1
|
Sedikides A, Lennox AJJ. Silver-Catalyzed ( Z)-β-Fluoro-vinyl Iodonium Salts from Alkynes: Efficient and Selective Syntheses of Z-Monofluoroalkenes. J Am Chem Soc 2024; 146:15672-15680. [PMID: 38829699 PMCID: PMC11177317 DOI: 10.1021/jacs.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Monofluoroalkenes are stable and lipophilic amide bioisosteres used in medicinal chemistry. However, efficient and stereoselective methods for synthesizing Z-monofluoroalkenes are underdeveloped. We envisage (Z)-β-fluoro-vinyl iodonium salts (Z-FVIs) as coupling partners for the diverse and stereoselective synthesis of Z-monofluoroalkenes. Disclosed herein is the development and application of a silver(I)-catalyzed process for accessing a broad scope of (Z)-FVIs with exclusive Z-stereoselectivity and regioselectivity from alkynes in a single step. Experimental and computational studies provide insight into the mechanism of the catalytic cycle and the role of the silver(I) catalyst, and the reactivity of (Z)-FVIs is explored through several stereospecific derivatizations.
Collapse
Affiliation(s)
- Alexi
T. Sedikides
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
2
|
Hu YF, Feng MH, Zhang PY, Xu H, Ma M, Shen ZL, Chu XQ. Combining Hydrodefluorination and Defluorophosphorylation for Chemo- and Stereoselective Synthesis of gem-Fluorophosphine Alkenes. Org Lett 2023; 25:6368-6373. [PMID: 37595017 DOI: 10.1021/acs.orglett.3c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
A chemo-, regio-, and stereoselective reaction of trifluoromethyl enones, phenylsilane, and phosphine oxides through a sequential hydrodefluorination and defluorophosphorylation relay is developed for the synthesis of distinctive gem-fluorophosphine alkenes. This multicomponent reaction occurred under transition-metal-free conditions with good functional group tolerance. Moreover, the preinstalled carbonyl auxiliary is important for tuning the reactivity of β-trifluoromethyl enones, thereby enabling controllable and selective functionalization of two fluorine atoms in trifluoromethylated enones.
Collapse
Affiliation(s)
- Ya-Fei Hu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Man-Hang Feng
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng-Yuan Zhang
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Morand S, Lecroq W, Jubault P, Lakhdar S, Bouillon JP, Couve-Bonnaire S. Organophotocatalysis Enables the Synthesis of gem-Fluorophosphonate Alkenes. Org Lett 2022; 24:8343-8347. [DOI: 10.1021/acs.orglett.2c03366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Solène Morand
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - William Lecroq
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Boulevard Maréchal Juin, 14000 Caen, France
| | - Philippe Jubault
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | | | - Samuel Couve-Bonnaire
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
4
|
Wang Q, Liu J, Wang N, Pajkert R, Mei H, Röschenthaler G, Han J. One‐Pot Reaction of (β‐Amino‐α,α‐difluoroethyl)phosphonates with Trifluoromethylated Ketones via Aza‐Wittig Reagents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
5
|
Morand S, Jubault P, Bouillon JP, Couve-Bonnaire S. gem-Heteroatom-Substituted Fluoroalkenes as Mimics of Amide Derivatives or Phosphates: A Comprehensive Review. Chemistry 2021; 27:17273-17292. [PMID: 34533868 DOI: 10.1002/chem.202102548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 01/18/2023]
Abstract
gem-Heteroatom-substituted fluoroalkenes have received little attention despite their great potential in medicinal chemistry or in fine chemistry. Indeed, due to the electronic and steric similarity between the fluoroalkene moiety and the amide bond as well as the high strength of the carbon-fluorine bond, these gem-heteroatom-substituted fluoroalkenes could be envisioned as stable mimics of various important organic functions, such as phosphates, carbamates, S-thiocarbamates and ureas. We present herein an overview describing the syntheses over the last decade of heteroatom-substituted fluoroalkenes in geminal position. This review will be divided into several sections covering each the common following heteroatom: oxygen-, nitrogen-, sulfur-, phosphorus-, boron- and silicon-substituted fluoroalkenes.
