1
|
Hu S, Radosevich AT. Electrophilic C(sp 2)-H Cyanation with Inorganic Cyanate (OCN -) by P III/P V=O-Catalyzed Phase Transfer Activation. Angew Chem Int Ed Engl 2024; 63:e202409854. [PMID: 38950149 PMCID: PMC11412784 DOI: 10.1002/anie.202409854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/03/2024]
Abstract
An organophosphorus -catalyzed method for the direct electrophilic cyanation of C(sp2)-H nucleophiles with sodium cyanate (NaOCN) is reported. The catalytic deoxyfunctionalization of the OCN- anion is enabled by the use of a small-ring phosphacyclic (phosphetane) catalyst in combination with a terminal hydrosilane O-atom acceptor and a malonate-derived bromenium donor. In situ spectroscopy under single-turnover conditions demonstrate that insoluble inorganic cyanate anion is activated by bromide displacement on a bromophosphonium catalytic intermediate to give a reactive N-bound isocyanatophosphonium ion, which delivers electrophilic "CN+" equivalents to nucleophilic (hetero)arenes and alkenes with loss of a phosphine oxide. These results demonstrate the feasibility of deoxyfunctionalization of insoluble inorganic salts by PIII/PV=O catalyzed phase transfer activation.
Collapse
Affiliation(s)
- Shicheng Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Domingo LR, Pérez P, Ríos-Gutiérrez M, Aurell MJ. A molecular electron density theory study of the bimolecular nucleophilic substitution reactions on monosubstituted methyl compounds. Org Biomol Chem 2024; 22:7425-7437. [PMID: 39177990 DOI: 10.1039/d4ob01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The nucleophilic substitution reactions involving methyl monosubstituted compounds have been studied within the Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311+G(d,p) computational level in DMSO. This study aims to characterize the electronic nature of the transition state structures (TSs) involved in the so-called SN2 and SNi reactions. Both electron localization function and atom-in-molecules topological analyses indicate that the TSs involved in these nucleophilic substitutions can be described as a central methyl CH3+ carbocation, which is strongly stabilized by the presence of two neighbouring nucleophilic species through electron density transfer. This MEDT study establishes a significant electronic similarity between the so-called SN1 and SN2 reactions. Due to the weak electrophilic character of the methyl tetrahedral carbons, the departure of the leaving group should be expected with the approach of the nucleophile. However, while along the SN1 reactions, the strong stabilization of the tertiary carbocation does not demand the participation of the nucleophile, along the SN2 and SNi reactions involving primary tetrahedral carbons, the nucleophiles should participate in the reaction to stabilize the unstable methyl carbocation.
Collapse
Affiliation(s)
- Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Patricia Pérez
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Centro de Química Teórica & Computacional, Av. República 275, 8370146, Chile
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - M José Aurell
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Andolpho GA, Ramalho TC. Pnictogen bond-driven control of the molecular interaction between organophosphorus and acetylcholinesterase enzyme. J Comput Chem 2024; 45:1303-1315. [PMID: 38363124 DOI: 10.1002/jcc.27328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
This study addresses a comprehensive assessment of the interaction between chemical warfare agents (CWA) and acetylcholinesterase (AChE) systems, focus on the intriguing pnictogen-bond interaction (PnB). Utilizing the crystallographic data from the Protein Data Bank pertaining to the AChE-CWA complex involving Sarin (GB), Cyclosarin (GF), 2-[fluoro(methyl)phosphoryl]oxy-1,1-dimethylcyclopentane (GP) and venomous agent X (VX) agents, the CWA is systematically displaced by increments of 0.1 Å along the PO bond axis, extending its distance by 4 Å from the original position. The AIM analysis was carried out and consistently revealed the presence of a significant interaction along the PO bond. Investigating the intrinsic nature of the PnB, the NBO and the EDA analysis unearthed the contribution of orbital factors to the overall energy of the system. Strikingly, this observation challenges the conventional σ-hole explanation commonly associated with such interactions. This finding adds a layer of complexity to understanding of PnB, encouraging further exploration into the underlying mechanisms governing these intriguing chemical phenomena.
Collapse
Affiliation(s)
- Gustavo A Andolpho
- Chemistry Department, Institute of Natural Sciences, Universidade Federal de Lavras, Lavras, Brazil
| | - Teodorico C Ramalho
- Chemistry Department, Institute of Natural Sciences, Universidade Federal de Lavras, Lavras, Brazil
- Center for Basic and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Formica M, Ferko B, Marsh T, Davidson TA, Yamazaki K, Dixon DJ. Second Generation Catalytic Enantioselective Nucleophilic Desymmetrization at Phosphorus (V): Improved Generality, Efficiency and Modularity. Angew Chem Int Ed Engl 2024; 63:e202400673. [PMID: 38381534 DOI: 10.1002/anie.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
A broadly improved second generation catalytic two-phase strategy for the enantioselective synthesis of stereogenic at phosphorus (V) compounds is described. This protocol, consisting of a bifunctional iminophosphorane (BIMP) catalyzed nucleophilic desymmetrization of prochiral, bench stable P(V) precursors and subsequent enantiospecific substitution allows for divergent access to a wide range of C-, N-, O- and S- substituted P(V) containing compounds from a handful of enantioenriched intermediates. A new ureidopeptide BIMP catalyst/thiaziolidinone leaving group combination allowed for a far wider substrate scope and increased reaction efficiency and practicality over previously established protocols. The resulting enantioenriched intermediates could then be transformed into an even greater range of distinct classes of P(V) compounds by displacement of the remaining leaving group as well as allowing for even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads to increased generality in our second-generation catalytic system, as well as shed light onto observed stereochemical retention and inversion pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents.
Collapse
Affiliation(s)
- Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Branislav Ferko
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Thomas Marsh
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Timothy A Davidson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama, 700-8530, Japan
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| |
Collapse
|
5
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Mikołajczyk M. Nucleophilic Substitution at Phosphorus Centres - Old and Recent Studies and a Final Solution of Mechanistic and Related Stereochemical Problems. Chemistry 2024; 30:e202302974. [PMID: 38116824 DOI: 10.1002/chem.202302974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Among many problems of a fundamental value in the heteroatom chemistry the mechanism and stereochemistry of the nucleophilic substitution reaction at the phosphorus and other heteroatom centres have attracted great attention of phosphorus chemists already in the middle of the last century. This review, which does not have a comprehensive character, summarizes the selected original contributions aimed at solution of the mechanism of SN2-P reaction and its relationship with stereochemistry. The breakthrough in these studies was the Westheimer's concept and his rules which is presented at the beginning of this article. Next, a series of papers is presented where the stereochemistry of the substitution at phosphorus was investigated in cyclic five-, four- and six-membered ring phosphorus compound. The majority of these reactions have been found to occur with retention of the P-configuration. In the third part of this account, the selected examples of substitution reactions at phosphorus in acyclic compounds are discussed. As the results of all the investigations discussed did not allow to undoubtedly ascribe the mechanism (SN2 or A-E) to the investigated reactions, in the last part the SN-P reactions are presented, the mechanism of which has been established by combination of the stereochemical and DFT-studies.
