1
|
Deng G, Lee K, Deng H, Malola S, Bootharaju MS, Häkkinen H, Zheng N, Hyeon T. Alkynyl-Protected Chiral Bimetallic Ag 22 Cu 7 Superatom with Multiple Chirality Origins. Angew Chem Int Ed Engl 2023; 62:e202217483. [PMID: 36581588 DOI: 10.1002/anie.202217483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongwen Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Monti M, Brancolini G, Coccia E, Toffoli D, Fortunelli A, Corni S, Aschi M, Stener M. The Conformational Dynamics of the Ligands Determines the Electronic Circular Dichroism of the Chiral Au 38(SC 2H 4Ph) 24 Cluster. J Phys Chem Lett 2023; 14:1941-1948. [PMID: 36787099 PMCID: PMC9940292 DOI: 10.1021/acs.jpclett.2c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Effects of the conformational dynamics of 2-PET protective ligands on the electronic circular dichroism (ECD) of the chiral Au38(SC2H4Ph)24 cluster are investigated. We adopt a computational protocol in which ECD spectra are calculated via the first principle polTDDFT approach on a series of conformations extracted from MD simulations by using Essential Dynamics (ED) analysis, and then properly weighted to predict the final spectrum. We find that the experimental spectral features are well reproduced, whereas significant discrepancies arise when the spectrum is calculated using the experimental X-ray structure. This result unambiguously demonstrates the need to account for the conformational effects in the ECD modeling of chiral nanoclusters. The present procedure proved to be able of capturing the essential conformational features of the dynamic Au38(SC2H4Ph)24 system, opening the possibility to model the ECD of soluble chiral nanoclusters in a realistic way.
Collapse
Affiliation(s)
- M. Monti
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - G. Brancolini
- Istituto
Nanoscienze, CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| | - E. Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - D. Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - A. Fortunelli
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, 56124, Pisa, Italy
| | - S. Corni
- Istituto
Nanoscienze, CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - M. Aschi
- Dipartimento
di Scienze Fisiche e Chimiche, Università
dell’Aquila, Via Vetoio, 67100, l’Aquila, Italy
| | - M. Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
3
|
Packirisamy V, Pandurangan P. Polyacrylamide gel electrophoresis: a versatile tool for the separation of nanoclusters. Biotechniques 2023; 74:51-62. [PMID: 36517970 PMCID: PMC9887536 DOI: 10.2144/btn-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atomically precise nanoclusters comprising 1-100 atoms have emerged as a new class of nanomaterials with intriguing size-dependent physicochemical properties. The significant changes in the properties of nanoclusters were observed in tailoring the number of metal atoms and ligands that determines their functions and applicability. Since 1990, thiolated gold nanoclusters have been studied. The separation of monodispersed clusters was crucial and time-consuming. To address these shortcomings, several separation techniques have made it possible to separate the series of metal nanoclusters with a precise composition of metals and ligands. Among these techniques, polyacrylamide gel electrophoresis was utilized for hydrophilic cluster separation. This review shall focus on the principle, operation and application of the polyacrylamide gel electrophoresis technique to encourage a greater understanding of the characteristics and usefulness of this method.
Collapse
Affiliation(s)
- Vinitha Packirisamy
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Prabhu Pandurangan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai, 600025, India,Author for correspondence:
| |
Collapse
|
4
|
Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta 2022; 1231:340386. [DOI: 10.1016/j.aca.2022.340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
|
5
|
Lim CC, Lai SK. Metadynamics molecular dynamics and isothermal Brownian-type molecular dynamics simulations for the chiral cluster Au 18. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:325201. [PMID: 35580583 DOI: 10.1088/1361-648x/ac709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In an effort to gain insight into enantiomeric transitions, their transition mechanism, time span of transitions and distribution of time spans etc, we performed molecular dynamics (MD) simulations on chiral clusters Au10, Au15and Au18, and found that viable reaction coordinates can be deduced from simulation data for enlightening the enantiomeric dynamics for Au10and Au15, but not so for Au18. The failure in translating the Au18-L ⇌ Au18-R transitions by MD simulations has been chalked up to the thermal energykBTat 300 K being much lower than energy barriers separating the enantiomers of Au18. Two simulation strategies were taken to resolve this simulation impediment. The first one uses the well-tempered metadynamics MD (MMD) simulation, and the second one adeptly applies first a somewhat crude MMD simulation to locate a highly symmetrical isomer Au18Sand subsequently employed it as initial configuration in the MD simulation. In both strategies, we work in collective variable space of lower dimensionality. The well-tempered MMD simulation tactic was carried out aiming to offer a direct verification of Au18enantiomers, while the tactic to conduct MMD/MD simulations in two consecutive simulation steps was intended to provide an indirect evidence of the existence of enantiomers of Au18given that energy barriers separating them are much higher than ca.kBTat 300 K. This second tactic, in addition to confirming indirectly Au18-L and Au18-R starting from the symmetrical cluster Au18S, the simulation results shed light also on the mechanism akin to associative/nonassociative reaction transitions.
Collapse
Affiliation(s)
- C C Lim
- Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan
| | - S K Lai
- Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan
| |
Collapse
|
6
|
Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. JOURNAL OF ANALYSIS AND TESTING 2022; 6:163-177. [PMID: 35572781 PMCID: PMC9076503 DOI: 10.1007/s41664-022-00224-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
|
7
|
Feng F, Zhang S, Yang L, Li G, Xu W, Qu H, Zhang J, Dhinakaran MK, Xu C, Cheng J, Li H. Highly Chiral Selective Resolution in Pillar[6]arenes Functionalized Microchannel Membranes. Anal Chem 2022; 94:6065-6070. [PMID: 35384661 DOI: 10.1021/acs.analchem.2c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High flux microchannel membranes have the potential for large scale separations. However, it is prevented by poor enantioselectivity. Therefore, the development of a high-enantioselective microchannel membrane is of great importance for large scale chiral separations. In this work, chiral gold nanoparticles are incorporated into the microchannel membrane to astringe the large pores and improve the enantioselectivity. Here, the gold nanoparticles are functionalized by l-phenylalanine-derived pil-lararenes (l-Phe-P6@AuNPs) as the chiral receptor of R-phenylglycinol (R-PGC) over its enantiomer. This chiral Au NPs coated microchannel membrane (l-Phe-P6@AuNPs microchannel) shows a selectivity of 5.40 for R-PGC and a flux of 140.35 nmol·cm-2·h-1, where the enantioselectivity is improved, ensuring its flux. Compared with the enantioselectivity and flux of nanochannel membranes reported in literatures, the l-Phe-P6@AuNPs microchannel has the advantage for enantioselectivity and flux for chiral separation.