Collapse
Affiliation(s)
- Solène Morand
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | | | - Samuel Couve-Bonnaire
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
6
|
Panigrahi K, Fei X, Kitamura M, Berkowitz DB. Rapid Entry into Biologically Relevant α,α-Difluoroalkylphosphonates Bearing Allyl Protection-Deblocking under Ru(II)/(IV)-Catalysis. Org Lett 2019; 21:9846-9851. [PMID: 31789041 DOI: 10.1021/acs.orglett.9b03707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient synthetic route to α,α-difluoroalkylphosphonates is described. Structurally diverse aldehydes are condensed with LiF2CP(O)(OCH2CH═CH2)2. The resultant alcohols are captured as the pentafluorophenyl thionocarbonates and efficiently deoxygenated with HSnBu3, BEt3, and O2, and then smoothly deblocked with CpRu(IV)(π-allyl)quinoline-2-carboxylate (1-2 mol %) in methanol as an allyl cation scavenger. These mild deprotection conditions provide access to free α,α-difluoroalkylphosphonates in nearly quantitative yield. This methodology is used to rapidly construct new bis-α,α-difluoroalkyl phosphonate inhibitors of PTPIB (protein phosphotyrosine phosphatase-1B).
Collapse
Affiliation(s)
- Kaushik Panigrahi
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Xiang Fei
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - David B Berkowitz
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
7
|
Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Copper Salt-Controlled Divergent Reactivity of [Cu]CF2
PO(OEt)2
with α-Diazocarbonyl Derivatives. Angew Chem Int Ed Engl 2016; 55:14141-14145. [DOI: 10.1002/anie.201608294] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Maria V. Ivanova
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Alexandre Bayle
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Xavier Pannecoucke
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Thomas Poisson
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| |
Collapse
|
8
|
Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Copper Salt-Controlled Divergent Reactivity of [Cu]CF2
PO(OEt)2
with α-Diazocarbonyl Derivatives. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maria V. Ivanova
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Alexandre Bayle
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Xavier Pannecoucke
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Thomas Poisson
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| |
Collapse
|
9
|
Hirai G, Nishizawa E, Kakumoto D, Morita M, Okada M, Hashizume D, Nagashima S, Sodeoka M. Reactions of Carbonyl Compounds with Phosphorus Ylide Generated from Tribromofluoromethane and Tris(dimethylamino)phosphine. CHEM LETT 2015. [DOI: 10.1246/cl.150523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Go Hirai
- RIKEN
- RIKEN Center for Sustainable Resource Science
- AMED-CREST
| | | | - Daiki Kakumoto
- RIKEN
- Tokyo Medical and Dental University
- Graduate School of Science and Engineering, Saitama University
| | | | | | | | | | - Mikiko Sodeoka
- RIKEN
- RIKEN Center for Sustainable Resource Science
- AMED-CREST
- Tokyo Medical and Dental University
- Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
10
|
Vidyasagar A, Pathigoolla A, Sureshan KM. Chemoselective alcoholysis/acetolysis of trans-ketals over cis-ketals and its application in the total synthesis of the cellular second messenger, d-myo-inositol-1,4,5-trisphosphate. Org Biomol Chem 2013; 11:5443-53. [DOI: 10.1039/c3ob40789f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Adiyala Vidyasagar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | | | | |
Collapse
|
11
|
Varvogli AAC, Fylaktakidou KC, Farmaki T, Stefanakis JG, Koumbis AE. Versatile Synthesis of 1- O-(ω-Aminolauryl)-I(4,5)P 2. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Chang-Ileto B, Frere SG, Di Paolo G. Acute manipulation of phosphoinositide levels in cells. Methods Cell Biol 2012; 108:187-207. [PMID: 22325604 DOI: 10.1016/b978-0-12-386487-1.00010-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositides are membrane-bound signaling phospholipids that function in a myriad of cellular processes, including membrane trafficking, cytoskeletal dynamics, ion channel and transporter function, and signal transduction. In order to better understand the role of phosphoinositides in cellular processes, different approaches to study the effects of the presence or absence of these lipids must be devised. Conventional approaches of manipulating phosphoinositide levels such as over-expression or genetic ablation of lipid enzymes cause prolonged exposure of the cells to changes in lipid levels that could result in compensatory actions by the cell or downstream alterations in cell physiology. In this chapter we present an approach used recently by various laboratories, including our own, to acutely manipulate phosphoinositide levels at target locations using chemically induced dimerization (CID) that can be spatially and temporally controlled. We discuss considerations when designing expression constructs for targeting specific cellular compartment membranes and present examples from the literature on different ways of perturbing phosphoinositide levels at particular organelle membranes using CID. In addition, we provide details on image acquisition, data collection, and data interpretation. CID technology can be applied to many lipid enzymes to broaden the understanding of the role lipid signaling plays in cell physiology.