Collapse
Affiliation(s)
- Marian Mikołajczyk
- Department of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, POLAND
| |
Collapse
|
7
|
Milewski M, Caminade AM, Mallet-Ladeira S, Lledós A, Lönnecke P, Hey-Hawkins E. Carboranylphosphines: B9-Substituted Derivatives with Enhanced Reactivity for the Anchoring to Dendrimers. Chemistry 2024:e202303867. [PMID: 38214467 DOI: 10.1002/chem.202303867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Several ortho-carboranes bearing a phenoxy or a phenylamino group in the B9 position were prepared employing various protection and deprotection strategies. Following established protocols, dendritic compounds were synthesized from a hexachlorocyclotriphosphazene or thiophosphoryl chloride core, and possible anchoring options for the B9-substituted ortho-carboranes were investigated experimentally and theoretically (DFT). Furthermore, 1- or 1,2-phosphanyl-substituted carborane derivatives were obtained. The resulting diethyl-, diisopropyl-, di-tert-butyl-, diphenyl- or diethoxyphosphines bearing a tunable ortho-carborane moiety are intriguing ligands for future applications in homogeneous catalysis or the medicinal sector.
Collapse
Affiliation(s)
- Max Milewski
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
- Laboratoire de Chimie de Coordination du CNRS, Dendrimers and Heterochemistry, 205 Route de Narbonne, 31077, Toulouse cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, Dendrimers and Heterochemistry, 205 Route de Narbonne, 31077, Toulouse cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, Dendrimers and Heterochemistry, 205 Route de Narbonne, 31077, Toulouse cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Institut de Chimie de Toulouse, 118 Route de Narbonne, 31062, Toulouse cedex 9, France
| | - Agustí Lledós
- Universitat Autònoma de Barcelona, Departament de Química, 08193, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
8
|
Salmon C, Xue Y, Gogonea V. Formation Mechanism of the Unsubstituted Chlorophosphazene Cl 3P═NH: A Theoretical Study via Quantum Mechanical Calculations. Inorg Chem 2023; 62:19412-19420. [PMID: 37971807 DOI: 10.1021/acs.inorgchem.3c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Although the synthesis of chlorophosphazene polymers has been explored for more than 100 years, the shortest yet most illusive monomer, Cl3P═NH, has never been isolated and fully characterized. Here we investigate the formation of Cl3P═NH from PCl5 and NH3 in chlorobenzene through quantum mechanical calculations. The potential energy surface was mapped using the MP2 Hamiltonian in conjunction with Dunning's correlation-consistent basis sets (aug-cc-pVXZ, where X = D and T). Along with HOMO/LUMO frontier molecular orbitals and natural bond orbital analyses, we found that instead of following the SN1 path proposed in the literature, the reaction proceeds via an addition-elimination mechanism. Our results also indicate that due to the low-lying stable intermediates (IM), most steps are exothermic such that the production of Cl3P═NH·2HCl can be completed once the energy barrier for the formation of [PCl4-NH3]+Cl- is overcome. Therefore, our theoretical work might explain the challenges in isolating any of the IMs in a typical chlorophosphazene reaction in chlorobenzene.
Collapse
Affiliation(s)
- Carrie Salmon
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Yuan Xue
- Department of Chemistry and Biochemistry, Oberlin College and Conservatory, Oberlin, Ohio 44074, United States
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, United States
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
9
|
Ballay B, Szűcs T, Papp D, Czakó G. Phosphorus-centered ion-molecule reactions: benchmark ab initio characterization of the potential energy surfaces of the X - + PH 2Y [X, Y = F, Cl, Br, I] systems. Phys Chem Chem Phys 2023; 25:28925-28940. [PMID: 37855143 DOI: 10.1039/d3cp03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the present work we determine the benchmark relative energies and geometries of all the relevant stationary points of the X- + PH2Y [X, Y = F, Cl, Br, I] identity and non-identity reactions using state-of-the-art electronic-structure methods. These phosphorus-centered ion-molecule reactions follow two main reaction routes: bimolecular nucleophilic substitution (SN2), leading to Y- + PH2X, and proton transfer, resulting in HX + PHY- products. The SN2 route can proceed through Walden-inversion, front-side-attack retention, and double-/multiple-inversion pathways. In addition, we also identify the following product channels: H--formation, PH2-- and PH2-formation, 1PH- and 3PH-formation, H2-formation and HY + PHX- formation. The benchmark classical relative energies are obtained by taking into account the core-correlation, scalar relativistic, and post-(T) corrections, which turn out to be necessary to reach subchemical (<1 kcal mol-1) accuracy of the results. Classical relative energies are augmented with zero-point-energy contributions to gain the benchmark adiabatic energies.
Collapse
Affiliation(s)
- Boldizsár Ballay
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Tímea Szűcs
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
10
|
Giricz A, Czakó G, Papp D. Alternating Stereospecificity upon Central-Atom Change: Dynamics of the F - +PH 2 Cl S N 2 Reaction Compared to its C- and N-Centered Analogues. Chemistry 2023; 29:e202302113. [PMID: 37698297 DOI: 10.1002/chem.202302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Central-atom effects on bimolecular nucleophilic substitution (SN 2) reactions are well-known in chemistry, however, the atomic-level SN 2 dynamics at phosphorous (P) centers has never been studied. We investigate the dynamics of the F- +PH2 Cl reaction with the quasi-classical trajectory method on a novel full-dimensional analytical potential energy surface fitted on high-level ab initio data. Our computations reveal intermediate dynamics compared to the F- +CH3 Cl and the F- +NH2 Cl SN 2 reactions: phosphorus as central atom leads to a more indirect SN 2 reaction with extensive complex-formation with respect to the carbon-centered one, however, the title reaction is more direct than its N-centered pair. Stereospecificity, characteristic at C-center, does not appear here either, due to the submerged front-side-attack retention path and the repeated entrance-channel inversional motion, whereas the multi-inversion mechanism discovered at nitrogen center is also undermined by the deep Walden-well. At low collision energies, 6 % of the PH2 F products form with retained configuration, mostly through complex-mediated mechanisms, while this ratio reaches 24 % at the highest energy due to the increasing dominance of the direct front-side mechanism and the smaller chance for hitting the deep Walden-inversion minimum. Our results suggest pronounced central-atom effects in SN 2 reactions, which can fundamentally change their (stereo)dynamics.