Collapse
Affiliation(s)
- Fudan Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haonan Qu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | | | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Yuan JW, Zhang MM, Dong XY, Zang SQ. Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. NANOSCALE 2022; 14:1538-1565. [PMID: 35060593 DOI: 10.1039/d1nr07690f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically precise metal nanoclusters with specific chemical compositions have become a popular research topic due to their precise structures, attractive properties, and wide range of applications in various fields. Currently, among more than 100 reported metal nanoclusters with precise formulas, 38-atom coinage metal nanoclusters stand out due to their unique structural diversities, such as face-centered cubic (FCC) and body-centered cubic (BCC) arrangements. Among them, the formation of the metal cores includes vertex-sharing, face-fusion, and FCC cubes fusion. Due to their geometrical features, 38-atom coinage metal nanoclusters exhibit attractive properties, making them an ideal model for exploring structure-property relationships. Therefore, 38-atom coinage metal nanoclusters are a universal key to the treasure trove of nanoclusters, which can open almost all fields and are of great research significance. This paper focuses on the structure of 38-atom coinage metal nanoclusters and reviews the preparation and crystallization methods, excellent properties, and practical applications. Finally, future research prospects and development opportunities are provided.
Collapse
Affiliation(s)
- Jia-Wang Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Qu DH, Xu H, Zhang Q, Gan JA, Wang Z, Chen M, Shan Y, Chen S, Tong F. Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion. Chem Asian J 2022; 17:e202101354. [PMID: 35007397 DOI: 10.1002/asia.202101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Indexed: 11/07/2022]
Abstract
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80oC, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
Collapse
Affiliation(s)
- Da-Hui Qu
- Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA
| | - Hui Xu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Qi Zhang
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Jia-An Gan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Zhuo Wang
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Meng Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Yahan Shan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Shaoyu Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Fei Tong
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, 200237, Shanghai, CHINA
| |
Collapse
|
10
|
Ma J, Huang L, Zhou B, Yao L. Construction and Catalysis Advances of Inorganic Chiral Nanostructures. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Light-guided tumor diagnosis and therapeutics: from nanoclusters to polyoxometalates. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
Subnanometric materials (SNMs) refer to nanomaterials with sizes comparable to the diameter of common linear polymers or confined at the level of a single unit cell in at least one dimension, usually <1 nm. Conventional inorganic nanoparticles are usually deemed to be rigid, lacking self-adjustable conformation. In contrast, the size at subnanometric scale endows SNMs with flexibility analogous to polymers, resulting in their abundant self-adjustable conformation. It is noteworthy that some highly flexible SNMs can adjust their shape automatically to form chiral conformation, which is rare in conventional inorganic nanoparticles. Herein, we summarize the chiral conformation of SNMs and clarify the driving force behind their formation, in an attempt to establish a better understanding for the origin of flexibility and chirality at subnanometric scale. In addition, the general strategies for controlling the conformation of SNMs are elaborated, which might shed light on the efficient fabrications of chiral inorganic materials. Finally, the challenges facing this area as well as some unexplored topics are discussed.
Collapse
Affiliation(s)
- Biao Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
13
|
Ma S, Ahn J, Moon J. Chiral Perovskites for Next-Generation Photonics: From Chirality Transfer to Chiroptical Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005760. [PMID: 33885185 DOI: 10.1002/adma.202005760] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Organic-inorganic hybrid halide perovskites (OIHPs) are commonly used as prototypical materials for various applications, including photovoltaics, photodetectors, and light-emitting devices. Since the chiroptical properties of OIHPs are deciphered in 2017, chiral OIHPs have been rediscovered as new hybrid systems comprising chiral organic molecules and achiral inorganic octahedral layers. Owing to their exceptional optoelectrical properties and structural flexibility, chiral OIHPs have received a considerable amount of attention in chiral photonics, chiroptoelectronics, spintronics, and ferroelectrics. Despite their intriguing chiral properties, the transfer mechanism from chiral molecules to achiral semiconductors has not been extensively investigated. Furthermore, an in-depth understanding of the origin of chiroptical activity is still elusive. In this review article, recent advances in the chiroptical activities of chiral OIHPs and polarization-based devices adopting chiral OIHPs are comprehensively discussed, and insight into the underlying chirality transfer mechanism based on theoretical considerations is provided. This comprehensive survey, with an emphasis on the chirality transfer mechanism, will help readers understand the chiroptical properties of OIHPs, which are crucial for the development of spin-based photonic and optoelectronic devices. Additionally, promising strategies to exploit the potential of chiral OIHPs are also discussed.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jihoon Ahn
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
14
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
15
|
Hananel U, Moshe AB, Markovich G, Alivisatos AP. Nanocrystals as Model Systems for Studying the Interplay Between Crystallization and Chirality. Isr J Chem 2021. [DOI: 10.1002/ijch.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Uri Hananel
- School of Chemistry Tel Aviv University Tel Aviv 6997801 Israel
| | - Assaf Ben Moshe
- Materials Sciences Division Ernest Orlando Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Gil Markovich
- School of Chemistry Tel Aviv University Tel Aviv 6997801 Israel
| | - A. Paul Alivisatos
- Materials Sciences Division Ernest Orlando Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry University of California Berkeley CA 94720
- Kavli Energy NanoScience Institute Berkeley CA 94720 USA
| |
Collapse
|
16
|
Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W, Liu Y, Li Y, Cheng J, Xu X. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021; 11:9262-9295. [PMID: 34646370 PMCID: PMC8490512 DOI: 10.7150/thno.64511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid development of chiral inorganic nanostructures has greatly expanded from intrinsically chiral nanoparticles to more sophisticated assemblies made by organics, metals, semiconductors, and their hybrids. Among them, lots of studies concerning on hybrid complex of chiral molecules with achiral nanoparticles (NPs) and superstructures with chiral configurations were accordingly conducted due to the great advances such as highly enhanced biocompatibility with low cytotoxicity and enhanced penetration and retention capability, programmable surface functionality with engineerable building blocks, and more importantly tunable chirality in a controlled manner, leading to revolutionary designs of new biomaterials for synergistic cancer therapy, control of enantiomeric enzymatic reactions, integration of metabolism and pathology via bio-to nano or structural chirality. Herein, in this review our objective is to emphasize current research state and clinical applications of chiral nanomaterials in biological systems with special attentions to chiral metal- or semiconductor-based nanostructures in terms of the basic synthesis, related circular dichroism effects at optical frequencies, mechanisms of induced optical chirality and their performances in biomedical applications such as phototherapy, bio-imaging, neurodegenerative diseases, gene editing, cellular activity and sensing of biomarkers so as to provide insights into this fascinating field for peer researchers.