Collapse
Affiliation(s)
- Belle Chang-Ileto
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, USA
| | | | | |
Collapse
|
13
|
Zhang H, He J, Kutateladze TG, Sakai T, Sasaki T, Markadieu N, Erneux C, Prestwich GD. 5-Stabilized phosphatidylinositol 3,4,5-trisphosphate analogues bind Grp1 PH, inhibit phosphoinositide phosphatases, and block neutrophil migration. Chembiochem 2010; 11:388-95. [PMID: 20052709 DOI: 10.1002/cbic.200900545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolically stabilized analogues of PtdIns(3,4,5)P3 have shown long-lived agonist activity for cellular events and selective inhibition of lipid phosphatase activity. We describe an efficient asymmetric synthesis of two 5-phosphatase-resistant analogues of PtdIns(3,4,5)P3, the 5-methylene phosphonate (MP) and 5-phosphorothioate (PT). Furthermore, we illustrate the biochemical and biological activities of five stabilized PtdIns(3,4,5)P3 analogues in four contexts. First, the relative binding affinities of the 3-MP, 3-PT, 5-MP, 5-PT, and 3,4,5-PT3 analogues to the Grp1 PH domain are shown, as determined by NMR spectroscopy. Second, the enzymology of the five analogues is explored, showing the relative efficiency of inhibition of SHIP1, SHIP2, and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), as well as the greatly reduced ability of these phosphatases to process these analogues as substrates as compared to PtdIns(3,4,5)P3. Third, exogenously delivered analogues severely impair complement factor C5a-mediated polarization and migration of murine neutrophils. Finally, the new analogues show long-lived agonist activity in mimicking insulin action in sodium transport in A6 cells.
Collapse
Affiliation(s)
- Honglu Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Mihai C, Yue X, Zhao L, Kravchuk A, Tsai MD, Bruzik KS. Nonhydrolyzable analogs of phosphatidylinositol as ligands of phospholipases C. NEW J CHEM 2010. [DOI: 10.1039/b9nj00629j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Conway SJ, Gardiner J, Grove SJA, Johns MK, Lim ZY, Painter GF, Robinson DEJE, Schieber C, Thuring JW, Wong LSM, Yin MX, Burgess AW, Catimel B, Hawkins PT, Ktistakis NT, Stephens LR, Holmes AB. Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Org Biomol Chem 2009; 8:66-76. [PMID: 20024134 DOI: 10.1039/b913399b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of the complete family of phosphatidylinositol phosphate analogues (PIPs) from five key core intermediates A-E is described. These core compounds were obtained from myo-inositol orthoformate 1 via regioselective DIBAL-H and trimethylaluminium-mediated cleavages and a resolution-protection process using camphor acetals 10. Coupling of cores A-E with phosphoramidites 34 and 38, derived from the requisite protected lipid side chains, afforded the fully-protected PIPs. Removal of the remaining protecting groups was achieved via hydrogenolysis using palladium black or palladium hydroxide on carbon in the presence of sodium bicarbonate to afford the complete family of dipalmitoyl- and amino-PIP analogues 42, 45, 50, 51, 58, 59, 67, 68, 76, 77, 82, 83, 92, 93, 99 and 100. Investigations using affinity probes incorporating these compounds have identified novel proteins involved in the PI3K intracellular signalling network and have allowed a comprehensive proteomic analysis of phosphoinositide interacting proteins.
Collapse
Affiliation(s)
- Stuart J Conway
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA. Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 2007; 582:1047-58. [PMID: 17599963 PMCID: PMC2075248 DOI: 10.1113/jphysiol.2007.134577] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the preBötzinger complex (preBötC) form local excitatory networks and synchronously discharge bursts of action potentials during the inspiratory phase of respiratory network activity. Synaptic input periodically evokes a Ca(2+)-activated non-specific cation current (I(CAN)) postsynaptically to generate 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, which underlie inspiratory bursts. The molecular identity of I(CAN) and its regulation by intracellular signalling mechanisms during inspiratory drive potential generation remains unknown. Here we show that mRNAs coding for two members of the transient receptor potential (TRP) family of ion channels, namely TRPM4 and TRPM5, are expressed within the preBötC region of neonatal mice. Hypothesizing that the phosphoinositides maintaining TRPM4 and TRPM5 channel sensitivity to Ca(2+) may similarly influence I(CAN) and thus regulate inspiratory drive potentials, we manipulated intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)) and measured its effect on preBötC neurons in the context of ongoing respiratory-related rhythms in slice preparations. Consistent with the involvement of TRPM4 and TRPM5, excess PIP(2) augmented the inspiratory drive potential and diminution of PIP(2) reduced it; sensitivity to flufenamic acid (FFA) suggested that these effects of PIP(2) were I(CAN) mediated. Inositol 1,4,5-trisphosphate (IP(3)), the product of PIP(2) hydrolysis, ordinarily causes IP(3) receptor-mediated I(CAN) activation. Simultaneously increasing PIP(2) while blocking IP(3) receptors intracellularly counteracted the reduction in the inspiratory drive potential that normally resulted from IP(3) receptor blockade. We propose that PIP(2) protects I(CAN) from rundown by interacting directly with underlying ion channels and preventing desensitization, which may enhance the robustness of respiratory rhythm.