Collapse
Affiliation(s)
- Anett Giricz
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| |
Collapse
|
11
|
Formica M, Rogova T, Shi H, Sahara N, Ferko B, Farley AJM, Christensen KE, Duarte F, Yamazaki K, Dixon DJ. Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters. Nat Chem 2023; 15:714-721. [PMID: 37127757 PMCID: PMC10159838 DOI: 10.1038/s41557-023-01165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles.
Collapse
Affiliation(s)
- Michele Formica
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tatiana Rogova
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Heyao Shi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Naoto Sahara
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Branislav Ferko
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Alistair J M Farley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Kirsten E Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University, Okayama, Japan.
| | - Darren J Dixon
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Kaspers MS, Pogenberg V, Pett C, Ernst S, Ecker F, Ochtrop P, Groll M, Hedberg C, Itzen A. Dephosphocholination by Legionella effector Lem3 functions through remodelling of the switch II region of Rab1b. Nat Commun 2023; 14:2245. [PMID: 37076474 PMCID: PMC10115812 DOI: 10.1038/s41467-023-37621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens often make use of post-translational modifications to manipulate host cells. Legionella pneumophila, the causative agent of Legionnaires disease, secretes the enzyme AnkX that uses cytidine diphosphate-choline to post-translationally modify the human small G-Protein Rab1 with a phosphocholine moiety at Ser76. Later in the infection, the Legionella enzyme Lem3 acts as a dephosphocholinase, hydrolytically removing the phosphocholine. While the molecular mechanism for Rab1 phosphocholination by AnkX has recently been resolved, structural insights into the activity of Lem3 remained elusive. Here, we stabilise the transient Lem3:Rab1b complex by substrate mediated covalent capture. Through crystal structures of Lem3 in the apo form and in complex with Rab1b, we reveal Lem3's catalytic mechanism, showing that it acts on Rab1 by locally unfolding it. Since Lem3 shares high structural similarity with metal-dependent protein phosphatases, our Lem3:Rab1b complex structure also sheds light on how these phosphatases recognise protein substrates.
Collapse
Affiliation(s)
- Marietta S Kaspers
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Vivian Pogenberg
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Pett
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Stefan Ernst
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Felix Ecker
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Philipp Ochtrop
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
- Centre for Structural Systems Biology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
13
|
Mikołajczyk M, Bujnicki B, Drabowicz J, Cypryk M. Nucleophilic Substitution at Tricoordinate Sulfur-Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics. Molecules 2022; 27:8212. [PMID: 36500306 PMCID: PMC9739154 DOI: 10.3390/molecules27238212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Optically active dialkoxyisopropylsulfonium salts were obtained by methylation (ethylation) of optically active alkyl isopropanesulfinates using methyl (ethyl) trifluoromethanesulfonate. Alkaline hydrolysis of a series of methoxy(alkoxy)sulfonium salts afforded the two sulfinate products methyl isopropanesulfinate and alkyl isopropanesulfinate, both formed with a slightly prevailing inversion of configuration at the sulfur atom. DFT calculations revealed that this substitution reaction proceeded stepwise according to an addition-elimination (A-E) mechanism involving the formation of high tetracoordinate SIV sulfurane intermediates. In addition, the DFT calculations showed that recombination of the hydroxy anion with the methoxy(alkoxy)sulfonium cation-leading to the parallel formation of the two most stable primary sulfuranes, with the hydroxy and alkoxy groups in apical positions and their direct decomposition-is the most energetically favorable pathway.
Collapse
Affiliation(s)
- Marian Mikołajczyk
- Department of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Bogdan Bujnicki
- Department of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Józef Drabowicz
- Department of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Marek Cypryk
- Department of Structural Chemistry, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
14
|
M.Abu-Dief A, Alotaibi NH, S.Al-Farraj E, Qasem HA, Alzahrani S, Mahfouz MK, Abdou A. Fabrication, Structural elucidation, DFT calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Sorbelli D, Belanzoni P, Belpassi L, Lee J, Ciancaleoni G. An ETS-NOCV-based computational strategies for the characterization of concerted transition states involving CO 2. J Comput Chem 2022; 43:717-727. [PMID: 35194805 PMCID: PMC9303928 DOI: 10.1002/jcc.26829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Due to the presence of both a slightly acidic carbon and a slightly basic oxygen, carbon dioxide is often involved in concerted transition states (TSs) with two (or more) different molecular events interlaced in the same step. The possibility of isolating and quantitatively evaluating each molecular event would be important to characterize and understand the reaction mechanism in depth. This could be done, in principle, by measuring the relevant distances in the optimized TS, but often distances are not accurate enough, especially in the presence of many simultaneous processes. Here, we have applied the Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), also in combination with the Activation Strain Model (ASM) and Energy Decomposition Analysis (EDA), to separate and quantify these molecular events at the TS of both organometallic and organic reactions. For the former, we chose the decomposition of formic acid to CO2 by an iridium catalyst, and for the latter, a CO2 -mediated transamidation and its chemical variations (hydro- and aminolysis of an ester) as case studies. We demonstrate that the one-to-one mapping between the "molecular events" and the ETS-NOCV components is maintained along the entire lowest energy path connecting reactants and products around the TS, thus enabling a detailed picture on the relative importance of each interacting component. The methodology proposed here provides valuable insights into the effect of different chemical substituents on the reaction mechanism and promises to be generally applicable for any concerted TSs.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaI‐06123Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaI‐06123Italy
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR‐SCITEC), c/o Department of ChemistryBiology and Biotechnology, University of PerugiaPerugiaI‐06123Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR‐SCITEC), c/o Department of ChemistryBiology and Biotechnology, University of PerugiaPerugiaI‐06123Italy
| | - Ji‐Woong Lee
- Department of ChemistryUniversity of CopenhagenCopenhagenØ 2100Denmark
- Nanoscience CenterUniversity of CopenhagenCopenhagenØ 2100Denmark
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisaI‐56124Italy
- CIRCCBariItaly
| |
Collapse
|
16
|
Nucleophilic Substitution at Heteroatoms-Identity Substitution Reactions at Phosphorus and Sulfur Centers: Do They Proceed in a Concerted (S N2) or Stepwise (A-E) Way? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030599. [PMID: 35163860 PMCID: PMC8839028 DOI: 10.3390/molecules27030599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms of three selected identity substitution reactions at phosphorus and sulfur occurring with stereospecific inversion have been investigated using density functional theory (DFT). The first identity reaction between methoxyl anion and methyl ethylphenylphosphinate 1 reported in 1963 has been shown to proceed in a stepwise fashion according to the addition-elimination (A-E) mechanism involving formation of a pentacoordinate phosphorus intermediate (TBI-1). In contrast, the results of DFT studies of the identity chloride exchange reaction in (ethoxy)ethylphosphonochloridothionate 3 in acetone solution provided evidence that it proceeds synchronously according to the classical Ingold's SN2-P mechanism. DFT calculations of the methoxyl-methoxy exchange reaction at sulfur in methyl p-toluenesulfinate 4 catalyzed by trifluoroacetic acid in methanol revealed that it proceeds stepwise (A-E mechanism), involving the formation of the high-coordinate sulfurane intermediate. In both identity transesterification reactions, 1 and 4, the transiently formed trigonal bipyramidal intermediates with the two methoxyl groups occupying apical positions (TBI-1 and TBI-4) have higher free energy barriers for the Berry-type pseudorotation than those for direct decomposition to starting phosphinate and sulfinate ensuring stereospecific inversion of configuration at the phosphinyl and sulfinyl centers. Thus, the DFT method proved its usefulness in the distinction between both mechanisms that are often indistinguishable by kinetic measurements.