Collapse
Affiliation(s)
- Yining Shao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guilin Yang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiaying Lin
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaofeng Fan
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yue Guo
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wentao Zhu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ying Cai
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huiyu Huang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wei Pang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
17
|
Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Sakthivel NA, Jupally VR, Eswaramoorthy SK, Wijesinghe KH, Nimmala PR, Kumara C, Rambukwella M, Jones T, Dass A. Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules. Anal Chem 2021; 93:3987-3996. [PMID: 33606508 DOI: 10.1021/acs.analchem.0c04961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5-200 kDa or ∼1-3 nm) and larger-scale separation (20-100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.
Collapse
Affiliation(s)
- Naga Arjun Sakthivel
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Vijay Reddy Jupally
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Senthil Kumar Eswaramoorthy
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Kalpani Hirunika Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Praneeth Reddy Nimmala
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Chanaka Kumara
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Milan Rambukwella
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Tanya Jones
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
19
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Wen Y, He MQ, Yu YL, Wang JH. Biomolecule-mediated chiral nanostructures: a review of chiral mechanism and application. Adv Colloid Interface Sci 2021; 289:102376. [PMID: 33561566 DOI: 10.1016/j.cis.2021.102376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
The chirality of biomolecules is vital importance in biosensing and biomedicine. However, most biomolecules only have a chiral response in the ultraviolet region, and the corresponding chiral signal is weak. In recent years, inorganic nanomaterials can adjust chiral light signals to the visible and near-infrared regions and enhance optical signals due to their high polarizability and adjustable morphology-dependent optical properties. Nonetheless, inorganic nanomaterials usually lack specificity to identify targets, and have strong toxicity when applied in organisms. The combination of chiral biomolecules and inorganic nanomaterials offers a way to solve these problems. Because chiral biomolecules, such as DNA, amino acids, and peptides, have programmability, specific recognition, excellent biocompatibility, and strong binding force to inorganic nanomaterials. Biomolecule-mediated chiral nanostructures show specific recognition of targets, extremely low biological toxicity and adjustable optical activity by regulating, assembling and inducing inorganic nanomaterials. Therefore, biomolecule-mediated chiral nanostructures have received widespread attention, including chiral biosensing, enantiomers recognition and separation, biological diagnosis and treatment, chiral catalysis, and circular polarization of chiral metamaterials. This review mainly introduces the three chiral mechanisms of biomolecule-mediated chiral nanostructures, lists some important applications at present, and discusses the development prospects of biomolecule-mediated chiral nanostructures.
Collapse
|
21
|
Petersen F, Lautenschläger I, Schlimm A, Flöser BM, Jacob H, Amirbeigiarab R, Rusch TR, Strunskus T, Magnussen O, Tuczek F. Molybdenum tricarbonyl complex functionalised with a molecular triazatriangulene platform on Au(111): surface spectroscopic characterisation. Dalton Trans 2021; 50:1042-1052. [PMID: 33367415 DOI: 10.1039/d0dt03549a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal complexes form the basis for small molecule activation and are relevant for electrocatalysis. To combine both approaches the attachment of homogeneous catalysts to metallic surfaces is of significant interest. Towards this goal a molybdenum tricarbonyl complex supported by a tripodal phosphine ligand was covalently bound to a triazatriangulene (TATA) platform via an acetylene unit and the resulting TATA-functionalised complex was deposited on a Au(111) surface. The corresponding self-assembled monolayer was characterised with scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS). The vibrational properties of the surface-adsorbed complexes were investigated with the help of infrared reflection absorption spectroscopy (IRRAS), and the frequency/intensity changes with respect to the bulk spectrum were analysed. A full vibrational analysis was performed with the help of DFT.
Collapse
Affiliation(s)
- Finn Petersen
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany.
| | - Irene Lautenschläger
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany.
| | - Alexander Schlimm
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany.
| | - Benedikt M Flöser
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany.
| | - Hanne Jacob
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany.
| | | | - Talina R Rusch
- Institute of Experimental and Applied Physics, Leibnizstraße 11-19, 24118 Kiel, Germany
| | - Thomas Strunskus
- Institute for Materials Science-Multicomponent Materials, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel, Germany
| | - Olaf Magnussen
- Institute of Experimental and Applied Physics, Leibnizstraße 11-19, 24118 Kiel, Germany
| | - Felix Tuczek
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany.
