|
43
|
am Ende CW, Meng HY, Ye M, Pandey AK, Zondlo NJ. Design of lanthanide fingers: compact lanthanide-binding metalloproteins. Chembiochem 2010; 11:1738-47. [PMID: 20623571 DOI: 10.1002/cbic.201000056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif. Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high alpha-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 microM for binding Er(3+). CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins. Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide.
Collapse
Affiliation(s)
- Christopher W am Ende
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
44
|
Riemen AJ, Waters ML. Dueling post-translational modifications trigger folding and unfolding of a beta-hairpin peptide. J Am Chem Soc 2010; 132:9007-13. [PMID: 20536234 DOI: 10.1021/ja101079z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein post-translational modifications (PTMs) are used in nature as a means of turning on or off a myriad of biological events. Methylation of lysine and phosphorylation of serine are important PTMs in the histone code found to modulate chromatin packing, which in turn affects gene expression. The design of peptides that fold into secondary structures can help to further our understanding of complex protein interactions. Here we report the design of the Trpswitch peptide sequence that folds into a moderately stable beta-hairpin structure in aqueous solution and show that the stability of the structure can be tuned by incorporation of dimethyllysine or phosphoserine. Dimethylated Trpswitch results in an increase in beta-hairpin stability, while phosphorylated Trpswitch is unstructured at neutral pH. When both modifications are incorporated into Trpswitch, a less stable beta-hairpin structure is observed. This system provides a model to demonstrate how multiple PTMs may work in concert or against each other to influence structure.
Collapse
Affiliation(s)
- Alexander J Riemen
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
45
|
Robson Marsden H, Kros A. Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed Engl 2010; 49:2988-3005. [PMID: 20474034 DOI: 10.1002/anie.200904943] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological self-assembly is very complex and results in highly functional materials. In effect, it takes a bottom-up approach using biomolecular building blocks of precisely defined shape, size, hydrophobicity, and spatial distribution of functionality. Inspired by, and drawing lessons from self-assembly processes in nature, scientists are learning how to control the balance of many small forces to increase the complexity and functionality of self-assembled nanomaterials. The coiled-coil motif, a multipurpose building block commonly found in nature, has great potential in synthetic biology. In this review we examine the roles that the coiled-coil peptide motif plays in self-assembly in nature, and then summarize the advances that this has inspired in the creation of functional units, assemblies, and systems.
Collapse
Affiliation(s)
- Hana Robson Marsden
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
46
|
Cnudde SE, Prorok M, Castellino FJ, Geiger JH. Metal ion determinants of conantokin dimerization as revealed in the X-ray crystallographic structure of the Cd(2+)/Mg (2+)-con-T[K7gamma] complex. J Biol Inorg Chem 2010; 15:667-75. [PMID: 20195692 PMCID: PMC3693470 DOI: 10.1007/s00775-010-0633-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Predatory sea snails from the Conus family produce a variety of venomous small helical peptides called conantokins that are rich in gamma-carboxyglutamic acid (Gla) residues. As potent and selective antagonists of the N-methyl-D: -aspartate receptor, these peptides are potential therapeutic agents for a variety of neurological conditions. The two most studied members of this family of peptides are con-G and con-T. Con-G has Gla residues at sequence positions 3, 4, 7, 10, and 14, and requires divalent cation binding to adopt a helical conformation. Although both Ca(2+) and Mg(2+) can fulfill this role, Ca(2+) induces dimerization of con-G, whereas the Mg(2+)-complexed peptide remains monomeric. A variant of con-T, con-T[K7gamma] (gamma is Gla), contains Gla residues at the same five positions as in con-G and behaves very similarly with respect to metal ion binding and dimerization; each peptide binds two Ca(2+) ions and two Mg(2+) ions per helix. To understand the difference in metal ion selectivity, affinity, and the dependence on Ca(2+) for dimer formation, we report here the structure of the monomeric Cd(2+)/Mg(2+)-con-T[K7gamma] complex, and, by comparison with the previously published con-T[K7gamma]/Ca(2+) dimer structure, we suggest explanations for both metal ion binding site specificity and metal-ion-dependent dimerization.
Collapse
Affiliation(s)
- Sara E. Cnudde
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Mary Prorok
- Department of Chemistry and Biochemistry, W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
47
|
Robson Marsden H, Kros A. Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Löwik DWPM, Leunissen EHP, van den Heuvel M, Hansen MB, van Hest JCM. Stimulus responsive peptide based materials. Chem Soc Rev 2010; 39:3394-412. [DOI: 10.1039/b914342b] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Xu Q, Minor DL. Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif. Protein Sci 2009; 18:2100-14. [PMID: 19693805 DOI: 10.1002/pro.224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coiled-coils are widespread protein-protein interaction motifs typified by the heptad repeat (abcdefg)(n) in which "a" and "d" positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583-611), "Q1-short," of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 A resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585-621, "Q1-long." Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include "a" and "d" positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.
Collapse
Affiliation(s)
- Qiang Xu
- Cardiovascular Research Institute, University of California, San Francisco, 94158-2330, USA
| | | |
Collapse
|
50
|
Börner HG, Kühnle H, Hentschel J. Making “smart polymers” smarter: Modern concepts to regulate functions in polymer science. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23727] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|