Collapse
|
17
|
Santos-Jr CV, A. F. de Souza M, Kraka E, Moura Jr RT. Analysis of spectator chemical bonds in SN2@C and @Si reaction mechanisms in the gas phase. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Savoo N, Rhyman L, Ramasami P. Theoretical study of a derivative of chlorophosphine with aliphatic and aromatic Grignard reagents: S N2@P or the novel S N2@Cl followed by S N2@C? RSC Adv 2022; 12:9130-9138. [PMID: 35424871 PMCID: PMC8985194 DOI: 10.1039/d2ra00258b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The proposed SN2 reactions of a hindered organophosphorus reactant with aliphatic and aromatic nucleophiles [Ye et al., Org. Lett., 2017, 19, 5384–5387] were studied theoretically in order to explain the observed stereochemistry of the products.
Collapse
Affiliation(s)
- Nandini Savoo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
19
|
Ribó JM, Hochberg D. The Coordinate Reaction Model: An Obstacle to Interpreting the Emergence of Chemical Complexity. Chemistry 2021; 27:13098-13106. [PMID: 34259350 PMCID: PMC8518807 DOI: 10.1002/chem.202101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/02/2022]
Abstract
The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non-equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time-dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction-coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so-called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.
Collapse
Affiliation(s)
- Josep M. Ribó
- Department of Inorganic and Organic Chemistry Organic Chemistry Section Institute of Cosmos Science (IEEC-UB)University of Barcelonac. Martí i Franquès 108028Barcelona, CataloniaSpain
| | - David Hochberg
- Department of Molecular EvolutionCentro de Astrobiología (CSIC-INTA)Ctra. Ajalvir, Km. 428850, Torrejón de ArdozMadridSpain
| |
Collapse
|
20
|
Alkorta I, Elguero J. The SN2 reaction and its relationship with the Walden inversion, the Finkelstein and Menshutkin reactions together with theoretical calculations for the Finkelstein reaction. Struct Chem 2021. [DOI: 10.1007/s11224-021-01805-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis communication gives an overview of the relationships between four reactions that although related were not always perceived as such: SN2, Walden, Finkelstein, and Menshutkin. Binary interactions (SN2 & Walden, SN2 & Menshutkin, SN2 & Finkelstein, Walden & Menshutkin, Walden & Finkelstein, Menshutkin & Finkelstein) were reported. Carbon, silicon, nitrogen, and phosphorus as central atoms and fluorides, chlorides, bromides, and iodides as lateral atoms were considered. Theoretical calculations provide Gibbs free energies that were analyzed with linear models to obtain the halide contributions. The M06-2x DFT computational method and the 6-311++G(d,p) basis set have been used for all atoms except for iodine where the effective core potential def2-TZVP basis set was used. Concerning the central atom pairs, carbon/silicon vs. nitrogen/phosphorus, we reported here for the first time that the effect of valence expansion was known for Si but not for P. Concerning the lateral halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups explain the Gibbs free energies.
Collapse
|
21
|
Nucleophilic Substitution at Tetracoordinate Phosphorus. Stereochemical Course and Mechanisms of Nucleophilic Displacement Reactions at Phosphorus in Diastereomeric cis- and trans-2-Halogeno-4-methyl-1,3,2-dioxaphosphorinan-2-thiones: Experimental and DFT Studies. Molecules 2021; 26:molecules26123655. [PMID: 34203941 PMCID: PMC8232685 DOI: 10.3390/molecules26123655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
Geometrical cis- and trans- isomers of 2-chloro-, 2-bromo- and 2-fluoro-4-methyl-1,3,2-dioxaphosphorinan-2-thiones were obtained in a diastereoselective way by (a) sulfurization of corresponding cyclic PIII-halogenides, (b) reaction of cyclic phosphorothioic acids with phosphorus pentachloride and (c) halogen–halogen exchange at PIV-halogenide. Their conformation and configuration at the C4-ring carbon and phosphorus stereocentres were studied by NMR (1H, 31P) methods, X-ray analysis and density functional (DFT) calculations. The stereochemistry of displacement reactions (alkaline hydrolysis, methanolysis, aminolysis) at phosphorus and its mechanism were shown to depend on the nature of halogen. Cyclic cis- and trans-isomers of chlorides and bromides react with nucleophiles (HO−, CH3O−, Me2NH) with inversion of configuration at phosphorus. DFT calculations provided evidence that alkaline hydrolysis of cyclic thiophosphoryl chlorides proceeds according to the SN2-P mechanism with a single transition state according to the potential energy surface (PES) observed. The alkaline hydrolysis reaction of cis- and trans-fluorides afforded the same mixture of the corresponding cyclic thiophosphoric acids with the thermodynamically more stable major product. Similar DFT calculations revealed that substitution at phosphorus in fluorides proceeds stepwise according to the A–E mechanism with formation of a pentacoordinate intermediate since a PES with two transition states was observed.