| |
Collapse
|
22
|
Kawawaki T, Kataoka Y, Ozaki S, Kawachi M, Hirata M, Negishi Y. Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chem Commun (Camb) 2020; 57:417-440. [PMID: 33350403 DOI: 10.1039/d0cc06809h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With global warming and the depletion of fossil resources, our fossil-fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as clean and renewable energy. Water-splitting photocatalysts can produce H2 from water using sunlight, which are almost infinite on the earth. However, further improvements are indispensable to enable their practical application. To improve the efficiency of the photocatalytic water-splitting reaction, in addition to improving the semiconductor photocatalyst, it is extremely effective to improve the cocatalysts (loaded metal nanoclusters, NCs) that enable the reaction to proceed on the photocatalysts. We have thus attempted to strictly control metal NCs on photocatalysts by introducing the precise-control techniques of metal NCs established in the metal NC field into research on water-splitting photocatalysts. Specifically, the cocatalysts on the photocatalysts were controlled by adsorbing atomically precise metal NCs on the photocatalysts and then removing the protective ligands by calcination. This work has led to several findings on the electronic/geometrical structures of the loaded metal NCs, the correlation between the types of loaded metal NCs and the water-splitting activity, and the methods for producing high water-splitting activity. We expect that the obtained knowledge will lead to clear design guidelines for the creation of practical water-splitting photocatalysts and thereby contribute to the construction of a hydrogen-energy society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Otis G, Nassir M, Zutta M, Saady A, Ruthstein S, Mastai Y. Enantioselective Crystallization of Chiral Inorganic Crystals of ϵ-Zn(OH) 2 with Amino Acids. Angew Chem Int Ed Engl 2020; 59:20924-20929. [PMID: 32776435 DOI: 10.1002/anie.202009061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 01/19/2023]
Abstract
Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ-Zn(OH)2 (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ-Zn(OH)2 were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l- or d-arginine. All of the chiral measurements, such as selective chiral adsorption by circular dichroism (CD), chiral chromatography, and polarimetry measurements, clearly show chiral discrimination during the crystallization of ϵ-Zn(OH)2 . In addition, a new method has been developed for identifying chirality in crystals by using electron paramagnetic resonance (EPR). Although the values of chiral induction of the ϵ-Zn(OH)2 crystals obtained are somewhat low, these values are still significant because they demonstrate that enantioselectivity during the crystallization of chiral inorganic crystals with chiral additives can be achieved. The method can be applied to many chiral inorganic systems. Understanding and controlling the crystallization of chiral inorganic crystals is important for gaining knowledge on the interaction of chiral molecules with inorganic surfaces. This knowledge can lead to an understanding of basic scientific questions such as the evolution of homochirality in biomolecules and the development of chiral inorganic crystals for a variety of purposes such as asymmetric catalysis and optical applications.
Collapse
Affiliation(s)
- Gil Otis
- Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Molhm Nassir
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Michael Zutta
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Abed Saady
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
24
|
Otis G, Nassir M, Zutta M, Saady A, Ruthstein S, Mastai Y. Enantioselective Crystallization of Chiral Inorganic Crystals of ϵ‐Zn(OH)
2
with Amino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gil Otis
- Department of Chemistry and Institute for Nanotechnology and Advanced Materials Bar-Ilan University Ramat Gan 5290002 Israel
| | - Molhm Nassir
- Department of Chemistry Bar-Ilan University Ramat Gan 5290002 Israel
| | - Michael Zutta
- Department of Chemistry Bar-Ilan University Ramat Gan 5290002 Israel
| | - Abed Saady
- Department of Chemistry Bar-Ilan University Ramat Gan 5290002 Israel
| | - Sharon Ruthstein
- Department of Chemistry Bar-Ilan University Ramat Gan 5290002 Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute for Nanotechnology and Advanced Materials Bar-Ilan University Ramat Gan 5290002 Israel
| |
Collapse
|
25
|
Li Y, Higaki T, Du X, Jin R. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905488. [PMID: 32181554 DOI: 10.1002/adma.201905488] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Indexed: 05/24/2023]
Abstract
Chirality is ubiquitous in nature and occurs at all length scales. The development of applications for chiral nanostructures is rising rapidly. With the recent achievements of atomically precise nanochemistry, total structures of ligand-protected Au and other metal nanoclusters (NCs) are successfully obtained, and the origins of chirality are discovered to be associated with different parts of the cluster, including the surface ligands (e.g., swirl patterns), the organic-inorganic interface (e.g., helical stripes), and the kernel. Herein, a unified picture of metal-ligand surface bonding-induced chirality for the nanoclusters is proposed. The different bonding modes of M-X (where M = metal and X = the binding atom of ligand) lead to different surface structures on nanoclusters, which in turn give rise to various characteristic features of chirality. A comparison of Au-thiolate NCs with Au-phosphine ones further reveals the important roles of surface bonding. Compared to the Au-thiolate NCs, the Ag/Cu/Cd-thiolate systems exhibit different coordination modes between the metal and the thiolate. Other than thiolate and phosphine ligands, alkynyls are also briefly discussed. Several methods of obtaining chiroptically active nanoclusters are introduced, such as enantioseparation by high-performance liquid chromatography and enantioselective synthesis. Future perspectives on chiral NCs are also proposed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
26
|
Kumar S, Soni S, Danowski W, van Beek CLF, Feringa BL, Rudolf P, Chiechi RC. Correlating the Influence of Disulfides in Monolayers across Photoelectron Spectroscopy Wettability and Tunneling Charge-Transport. J Am Chem Soc 2020; 142:15075-15083. [PMID: 32786759 PMCID: PMC7472521 DOI: 10.1021/jacs.0c06508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Despite their ubiquity, self-assembled monolayers (SAMs) of thiols on coinage metals are difficult to study and are still not completely understood, particularly with respect to the nature of thiol-metal bonding. Recent advances in molecular electronics have highlighted this deficiency due to the sensitivity of tunneling charge-transport to the subtle differences in the overall composition of SAMs and the chemistry of their attachment to surfaces. These advances have also challenged assumptions about the spontaneous formation of covalent thiol-metal bonds. This paper describes a series of experiments that correlate changes in the physical properties of SAMs to photoelectron spectroscopy to unambiguously assign binding energies of noncovalent interactions to physisorbed disulfides. These disulfides can be converted to covalent metal-thiolate bonds by exposure to free thiols, leading to the remarkable observation of the total loss and recovery of length-dependent tunneling charge-transport. The identification and assignment of physisorbed disulfides solve a long-standing mystery and reveal new, dynamic properties in SAMs of thiols.