Collapse
Affiliation(s)
- Erin A Crowder
- Department of Applied Science, McGlothlin-Street Hall, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rohacs T, Nilius B. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 2007; 455:157-68. [PMID: 17479281 DOI: 10.1007/s00424-007-0275-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/13/2007] [Indexed: 11/28/2022]
Abstract
This review summarizes the modulation of transient receptor potential (TRP) channels, by phosphoinositides. TRP channels are characterized by polymodal activation and a surprising complexity of regulation mechanisms. Possibly, most if not all TRP channels are modulated by phosphoinositides. Modulation by phosphatidylinositol 4,5-biphosphate (PIP(2)) has been shown in detail for TRP vanilloid (TRPV) 1, TRPV5, TRP melastatin (TRPM) 4, TRPM5, TRPM7, TRPM8, TRP polycystin 2, and the Drosophila TPR-like (TRPL) channels. This review describes mechanisms of modulation of TRP channels mainly by PIP(2) and discusses some future challenges of this fascinating topic.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, 07103, USA.
| | | |
Collapse
|
20
|
Huang W, Zhang H, Davrazou F, Kutateladze TG, Shi X, Gozani O, Prestwich GD. Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling. J Am Chem Soc 2007; 129:6498-506. [PMID: 17469822 PMCID: PMC2553394 DOI: 10.1021/ja070195b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The interaction of PtdIns(5)P with the tumor suppressor protein ING2 has been implicated in the regulation of chromatin modification. To enhance the stability of PtdIns(5)P for studies of the biological role in vivo, two phosphatase-resistant moieties were used to replace the labile 5-phosphate. The total asymmetric synthesis of the 5-methylenephosphonate (MP) and 5-phosphothionate (PT) analogues of PtdIns(5)P is described herein, and the resulting metabolically stabilized lipid analogues were evaluated in three ways. First, liposomes containing either the dioleoyl MP or PT analogues bound to recombinant ING2 similar to liposomes containing dipalmitoyl PtdIns(5)P, indicating that the replacement of the hydrolyzable 5-phosphate group does not compromise the binding. Second, the dioleoyl MP and PT PtdIns(5)P analogues were equivalent to dipalmitoyl PtdIns(5)P in augmenting cell death induced by a DNA double-strand break in HT1080 cells. Finally, molecular modeling and docking of the MP or PT analogues to the C-terminus PtdInsP-binding region of ING2 (consisting of a PHD finger and a polybasic region) revealed a number of complementary surface and electrostatic contacts between the lipids and ING2.
Collapse
Affiliation(s)
- Wei Huang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA, Phone: +1-801-585-9051. Fax: +1-801-585-9053.
| | - Honglu Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA, Phone: +1-801-585-9051. Fax: +1-801-585-9053.
| | - Foteini Davrazou
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045-0511 USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045-0511 USA
| | - Xiaobing Shi
- Department of Biological Sciences, Stanford University, Palo Alto, California 94305 USA
| | - Or Gozani
- Department of Biological Sciences, Stanford University, Palo Alto, California 94305 USA
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA, Phone: +1-801-585-9051. Fax: +1-801-585-9053.
| |
Collapse
|
21
|
Várnai P, Balla T. Visualization and manipulation of phosphoinositide dynamics in live cells using engineered protein domains. Pflugers Arch 2007; 455:69-82. [PMID: 17473931 DOI: 10.1007/s00424-007-0270-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
There is hardly a membrane-associated molecular event that is not regulated by phosphoinositides, a minor but critically important class of phospholipids of cellular membranes. The rapid formation, elimination, and conversion of these lipids in specific membrane compartments are ensured by a wealthy number of inositol lipid kinases and phosphatases with unique localization and regulatory properties. The existence of multiple inositol lipid pools have been indicated by metabolic labeling studies, but the level of functional compartmentalization revealed by the identification of numerous protein effectors acted upon by phosphoinositides could not have been foreseen. The changing perception of inositides from just serving as lipid precursors of second messengers to becoming highly dynamic local membrane-bound regulators poses new challenges concerning the detection of their rapid localized changes. Moreover, it is increasingly evident that manipulation of lipids in highly defined compartments would be a highly superior approach to soaking the cells with a particular phosphoinositide when studying the local regulation of the lipid on any effectors. In this review, we will summarize our efforts to improve our tools in studying phosphoinositide dynamics and discuss our views on the values of these methods compared to other options currently used or being explored.
Collapse
Affiliation(s)
- Péter Várnai
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bldg 49, Rm 6A35, 49 Convent Drive, Bethesda, MD, USA.
| | | |
Collapse
|