Collapse
|
22
|
Ambrosi A, Bringley DA, Calimsiz S, Garber JAO, Huynh H, Mohan S, Sarma K, Shen J, Curl J, Kwong B, Lapina O, Leung E, Lin L, Martins A, McGinitie T, Phull J, Roberts B, Rosario M, Shi B, Standley EA, Wang L, Wang X, Yu G. Synthesis of Rovafovir Etalafenamide (Part III): Evolution of the Synthetic Process to the Phosphonamidate Fragment. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea Ambrosi
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Dustin A. Bringley
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Selcuk Calimsiz
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jeffrey A. O. Garber
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Huy Huynh
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Sankar Mohan
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Keshab Sarma
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jinyu Shen
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jonah Curl
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Bernard Kwong
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Olga Lapina
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Edmund Leung
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Lennie Lin
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Andrew Martins
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Teague McGinitie
- Analytical Chemistry, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jaspal Phull
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Ben Roberts
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Mary Rosario
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Bing Shi
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric A. Standley
- Process Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Li Wang
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Xueqing Wang
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Guojun Yu
- Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| |
Collapse
|
23
|
Gao H, Hu L, Hu Y, Lv X, Wu YB, Lu G. Origins of Lewis acid acceleration in nickel-catalysed C–H, C–C and C–O bond cleavage. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00660f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of charge transfer, Pauli repulsion and electrostatics/polarization are identified as dominant factors for Lewis acid accelerations in Ni-catalyzed C–X (X = H, C and O) bond cleavages.
Collapse
Affiliation(s)
- Han Gao
- School of Chemistry and Chemical Engineering
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Shandong University
- Jinan
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Shandong University
- Jinan
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Shandong University
- Jinan
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Shandong University
- Jinan
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and
- Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
| | - Gang Lu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Shandong University
- Jinan
| |
Collapse
|
24
|
Vermeeren P, Hamlin TA, Fernández I, Bickelhaupt FM. How Lewis Acids Catalyze Diels-Alder Reactions. Angew Chem Int Ed Engl 2020; 59:6201-6206. [PMID: 31944503 PMCID: PMC7187354 DOI: 10.1002/anie.201914582] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Indexed: 11/23/2022]
Abstract
The Lewis acid(LA)-catalyzed Diels-Alder reaction between isoprene and methyl acrylate was investigated quantum chemically using a combined density functional theory and coupled-cluster theory approach. Computed activation energies systematically decrease as the strength of the LA increases along the series I2
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicasUniversidad Complutense de Madrid28040MadridSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
25
|
Vermeeren P, Hamlin TA, Fernández I, Bickelhaupt FM. How Lewis Acids Catalyze Diels–Alder Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicasUniversidad Complutense de Madrid 28040 Madrid Spain
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute for Molecules and Materials (IMM)Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
26
|
Campeggio J, Bortoli M, Orian L, Zerbetto M, Polimeno A. Multiscale modeling of reaction rates: application to archetypal S N2 nucleophilic substitutions. Phys Chem Chem Phys 2020; 22:3455-3465. [PMID: 31984980 DOI: 10.1039/c9cp03841h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We propose an approach to the evaluation of kinetic rates of elementary chemical reactions within Kramers' theory based on the definition of the reaction coordinate as a linear combination of natural, pseudo Z-matrix, internal coordinates of the system. The element of novelty is the possibility to evaluate the friction along the reaction coordinate, within a hydrodynamic framework developed recently [J. Campeggio et al., J. Comput. Chem. 2019, 40, 679-705]. This, in turn, allows to keep into account barrier recrossing, i.e. the transmission coefficient that is employed in correcting transition state theory evaluations. To test the capabilities and the flaws of the approach we use as case studies two archetypal SN2 reactions. First, we consider to the standard substitution of chloride ion to bromomethane. The rate constant at 295.15 K is evaluated to k/c⊖ = 2.7 × 10-6 s-1 (with c⊖ = 1 M), which compares well to the experimental value of 3.3 × 10-6 s-1 [R. H. Bathgate and E. A. Melwyn-Hughes, J. Chem. Soc 1959, 2642-2648]. Then, the method is applied to the SN2 reaction of methylthiolate to dimethyl disulfide in water. In biology, such an interconversion of thiols and disulfides is an important metabolic topic still not entirely rationalized. The predicted rate constant is k/c⊖ = 7.7 × 103 s-1. No experimental data is available for such a reaction, but it is in accord with the fact that the alkyl thiolates to dialkyl disulfides substitutions in water have been found to be fast reactions [S. M. Bachrach, J. M. Hayes, T. Dao and J. L. Mynar, Theor. Chem. Acc. 2002, 107, 266-271].
Collapse
Affiliation(s)
- Jonathan Campeggio
- Dipartimento di Sicenze Chimiche, Universià degli Studi di Padova, Via Marzolo 1, Padova, Italy.
| | | | | | | | | |
Collapse
|
27
|
Derricotte WD. Symmetry-Adapted Perturbation Theory Decomposition of the Reaction Force: Insights into Substituent Effects Involved in Hemiacetal Formation Mechanisms. J Phys Chem A 2019; 123:7881-7891. [PMID: 31429558 DOI: 10.1021/acs.jpca.9b06865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decomposition of the reaction force based on symmetry-adapted perturbation theory (SAPT) has been proposed. This approach was used to investigate the substituent effects along the reaction coordinate pathway for the hemiacetal formation mechanism between methanol and substituted aldehydes of the form CX3CHO (X = H, F, Cl, and Br), providing a quantitative evaluation of the reaction-driving and reaction-retarding force components. Our results highlight the importance of more favorable electrostatic and induction effects in the reactions involving halogenated aldehydes that leads to lower activation energy barriers. These substituent effects are further elucidated by applying the functional-group partition of symmetry-adapted perturbation theory (F-SAPT). The results show that the reaction is largely driven by favorable direct noncovalent interactions between the CX3 group on the aldehyde and the OH group on methanol.
Collapse
Affiliation(s)
- Wallace D Derricotte
- Department of Chemistry , Morehouse College , Atlanta , Georgia 30314 , United States
| |
Collapse
|
28
|
Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts. Nat Commun 2019; 10:2786. [PMID: 31243267 PMCID: PMC6594957 DOI: 10.1038/s41467-019-09832-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P-P and P-E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P-O, P-S, or P-N bonds.