Collapse
Affiliation(s)
- Sumit Kumar
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saurabh Soni
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wojciech Danowski
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlijn L. F. van Beek
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Victoria F, Manioudakis J, Zaroubi L, Findlay B, Naccache R. Tuning residual chirality in carbon dots with anti-microbial properties. RSC Adv 2020; 10:32202-32210. [PMID: 35518167 PMCID: PMC9056545 DOI: 10.1039/d0ra05208f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022] Open
Abstract
Chirality remains a critical consideration in drug development and design, as well as in applications of enantioselective recognition and sensing. However, the preparation of chiral nanomaterials requires extensive post synthetic modifications with a chiral agent, coupled with extensive purification. This limits the use and application of chiral nanomaterials. Herein, we report a facile, one-step microwave-assisted synthesis of chiral carbon dots through the reaction of l- and d-cysteine amino acid precursors and citric acid. We modulated the synthetic parameters to preserve and tune the residual chiral properties of the dots and demonstrate that the reaction conditions play a critical role in dictating the chiral behaviour of the dots. Finally, in a proof of concept application we demonstrated that the synthesized carbon dots, particularly d-carbon dots inhibit bacterial growth at a lower concentration than l-carbon dots. By varying bacterial strains and chirality of the carbon dots, concentrations ranging from 0.25-4 mg mL-1 of the nanoparticles were required to inhibit microbial growth. The ability to preserve and tune chirality during synthesis can open up novel avenues and research directions for the development of enantioselective materials, as well as antibacterial films and surfaces.
Collapse
Affiliation(s)
- Florence Victoria
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
- Centre for NanoScience Research, Concordia University Montreal QC Canada H4B 1R6
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University Montreal QC H4B 1R6 Canada
| | - John Manioudakis
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
- Centre for NanoScience Research, Concordia University Montreal QC Canada H4B 1R6
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University Montreal QC H4B 1R6 Canada
| | - Liana Zaroubi
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
| | - Brandon Findlay
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
| | - Rafik Naccache
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
- Centre for NanoScience Research, Concordia University Montreal QC Canada H4B 1R6
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University Montreal QC H4B 1R6 Canada
| |
Collapse
|
28
|
Yang L, Liu J, Sun P, Ni Z, Ma Y, Huang Z. Chiral Ligand-Free, Optically Active Nanoparticles Inherently Composed of Chiral Lattices at the Atomic Scale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001473. [PMID: 32419372 DOI: 10.1002/smll.202001473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Bulk metals lack chirality. Recently, metals have been sculptured with metastable chirality varying from the micro- to nano-scale. The manipulation of molecular chirality could be novelly performed using metals composed of chiral lattices at atomic scales (i.e., chiral nanoparticles or CNPs) if one could fundamentally understand the interactions between molecules and the chiral metal lattices. The incorporation of chiral ligands has been generally adapted to form metal CNPs. However, post-fabrication removal of chiral ligands usually causes relaxation of the metastable chiral lattices to thermodynamically stable achiral structures, and thus the coexisting chiral ligands will unavoidably disturb or screen the interactions of interest. Herein, a concept of metal CNPs that are free of chiral ligands and consist of atomically chiral lattices is introduced. Without chiral ligands, shear forces applied by substrate rotation along with the translation of incident atoms lead to imposing the metastable chiral lattices onto metals. Metal CNPs show not only the chiroptical effect but the enantiospecific interactions of chiral lattices and molecules. These two unique chiral effects have resulted in the applications of enantiodifferentiation and asymmetric synthesis. Prospectively, the extension in composition space and constituent engineering will apply alloy CNPs to enantiodiscrimination, enantioseperation, bio-imaging, bio-sensing, and asymmetric catalysis.
Collapse
Affiliation(s)
- Lin Yang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China
| | - Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China
| | - Peng Sun
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ziyue Ni
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yicong Ma
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
29
|
Negishi Y, Hashimoto S, Ebina A, Hamada K, Hossain S, Kawawaki T. Atomic-level separation of thiolate-protected metal clusters. NANOSCALE 2020; 12:8017-8039. [PMID: 32207494 DOI: 10.1039/d0nr00824a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fine metal clusters have attracted much attention from the viewpoints of both basic and applied science for many years because of their unique physical/chemical properties and functions, which differ from those of bulk metals. Among these materials, thiolate (SR)-protected gold clusters (Aun(SR)m clusters) have been the most studied metal clusters since 2000 because of their ease of synthesis and handling. However, in the early 2000s, it was not easy to isolate these metal clusters. Therefore, high-resolution separation methods were explored, and several atomic-level separation methods, including polyacrylamide gel electrophoresis (PAGE), high-performance liquid chromatography (HPLC), and thin-layer chromatography (TLC), were successively established. These techniques have made it possible to isolate a series of Aun(SR)m clusters, and much knowledge has been obtained on the correlation between the chemical composition and fundamental properties such as the stability, electronic structure, and physical properties of Aun(SR)m clusters. In addition, these high-resolution separation techniques are now also frequently used to evaluate the distribution of the product and to track the reaction process. In this way, high-resolution separation techniques have played an essential role in the study of Aun(SR)m clusters. However, only a few reviews have focused on this work. This review focuses on PAGE, HPLC, and TLC separation techniques, which offer high resolution and repeatability, and summarizes previous studies on the high-resolution separation of Aun(SR)m and related clusters with the purpose of promoting a better understanding of the features and the utility of these techniques.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Chi J, Liu H, Wang Z, Huang N. Giant optical activity in plasmonic chiral structure via double-layer graphene moiré stacking in mid-infrared region. OPTICS EXPRESS 2020; 28:4529-4540. [PMID: 32121687 DOI: 10.1364/oe.385450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
The plasmonic metamaterials and metasurfaces play a critical role in manipulating lights in the mid-infrared spectral region. Here, we first propose a novel plasmonic chiral structure with the giant optical activity in the mid-infrared spectral region. The chiral structure consists of the moiré patterns, which are formed by stacking double-layer graphene nanoribbons with a relative in-plane rotation angle. It is demonstrated that the graphene-based plasmonic structure with moiré patterns exhibits the strong circular dichroism. The giant chiroptical response can be precisely controlled by changing the rotation angle and Fermi level of graphene. Furthermore, a dielectric interlayer is inserted between two layers of graphene to obtain the stronger circular dichroism. Impressively, the strongest circular dichroism can reach 5.94 deg at 13.6 µm when the thickness of dielectric interlayer is 20 nm. The proposed structure with graphene-based moiré patterns can be superior to conventional graphene chiral metamaterials due to some advantage of rotation-dependent chirality, flexible tunability and cost-effective fabrication. It will advance many essential mid-infrared applications, such as chiral sensors, thermal imaging and chiroptical detectors.
Collapse
|
31
|
Cheng P, Wang H, Shi X. The effect of phenylalanine ligands on the chiral-selective oxidation of glucose on Au(111). NANOSCALE 2020; 12:3050-3057. [PMID: 31984970 DOI: 10.1039/c9nr09506c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As typical glucose oxidase nanozymes, gold nanoparticles (Au NPs) have attracted much attention due to their wide-ranging applications. Ligand caps, as the "cure-all solution" for NPs, not only play important roles in the size and shape control of Au NPs but also influence their catalytic activity and selectivity. A deep understanding of the catalytic mechanism and precise description of the important role of ligands can provide possible ways to design functional Au NPs. Here, with the specific example of Au(111) capped with chiral phenylalanine (Phe), the chiral selective oxidation mechanism of glucose and the important role of the ligands were studied via first-principles calculations. All results show that the dehydrogenation of glucose to form glucono delta-lactone (GDL) is favored on clean Au(111), while the subsequent hydrolysis of GDL is the rate-limiting step for glucose oxidation. The flat and nonchiral Au(111) surface shows negligible selectivity in relation to the oxidation of d- and l-glucose, while chiral Phe-Au(111) shows selective adsorption towards d- and l-glucose. l-Phe-capped Au(111) prefers to adsorb d-glucose, while d-Phe-capped Au(111) prefers to adsorb l-glucose. Considering the three steps in the capped ligand catalysis (adsorption, replacement and reaction), we propose that the ligands play key roles in selectively adsorbing reactants before the subsequent exchange and reaction steps.
Collapse
Affiliation(s)
- Ping Cheng
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China. and College of Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
32
|
Bigdeli A, Ghasemi F, Fahimi-Kashani N, Abbasi-Moayed S, Orouji A, Jafar-Nezhad Ivrigh Z, Shahdost-Fard F, Hormozi-Nezhad MR. Optical nanoprobes for chiral discrimination. Analyst 2020; 145:6416-6434. [DOI: 10.1039/d0an01211d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chiral recognition can be achieved by exploiting chiral properties of nanoparticles within various colorimetric and luminescent sensing systems.
Collapse
Affiliation(s)
- Arafeh Bigdeli
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | - Forough Ghasemi
- Department of Nanotechnology
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- Agricultural Research
- Education
- and Extension Organization (AREEO)
| | | | | | - Afsaneh Orouji
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | | | | | - M. Reza Hormozi-Nezhad
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| |
Collapse
|
33
|
Roy Bhattacharya S, Bürgi T. Amplified vibrational circular dichroism as a manifestation of the interaction between a water soluble gold nanocluster and cobalt salt. NANOSCALE 2019; 11:23226-23233. [PMID: 31782463 DOI: 10.1039/c9nr07534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational circular dichroism (VCD) is a powerful tool for the structure determination of dissolved molecules. However, the application of VCD to nanostructures is limited up to now due to the weakness of the effect and hence the low signal intensities. Here we show that the addition of a small amount of cobalt(ii) drastically enhances the VCD signals of a thiolate-protected gold cluster Au25(Capt)18 (Capt = captopril) in aqueous solution. An increase of VCD signal intensity of at least one order of magnitude is observed. The enhancement depends on the amount of CoCl2 added but almost an order of magnitude enhancement is already observed at a cluster : CoCl2 ratio of 1 : 1. In contrast, circular dichroism (CD) and infrared spectra hardly change. The increase in VCD intensity goes along with a qualitative change of the spectrum and the enhancement increases with time reaching a stable state only after several hours. The enhancement is due to an interaction between the cobalt(ii) and the cluster, which also leads to quenching of its fluorescence. The behaviour is completely different for free captopril, where the addition of cobalt(ii) salt does not affect the VCD spectrum.
Collapse
Affiliation(s)
- Sarita Roy Bhattacharya
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
34
|
Aloni SS, Perovic M, Weitman M, Cohen R, Oschatz M, Mastai Y. Amino acid-based ionic liquids as precursors for the synthesis of chiral nanoporous carbons. NANOSCALE ADVANCES 2019; 1:4981-4988. [PMID: 36133123 PMCID: PMC9419064 DOI: 10.1039/c9na00520j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/15/2019] [Indexed: 06/12/2023]
Abstract
The synthesis of chiral nanoporous carbons based on chiral ionic liquids (CILs) of amino acids as precursors is described. Such unique precursors for the carbonization of CILs yield chiral carbonaceous materials with high surface area (≈620 m2 g-1). The enantioselectivities of the porous carbons are examined by advanced techniques such as selective adsorption of enantiomers using cyclic voltammetry, isothermal titration calorimetry, and mass spectrometry. These techniques demonstrate the chiral nature and high enantioselectivity of the chiral carbon materials. Overall, we believe that the novel approach presented here can contribute significantly to the development of new chiral carbon materials that will find important applications in chiral chemistry, such as in chiral catalysis and separation and in chiral sensors. From a scientific point of view, the approach and results reported here can significantly deepen our understanding of chirality at the nanoscale and of the structure and nature of chiral nonporous materials and surfaces.