Collapse
|
29
|
Hamlin TA, Fernández I, Bickelhaupt FM. How Dihalogens Catalyze Michael Addition Reactions. Angew Chem Int Ed Engl 2019; 58:8922-8926. [PMID: 31033118 PMCID: PMC6617756 DOI: 10.1002/anie.201903196] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Indexed: 11/12/2022]
Abstract
We have quantum chemically analyzed the catalytic effect of dihalogen molecules (X2 =F2 , Cl2 , Br2 , and I2 ) on the aza-Michael addition of pyrrolidine and methyl acrylate using relativistic density functional theory and coupled-cluster theory. Our state-of-the-art computations reveal that activation barriers systematically decrease as one goes to heavier dihalogens, from 9.4 kcal mol-1 for F2 to 5.7 kcal mol-1 for I2 . Activation strain and bonding analyses identify an unexpected physical factor that controls the computed reactivity trends, namely, Pauli repulsion between the nucleophile and Michael acceptor. Thus, dihalogens do not accelerate Michael additions by the commonly accepted mechanism of an enhanced donor-acceptor [HOMO(nucleophile)-LUMO(Michael acceptor)] interaction, but instead through a diminished Pauli repulsion between the lone-pair of the nucleophile and the Michael acceptor's π-electron system.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicaUniversidad Complutense de Madrid28040MadridSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
30
|
Hamlin TA, Fernández I, Bickelhaupt FM. Wie Dihalogene Michael‐Additionsreaktionen katalysieren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam Niederlande
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicaUniversidad Complutense de Madrid 28040 Madrid Spanien
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam Niederlande
- Institute for Molecules and Materials (IMM)Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| |
Collapse
|
31
|
García-Rodeja Y, Solà M, Fernández I. Influence of the charge on the reactivity of azafullerenes. Phys Chem Chem Phys 2018; 20:28011-28018. [PMID: 30382266 DOI: 10.1039/c8cp06031b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influence of the charge on the Diels-Alder reactivity of azafullerenes (C59N+ and C59N-) has been computationally explored by means of density functional theory calculations. In addition, the regioselectivity of the process has been investigated and compared to the analogous cycloaddition reaction involving the parent neutral azahydro[60]fullerene C59NH. It is found that the [4+2]-cycloaddition reaction between C59N+ and cyclopentadiene, which occurs concertedly through a synchronous transition state, proceeds with a lower activation barrier and is more exothermic than the analogous process involving C59NH. In contrast, the anionic C59N- counterpart is clearly less reactive. This reactivity trend is quantitatively analyzed in detail by means of the activation strain model of reactivity in combination with the energy decomposition analysis method. It is found that the frontier molecular orbital interactions are not responsible for the observed reactivity trend but the Pauli repulsion between closed-shells mainly governs the transformation.
Collapse
Affiliation(s)
- Yago García-Rodeja
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | | | | |
Collapse
|
32
|
Hamlin TA, Swart M, Bickelhaupt FM. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chemphyschem 2018; 19:1315-1330. [PMID: 29542853 PMCID: PMC6001448 DOI: 10.1002/cphc.201701363] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/12/2022]
Abstract
The reaction potential energy surface (PES), and thus the mechanism of bimolecular nucleophilic substitution (SN 2), depends profoundly on the nature of the nucleophile and leaving group, but also on the central, electrophilic atom, its substituents, as well as on the medium in which the reaction takes place. Here, we provide an overview of recent studies and demonstrate how changes in any one of the aforementioned factors affect the SN 2 mechanism. One of the most striking effects is the transition from a double-well to a single-well PES when the central atom is changed from a second-period (e. g. carbon) to a higher-period element (e.g, silicon, germanium). Variations in nucleophilicity, leaving group ability, and bulky substituents around a second-row element central atom can then be exploited to change the single-well PES back into a double-well. Reversely, these variations can also be used to produce a single-well PES for second-period elements, for example, a stable pentavalent carbon species.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Marcel Swart
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institut de Química Computacional I Catàlisi and Department de QuímicaUniversitat de Girona17003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
33
|
Hamlin TA, van Beek B, Wolters LP, Bickelhaupt FM. Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects. Chemistry 2018; 24:5927-5938. [PMID: 29457865 PMCID: PMC5947303 DOI: 10.1002/chem.201706075] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/23/2022]
Abstract
We have quantum chemically studied the effect of various polar and apolar solvents on the shape of the potential energy surface (PES) of a diverse collection of archetypal nucleophilic substitution reactions at carbon, silicon, phosphorus, and arsenic by using density functional theory at the OLYP/TZ2P level. In the gas phase, all our model SN 2 reactions have single-well PESs, except for the nucleophilic substitution reaction at carbon (SN 2@C), which has a double-well energy profile. The presence of the solvent can have a significant effect on the shape of the PES and, thus, on the nature of the SN 2 process. Solvation energies, charges on the nucleophile or leaving group, and structural features are compared for the various SN 2 reactions in a spectrum of solvents. We demonstrate how solvation can change the shape of the PES, depending not only on the polarity of the solvent, but also on how the charge is distributed over the interacting molecular moieties during different stages of the reaction. In the case of a nucleophilic substitution at three-coordinate phosphorus, the reaction can be made to proceed through a single-well [no transition state (TS)], bimodal barrier (two TSs), and then through a unimodal transition state (one TS) simply by increasing the polarity of the solvent.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Bas van Beek
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Lando P. Wolters
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud University NijmegenHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
34
|
van Bochove MA, Roos G, Fonseca Guerra C, Hamlin TA, Bickelhaupt FM. How Mg 2+ ions lower the S N2@P barrier in enzymatic triphosphate hydrolysis. Chem Commun (Camb) 2018. [PMID: 29537051 DOI: 10.1039/c8cc00700d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our quantum chemical activation strain analyses demonstrate how Mg2+ lowers the barrier of the enzymatic triphosphate hydrolysis through two distinct mechanisms: (a) weakening of the leaving-group bond, thereby decreasing activation strain; and (b) transition state (TS) stabilization through enhanced electrophilicity of the triphosphate PPP substrate, thereby strengthening the interaction with the nucleophile.