Collapse
Affiliation(s)
- Sapir Shekef Aloni
- Department of Chemistry, The Institute of Nanotechnology, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Milena Perovic
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park Am Mühlenberg 1 OT Golm Potsdam 14476 Germany
| | - Michal Weitman
- Department of Chemistry, The Institute of Nanotechnology, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Reut Cohen
- Department of Chemistry, The Institute of Nanotechnology, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Martin Oschatz
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park Am Mühlenberg 1 OT Golm Potsdam 14476 Germany
- Institute of Chemistry, University of Potsdam Karl-Liebknecht-Str. 24-25 D-14476 Potsdam Germany
| | - Yitzhak Mastai
- Department of Chemistry, The Institute of Nanotechnology, Bar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
35
|
Utembe W. Chirality, a neglected physico-chemical property of nanomaterials? A mini-review on the occurrence and importance of chirality on their toxicity. Toxicol Lett 2019; 311:58-65. [DOI: 10.1016/j.toxlet.2019.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
36
|
Shahzad Lodhi M, Qadir Samra Z. Purification of transferrin by magnetic nanoparticles and conjugation with cysteine capped gold nanoparticles for targeting diagnostic probes. Prep Biochem Biotechnol 2019; 49:961-973. [PMID: 31318328 DOI: 10.1080/10826068.2019.1643736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transferrin is an iron binding glycoprotein actively involved in the growth and maintenance of cell cycle. The transferrin receptors expression is increased on growing cancer/tumor cells for absorption of iron through transferrin and participation in biological activity. In this study, a novel method for the purification of transferrin by using magnetic nanoparticles (MNP) is developed and compared with reported method. Magnetic nanoparticles were synthesized by co-precipitation method under hydrothermal conditions in the presence of ammonium hydroxide. MNP were characterized by FTIR, VSM, DLS, TEM, and SEM. Purified transferrin was characterized by SDS-PAGE, MALDI-TOF, ELISA, Western blot, and its activity was further confirmed by iron binding assay and receptor binding assays. Purified transferrin was also conjugated with cysteine capped gold nanoparticles (GNP) and characterized by UV-Vis spectra, TEM, DLS, and fluorescent spectrophotometry. Transferrin conjugated cysteine capped GNP used as a targeted fluorescent probe on gastric cancer, tumor tissue and MDA-MB 231 cancer cells to confirm transferrin receptor binding activity and application as diagnostic probe. The purified transferrin showed stability and activity up to 36 months. The results indicated that the synthesized superamagnetic MNP are good for the purification of transferrin. A good yield of transferrin was purified by this method, good quality and showed active biological activity. GNP conjugated transferrin has a potential to be used in cancer diagnosis as targeted diagnosis probe in vivo and in vitro. Experiments are underway for utilizing transferrin as carrier for targeting drug delivery.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- Applied Molecular Biotechnology Research Lab (AMBR), Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| | - Zahoor Qadir Samra
- Applied Molecular Biotechnology Research Lab (AMBR), Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
37
|
Munir A, Joya KS, Ul Haq T, Babar NUA, Hussain SZ, Qurashi A, Ullah N, Hussain I. Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. CHEMSUSCHEM 2019; 12:1517-1548. [PMID: 30485695 DOI: 10.1002/cssc.201802069] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Indexed: 05/12/2023]
Abstract
A sustainable future demands innovative breakthroughs in science and technology today, especially in the energy sector. Earth-abundant resources can be explored and used to develop renewable and sustainable resources of energy to meet the ever-increasing global energy demand. Efficient solar-powered conversion systems exploiting inexpensive and robust catalytic materials for the photo- and photo-electro-catalytic water splitting, photovoltaic cells, fuel cells, and usage of waste products (such as CO2 ) as chemical fuels are appealing solutions. Many electrocatalysts and nanomaterials have been extensively studied in this regard. Low overpotentials, catalytic stability, and accessibility remain major challenges. Metal nanoclusters (NCs, ≤3 nm) with dimensions between molecule and nanoparticles (NPs) are innovative materials in catalysis. They behave like a "superatom" with exciting size- and facet-dependent properties and dynamic intrinsic characteristics. Being an emerging field in recent scientific endeavors, metal NCs are believed to replace the natural photosystem II for the generation of green electrons in a viable way to facilitate the challenging catalytic processes in energy-conversion schemes. This Review aims to discuss metal NCs in terms of their unique physicochemical properties, possible synthetic approaches by wet chemistry, and various applications (mostly recent advances in the electrochemical and photo-electrochemical water splitting cycle and the oxygen reduction reaction in fuel cells). Moreover, the significant role that MNCs play in dye-sensitized solar cells and nanoarrays as a light-harvesting antenna, the electrochemical reduction of CO2 into fuels, and concluding remarks about the present and future perspectives of MNCs in the frontiers of surface science are also critically reviewed.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Noor-Ul-Ain Babar
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Najeeb Ullah
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET-Peshawar),Jamrud Road, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| |
Collapse
|
38
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
39
|
Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019; 24:E1007. [PMID: 30871182 PMCID: PMC6470864 DOI: 10.3390/molecules24061007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Chiral molecules are stereoselective with regard to specific biological functions. Enantiomers differ considerably in their physiological reactions with the human body. Safeguarding the quality and safety of drugs requires an efficient analytical platform by which to selectively probe chiral compounds to ensure the extraction of single enantiomers. Asymmetric synthesis is a mature approach to the production of single enantiomers; however, it is poorly suited to mass production and allows for only specific enantioselective reactions. Furthermore, it is too expensive and time-consuming for the evaluation of therapeutic drugs in the early stages of development. These limitations have prompted the development of surface-modified nanoparticles using amino acids, chiral organic ligands, or functional groups as chiral selectors applicable to a racemic mixture of chiral molecules. The fact that these combinations can be optimized in terms of sensitivity, specificity, and enantioselectivity makes them ideal for enantiomeric recognition and separation. In chiral resolution, molecules bond selectively to particle surfaces according to homochiral interactions, whereupon an enantiopure compound is extracted from the solution through a simple filtration process. In this review article, we discuss the fabrication of chiral nanoparticles and look at the ways their distinctive surface properties have been adopted in enantiomeric recognition and separation.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, Assam 785001, India.
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Harsh Ranawat
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Rd., Taichung 40447, Taiwan.
| |
Collapse
|
40
|
Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina EB, Kumacheva E. Helicoidal Patterning of Nanorods with Polymer Ligands. Angew Chem Int Ed Engl 2019; 58:3123-3127. [PMID: 30604462 PMCID: PMC6400493 DOI: 10.1002/anie.201812887] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end-grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface-pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish-kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self-assembly modes.
Collapse
Affiliation(s)
- Elizabeth Galati
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Moritz Tebbe
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rija Ansari
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics and Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, 199004, Russia,
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
41
|
Yang Y, Zhang Q, Guan ZJ, Nan ZA, Wang JQ, Jia T, Zhan WW. Enantioselective Synthesis of Homochiral Au13 Nanoclusters and Their Chiroptical Activities. Inorg Chem 2019; 58:3670-3675. [DOI: 10.1021/acs.inorgchem.8b03171] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zi-Ang Nan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Qi Wang
- Chemistry Department, Tsinghua University, Beijing 100084, China
| | - Tao Jia
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen-Wen Zhan
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
42
|
Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina EB, Kumacheva E. Helicoidal Patterning of Nanorods with Polymer Ligands. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elizabeth Galati
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Huachen Tao
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Moritz Tebbe
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Rija Ansari
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science Biomedical Engineering, Physics and Chemistry Duke University Durham NC 27708 USA
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
43
|
Medina DD, Mastai Y. Chiral Polymers and Polymeric Particles for Enantioselective Crystallization. Isr J Chem 2019. [DOI: 10.1002/ijch.201800174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dana D. Medina
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians University (LMU) Bu-tendtstraße 11 (E) 81377 Munich Germany
| | - Yitzhak Mastai
- Department of Chemistry and theInstitute of Nanotechnology Bar-Ilan University Ramat-Gan 52900 Israel
| |
Collapse
|
44
|
Wang R, Cui J, Wan X, Zhang J. Controlled chiral arrangement of silver nanoparticles in supramolecular gels modulated by the cooling rate. Chem Commun (Camb) 2019; 55:4949-4952. [DOI: 10.1039/c9cc01015g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Opposite helical arrangements of silver nanoparticles can be in situ achieved in organogels from a single gelator at different cooling rates.