Collapse
Affiliation(s)
- Marc A van Bochove
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Alkorta I, Thacker JCR, Popelier PLA. An interacting quantum atom study of model S N 2 reactions (X - ···CH 3 X, X = F, Cl, Br, and I). J Comput Chem 2018; 39:546-556. [PMID: 29125196 PMCID: PMC5836863 DOI: 10.1002/jcc.25098] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
The quantum chemical topology method has been used to analyze the energetic profiles in the X- + CH3 X → XCH3 + X- SN 2 reactions, with X = F, Cl, Br, and I. The evolution of the electron density properties at the BCPs along the reaction coordinate has been analysed. The interacting quantum atoms (IQA) method has been used to evaluate the intra-atomic and interatomic energy variations along the reaction path. The different energetic terms have been examined by the relative energy gradient method and the ANANKE program, which enables automatic and unbiased IQA analysis. Four of the six most important IQA energy contributions were needed to reproduce the reaction barrier common to all reactions. The four reactions considered share many common characteristics but when X = F a number of particularities occur. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3Madrid28006Spain
| | - Joseph C. R. Thacker
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, M1 7DN, Great Britain, and School of Chemistry, University of Manchester, Oxford RoadManchesterM13 9PLGreat Britain
| | - Paul L. A. Popelier
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, M1 7DN, Great Britain, and School of Chemistry, University of Manchester, Oxford RoadManchesterM13 9PLGreat Britain
| |
Collapse
|
36
|
Bouaouli S, Spielmann K, Vrancken E, Campagne JM, Gérard H. Mechanism of Enolate Transfer between Si and Cu. Chemistry 2018; 24:6617-6624. [DOI: 10.1002/chem.201800099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Samira Bouaouli
- Sorbonne Université, CNRS; Laboratoire de Chimie Théorique, UMR 7616; 75005 Paris France
| | - Kim Spielmann
- Institut Charles Gerhardt; UMR 5253 CNRS-UM2-UM1-ENSCM 8; rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Emmanuel Vrancken
- Institut Charles Gerhardt; UMR 5253 CNRS-UM2-UM1-ENSCM 8; rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt; UMR 5253 CNRS-UM2-UM1-ENSCM 8; rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Hélène Gérard
- Sorbonne Université, CNRS; Laboratoire de Chimie Théorique, UMR 7616; 75005 Paris France
| |
Collapse
|
37
|
Anglada JM, Crehuet R, Adhikari S, Francisco JS, Xia Y. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer. Phys Chem Chem Phys 2018; 20:4793-4804. [PMID: 29383342 DOI: 10.1039/c7cp07570g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH3, -NH2, -C(O)OH, -CN, and -NO2). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H2O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH3SSH being the most reactive species found in this study (overall rate constant: 4.55 × 1012 M-1 s-1). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
Collapse
Affiliation(s)
- Josep M Anglada
- Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
Langer J, Hamza A, Pápai I. RuBisCO-Inspired CO 2 Activation and Transformation by an Iridium(I) Complex. Angew Chem Int Ed Engl 2018; 57:2455-2458. [PMID: 29314491 DOI: 10.1002/anie.201712893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/18/2022]
Abstract
The synthesis of a new iridium(I) complex containing an enamido phosphine anion (dbuP- ) and its unique reactivity with CO2 is reported. The complex binds two equivalents of CO2 and initiates a highly selective reaction cascade. The reaction leads to the reversible cleavage of CO2 and the enamido ligand as well. Computational analysis points to the existence of a relatively stable Ir-CO2 complex as a reaction intermediate prior to CO2 cleavage, which was confirmed experimentally. The observed transformation resembles several aspects of enzymatic CO2 fixation by RuBisCO.
Collapse
Affiliation(s)
- Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Andrea Hamza
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Imre Pápai
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
39
|
Langer J, Hamza A, Pápai I. RuBisCO-inspirierte CO2
-Aktivierung und Umwandlung durch einen Iridium(I)-Komplex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jens Langer
- Anorganische und Metallorganische Chemie; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 1 91058 Erlangen Deutschland
| | - Andrea Hamza
- Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok körútja 2 H-1117 Budapest Ungarn
| | - Imre Pápai
- Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok körútja 2 H-1117 Budapest Ungarn
| |
Collapse
|
40
|
Jung H, Kang J, Chun H, Han B. First principles computational study on hydrolysis of hazardous chemicals phosphorus trichloride and oxychloride (PCl 3 and POCl 3) catalyzed by molecular water clusters. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:457-463. [PMID: 28854386 DOI: 10.1016/j.jhazmat.2017.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Using first principles calculations we unveil fundamental mechanism of hydrolysis reactions of two hazardous chemicals PCl3 and POCl3 with explicit molecular water clusters nearby. It is found that the water molecules play a key role as a catalyst significantly lowing activation barrier of the hydrolysis via transferring its protons to reaction intermediates. Interestingly, torsional angle of the molecular complex at transition state is identified as a vital descriptor on the reaction rate. Analysis of charge distribution over the complex further reinforces the finding with atomic level correlation between the torsional angle and variation of the orbital hybridization state of phosphorus (P) in the complex. Electronic charge separation (or polarization) enhances thermodynamic stability of the activated complex and reduces the activation energy through hydrogen bonding network with water molecules nearby. Calculated potential energy surfaces (PES) for the hydrolysis of PCl3 and POCl3 depict their two contrastingly different profiles of double- and triple-depth wells, respectively. It is ascribed to the unique double-bonding O=P in the POCl3. Our results on the activation free energy show well agreements with previous experimental data within 7kcalmol-1 deviation.
Collapse
Affiliation(s)
- Hyunwook Jung
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhee Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoje Chun
- Integrated Science and Engineering Division, Yonsei University, Seoul 03722, Republic of Korea
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
41
|
Khasiyatullina NR, Baronova TA, Mironova EV, Fayzullin RR, Litvinov IA, Efimov SV, Musin RZ, Klochkov VV, Mironov VF. Tandem dihetero-Diels–Alder and Huisgen cycloaddition reactions. Synthesis, crystal structure and hydrolysis of the novel cage phosphoranes. Org Chem Front 2018. [DOI: 10.1039/c8qo00915e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of 2-(1-phenylvinyloxy)benzo-1,3,2-dioxaphosphole with activated carbonyl compounds leads to the stereoselective formation of cage phosphoranes.