Collapse
Affiliation(s)
- Rong Wang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jiaxi Cui
- INM-Leibniz Institute for New Materials
- Saarbrucken
- Germany
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
45
|
Jana J, Aditya T, Pal T. Achievement of silver-directed enhanced photophysical properties of gold nanoclusters. NEW J CHEM 2019. [DOI: 10.1039/c9nj00977a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver-induced enhanced fluorescence of gold nanoclusters through a facile green synthesis.
Collapse
Affiliation(s)
- Jayasmita Jana
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Teresa Aditya
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Tarasankar Pal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
46
|
Abstract
Over recent years, the field of thiolate-protected gold nanoclusters has made remarkable progress. The successful determination of the structure of some of these clusters by X-ray crystallography was a milestone in this field. X-ray crystallography is arguably the most important technique in the field up to now, and it enabled the study of structure evolution as a function of cluster size. It also shed light on the structure of the Au-S interface. Recently, it has been realized that thiolate-protected gold clusters are very dynamic systems. Metal atoms and ligands can exchange easily between clusters. Furthermore, the adsorbed ligands bear conformational dynamics. Such dynamic effects call for experimental methods that can cope with it. Future efforts in this field will be directed toward applications of thiolate-protected clusters, and many of them will rely on dissolved clusters. Therefore, structure determination in solution is an important issue, though it is very challenging. The structure of the metal core and the Au-S interface is not expected to change in solution with respect to the crystal. However, the structure of the adsorbed ligand itself is sensitive to the environment and may be different in the solid state and in solution, as has been shown in fact in the past. It is this (dynamic) structure of the ligand that determines the interaction between the cluster and its environment, which is crucial, for example, for sensing applications. Vibrational spectroscopy is a promising technique to characterize thiolate-protected clusters in different environments. A vibrational spectrum is sensitive to structure (conformation) although this information is often "hidden" in the spectrum, requiring detailed analysis and support from theory to be deciphered. Compared to other techniques like UV-vis spectroscopy and mass spectrometry, vibrational spectroscopy was not extensively used in the field of thiolate-protected clusters, but we believe that the technique will be very valuable for the future developments in the field. We have used vibrational spectroscopy to investigate thiolate-protected gold clusters for mainly two lines of research. In the first, we studied in detail the low energy region of the vibrational spectrum, in particular the Au-S vibrational modes, in order to understand the structure sensitivity. It emerges that the Au-S vibrational spectrum is indeed sensitive to the structure of the interface but also to other factors, especially the organic part of the thiol, in a complex way. The ability to directly correlate structure, from X-ray crystallography, and vibrational spectra for thiolate-protected clusters, should lead to a database that will help in the future the structure determination of the Au-S interface by vibrational spectroscopy for systems where direct structure determination is not possible, for example, for flat surfaces. A second line of research focused on the determination of the structure of the adsorbed ligands for dissolved clusters. Such information is mostly extracted by the comparison of theoretical and calculated spectra for different conformers. In this respect, vibrational circular dichroism (VCD) is particularly powerful as it strongly depends on the conformation, more than conventional infrared spectroscopy. VCD can be applied to chiral nonracemic compounds, and it is a sensitive probe for chirality. Using this method, it was possible to demonstrate that a cluster can transfer its chirality to achiral thiolate ligands. In this Account, we summarize the possibilities and challenges of vibrational spectroscopy in the field of thiolate-protected clusters.
Collapse
Affiliation(s)
- Belén Nieto-Ortega
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
47
|
Synthesis and Plasmonic Chiroptical Studies of Sodium Deoxycholate Modified Silver Nanoparticles. MATERIALS 2018; 11:ma11081291. [PMID: 30049936 PMCID: PMC6117651 DOI: 10.3390/ma11081291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022]
Abstract
Sodium deoxycholate modified silver nanoparticles prepared in the presence of sodium deoxycholate as a chiral inducer exhibit plasmonic circular dichroism (CD) signals. The plasmon-induced chirality arises from the presence of chiral molecules (sodium deoxycholate) on the surface of Ag nanoparticles, which transfer their chiral properties to the visible wavelength range due to the Coulomb interactions between the chiral molecules and plasmonic nanoparticles. The prepared Ag nanoparticles (NPs) exhibit distinct line shapes of plasmonic CD, which can be tailored by varying the pH values of the solutions. A mechanism was proposed to explain the generation of the distinct plasmonic CD shapes, which indicated that the arrangements of chiral molecules in the plasmonic hot spots between Ag NPs are crucial for the induced plasmonic CD.
Collapse
|
48
|
Yang J, Dong C, Ren J. Chiral ligand‐induced photoluminescence intermittence difference of CdTe quantum dots. LUMINESCENCE 2018; 33:1150-1156. [DOI: 10.1002/bio.3521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Jie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai P. R. China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai P. R. China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai P. R. China
| |
Collapse
|
49
|
Affiliation(s)
- Liora Werber
- Department of Chemistry and the Institute of Nanotechnology; Bar-Ilan University; Ramat Gan Israel
| | - Yitzhak Mastai
- Department of Chemistry and the Institute of Nanotechnology; Bar-Ilan University; Ramat Gan Israel
| |
Collapse
|
50
|
Huang H, Wang H, Wu Y, Shi Y, Deng J. Chiral, crosslinked, and micron-sized spheres of substituted polyacetylene prepared by precipitation polymerization. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|