Collapse
Affiliation(s)
- Nadezhda R. Khasiyatullina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
- Institute of Physics
| | - Tamara A. Baronova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
- Institute of Physics
| | - Ekaterina V. Mironova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
| | - Sergey V. Efimov
- Institute of Physics
- Kazan Federal University
- 420008 Kazan
- Russian Federation
| | - Rashid Z. Musin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
| | | | - Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
- Institute of Physics
| |
Collapse
|
42
|
Talaga P, Brela MZ, Michalak A. ETS-NOCV decomposition of the reaction force for double-proton transfer in formamide-derived systems. J Mol Model 2017; 24:27. [PMID: 29273840 PMCID: PMC5741796 DOI: 10.1007/s00894-017-3564-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022]
Abstract
The analysis of the electronic-structure changes along IRC paths for double-proton-transfer reactions in the formamide dimer (R1), formamide–thioformamide system (R2), and the thioformamide dimer (R3) was performed based on the extended-transition-state natural orbitals for chemical valence (ETS-NOCV) partitioning of the reaction force, considering the intra-fragments strain and the inter-fragments interaction terms, and further—the electrostatic, Pauli-repulsion and orbital interaction components, with the latter being decomposed into the NOCV components. Two methods of the system partitioning into the fragments were considered (‘reactant perspective’/bond-formation, ‘product perspective’ / bond-breaking). In agreement with previous studies, the results indicate that the major changes in the electronic structure occur in the transition state region; the bond-breaking processes are, however, initiated already in the reactant region, prior to entering the TS region. The electrostatic contributions were identified as the main factor responsible for the increase in the activation barrier in the order R1 < R2 < R3.
Collapse
Affiliation(s)
- Piotr Talaga
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Mateusz Z Brela
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Artur Michalak
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| |
Collapse
|
43
|
DiRocco DA, Ji Y, Sherer EC, Klapars A, Reibarkh M, Dropinski J, Mathew R, Maligres P, Hyde AM, Limanto J, Brunskill A, Ruck RT, Campeau LC, Davies IW. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 2017; 356:426-430. [PMID: 28450641 DOI: 10.1126/science.aam7936] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
The catalytic stereoselective synthesis of compounds with chiral phosphorus centers remains an unsolved problem. State-of-the-art methods rely on resolution or stoichiometric chiral auxiliaries. Phosphoramidate prodrugs are a critical component of pronucleotide (ProTide) therapies used in the treatment of viral disease and cancer. Here we describe the development of a catalytic stereoselective method for the installation of phosphorus-stereogenic phosphoramidates to nucleosides through a dynamic stereoselective process. Detailed mechanistic studies and computational modeling led to the rational design of a multifunctional catalyst that enables stereoselectivity as high as 99:1.
Collapse
Affiliation(s)
- Daniel A DiRocco
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Yining Ji
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Edward C Sherer
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Artis Klapars
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mikhail Reibarkh
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - James Dropinski
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Rose Mathew
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter Maligres
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alan M Hyde
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - John Limanto
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Andrew Brunskill
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Rebecca T Ruck
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Ian W Davies
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
44
|
Kolodiazhnyi OI, Kolodiazhna A. Nucleophilic substitution at phosphorus: stereochemistry and mechanisms. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Díaz S, Brela MZ, Gutiérrez-Oliva S, Toro-Labbé A, Michalak A. ETS-NOCV Decomposition of the Reaction Force: The HCN/CNH Isomerization Reaction Assisted by Water. J Comput Chem 2017; 38:2076-2087. [DOI: 10.1002/jcc.24856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Silvia Díaz
- Department of Theoretical Chemistry; Faculty of Chemistry, Jagiellonian University; Ingardena 3 Krakow 30-060 Poland
- Laboratorio de Química Teórica Computacional (QTC); Facultad de Química, Pontificia Universidad Católica de Chile; Avenida Vicuña Mackenna 4860 Macul Santiago Chile
| | - Mateusz Z. Brela
- Department of Theoretical Chemistry; Faculty of Chemistry, Jagiellonian University; Ingardena 3 Krakow 30-060 Poland
| | - Soledad Gutiérrez-Oliva
- Laboratorio de Química Teórica Computacional (QTC); Facultad de Química, Pontificia Universidad Católica de Chile; Avenida Vicuña Mackenna 4860 Macul Santiago Chile
| | - Alejandro Toro-Labbé
- Laboratorio de Química Teórica Computacional (QTC); Facultad de Química, Pontificia Universidad Católica de Chile; Avenida Vicuña Mackenna 4860 Macul Santiago Chile
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs Universität Freiburg; Albertstr. 19 Freiburg 79104 Germany
| | - Artur Michalak
- Department of Theoretical Chemistry; Faculty of Chemistry, Jagiellonian University; Ingardena 3 Krakow 30-060 Poland
| |
Collapse
|
46
|
Bickelhaupt FM, Houk KN. Das Distortion/Interaction‐Activation‐Strain‐Modell zur Analyse von Reaktionsgeschwindigkeiten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701486] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Matthias Bickelhaupt
- Department of Theoretical Chemistry und Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam Niederlande
- Institute of Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry und Department of Chemical and Biomolecular Engineering University of California Los Angeles CA 90095-1569 USA
| |
Collapse
|
47
|
Bickelhaupt FM, Houk KN. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. Angew Chem Int Ed Engl 2017; 56:10070-10086. [PMID: 28447369 PMCID: PMC5601271 DOI: 10.1002/anie.201701486] [Citation(s) in RCA: 981] [Impact Index Per Article: 140.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/10/2017] [Indexed: 12/21/2022]
Abstract
The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions.
Collapse
Affiliation(s)
- F Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,Institute of Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kendall N Houk
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
48
|
Kolodiazhnyi OI, Kolodiazhna AO. Stereochemistry of nucleophilic substitution at trivalent phosphorus. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1284842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Oleg I. Kolodiazhnyi
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anastasy O. Kolodiazhna
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
49
|
Javierre G, Fortrie R, Jean M, Moraleda D, Naubron JV, Fotiadu F. Racemization and transesterification of alkyl hydrogeno-phenylphosphinates. J Mol Model 2017; 23:168. [PMID: 28451880 DOI: 10.1007/s00894-017-3343-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2017] [Indexed: 11/30/2022]
Abstract
In this article, we explore, both theoretically and experimentally, the general reactivity of alkyl hydrogeno-phenylphosphinates with alcohols. We show that alcohol molecules act exclusively as nucleophilic species, and add to alkyl hydrogeno-phenylphosphinates, leading to pentacoordinated intermediates. These intermediates are shown to subsequently competitively undergo alcohol eliminations and/or Berry pseudorotations. This offers several possible routes for racemizations and/or alcohol exchange reactions. Transition standard Gibbs free energies predicted from DFT calculations for the overall alcohol exchange mechanism are shown to be compatible with those experimentally measured in case ethanol reacts with ethyl hydrogeno-phenylphosphinate (134.5∼136.0 kJ mol-1 at 78 °C). Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Guilhem Javierre
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Rémy Fortrie
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Delphine Moraleda
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Frédéric Fotiadu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
50
|
|