1
|
Xu G, Zhang M, Mei T, Liu W, Wang L, Xiao K. Nanofluidic Ionic Memristors. ACS NANO 2024. [PMID: 39022809 DOI: 10.1021/acsnano.4c06467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Living organisms use ions and small molecules as information carriers to communicate with the external environment at ultralow power consumption. Inspired by biological systems, artificial ion-based devices have emerged in recent years to try to realize efficient information-processing paradigms. Nanofluidic ionic memristors, memory resistors based on confined fluidic systems whose internal ionic conductance states depend on the historical voltage, have attracted broad attention and are used as neuromorphic devices for computing. Despite their high exposure, nanofluidic ionic memristors are still in the initial stage. Therefore, systematic guidance for developing and reasonably designing ionic memristors is necessary. This review systematically summarizes the history, mechanisms, and potential applications of nanofluidic ionic memristors. The essential challenges in the field and the outlook for the future potential applications of nanofluidic ionic memristors are also discussed.
Collapse
Affiliation(s)
- Guoheng Xu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Miliang Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Wenchao Liu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Li Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Xun H, Wang C, Yang Z, Zhang X. A Solar Evaporator Based on Polypyrrole Coated 3D Carbon Nanotube Materials for Efficient Solar-Driven Vapor Generation. Macromol Rapid Commun 2024:e2300744. [PMID: 38480512 DOI: 10.1002/marc.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Indexed: 03/21/2024]
Abstract
Highly porous light absorbers are fabricated based on polypyrrole (PPy)-coated carbon nanotube (CNT). Carbon nanotube sponge (CNTS) or carbon nanotube array (CNTA) with three-dimensional (3D) network structure is the framework of porous light absorbers. Both PPy@CNTS and PPy@CNTA composites exhibit excellent light absorption of the full solar spectrum. The CNTS and CNTA with porous structures have extremely large effective surface area for light absorption and for water evaporation that has great practical benefit to the solar-driven vapor generation. The PPy layer on CNT sidewalls significantly improves the hydrophilicity of porous CNTS and CNTA. The good wettability of water on CNT sidewalls makes water transport in porous CNT materials highly efficient. The PPy@CNTS and PPy@CNTA light absorbers achieve high water evaporation rates of 3.35 and 3.41 kg m-2 h-1 , respectively, under 1-sun radiation. The orientation of nano channels in CNTA-based light absorbers also plays an important role in the solar-driven vapor generation. The water transport and vapor escape are more efficient in CNTA-based light absorbers as compared to the CNTS-based light absorbers due to the relatively short path for the water transport and the vapor escape in CNTA-based light absorbers.
Collapse
Affiliation(s)
- Hao Xun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R China
| | - Chuang Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R China
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R China
| |
Collapse
|
3
|
Bratko D. Reversible Surface Energy Storage in Molecular-Scale Porous Materials. Molecules 2024; 29:664. [PMID: 38338408 PMCID: PMC10856011 DOI: 10.3390/molecules29030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Forcible wetting of hydrophobic pores represents a viable method for energy storage in the form of interfacial energy. The energy used to fill the pores can be recovered as pressure-volume work upon decompression. For efficient recovery, the expulsion pressure should not be significantly lower than the pressure required for infiltration. Hysteresis of the wetting/drying cycle associated with the kinetic barrier to liquid expulsion results in energy dissipation and reduced storage efficiency. In the present work, we use open ensemble (Grand Canonical) Monte Carlo simulations to study the improvement of energy recovery with decreasing diameters of planar pores. Near-complete reversibility is achieved at pore widths barely accommodating a monolayer of the liquid, thus minimizing the area of the liquid/gas interface during the cavitation process. At the same time, these conditions lead to a steep increase in the infiltration pressure required to overcome steric wall/water repulsion in a tight confinement and a considerable reduction in the translational entropy of confined molecules. In principle, similar effects can be expected when increasing the size of the liquid particles without altering the absorbent porosity. While the latter approach is easier to follow in laboratory work, we discuss the advantages of reducing the pore diameter, which reduces the cycling hysteresis while simultaneously improving the stored-energy density in the material.
Collapse
Affiliation(s)
- Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23221, USA
| |
Collapse
|
4
|
Zhao Z, Ma Y, Xie Z, Wu F, Fan J, Kou J. Molecular Mechanisms of the Generation and Accumulation of Gas at the Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38293869 DOI: 10.1021/acs.langmuir.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gas-evolving reactions are widespread in chemical and energy fields. However, the generated gas will accumulate at the interface, which reduces the rate of gas generation. Understanding the microscopic processes of the generation and accumulation of gas at the interface is crucial for improving the efficiency of gas generation. Here, we develop an algorithm to reproduce the process of catalytic gas generation at the molecular scale based on the all-atom molecular dynamics simulations and obtain the quantitative evolution of the gas generation, which agrees well with the experimental results. In addition, we demonstrate that under an external electric field, the generated gas molecules do not accumulate at the electrode surface, which implies that the electric field can significantly increase the rate of the gas generation. The results suggest that the external electric field changes the structure of the water molecules near the electrode surface, making it difficult for gas molecules to accumulate on the electrode surface. Furthermore, it is found that gas desorption from the electrode surface is an entropy-driven process, and its accumulation at the electrode surface depends mainly on the competition between the entropy and the enthalpy of the water molecules under the influence of the electric field. These results provide deep insight into gas generation and inhibition of gas accumulation.
Collapse
Affiliation(s)
- Zhigao Zhao
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yunqiu Ma
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Fengmin Wu
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jintu Fan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong 999077, China
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Wei Z, Elliott JD, Papaderakis AA, Dryfe RA, Carbone P. Relation between Double Layer Structure, Capacitance, and Surface Tension in Electrowetting of Graphene and Aqueous Electrolytes. J Am Chem Soc 2024; 146:760-772. [PMID: 38153698 PMCID: PMC10785801 DOI: 10.1021/jacs.3c10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Deciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li+) concentration on the interfacial tension (γSL) of the charged graphene/electrolyte interface. We demonstrate that the dependence of γSL on the applied surface charge exhibits an asymmetric behavior relative to the neutral surface. At the positively charged graphene sheet, the electrowetting response is amplified by electrolyte concentration, resulting in a strongly hydrophilic surface. On the contrary, at negative potential bias, γSL shows a weaker response to the charging of the electrode. Changes in γSL greatly affect the total areal capacitance predicted by the Young-Lippmann equation but have a negligible impact on the simulated total areal capacitance, indicating that the EDL structure is not directly correlated with the wettability of the surface and different interfacial mechanisms drive the two phenomena. The proposed model is validated experimentally by studying the electrowetting response of highly oriented pyrolytic graphite over a wide range of electrolyte concentrations. Our work presents the first combined theoretical and experimental study on electrowetting using carbon surfaces, introducing new conceptual routes for the investigation of wetting phenomena under potential bias.
Collapse
Affiliation(s)
- Zixuan Wei
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Joshua D. Elliott
- Diamond
Light Source, Diamond House, Harwell Science
and Innovation Park, Oxfordshire, Didcot OX11 ODE, United Kingdom
| | - Athanasios A. Papaderakis
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Robert A.W. Dryfe
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Paola Carbone
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Safaripour S, Anand G, Snoeyink C. Thermodynamic Analysis of Capillary and Electric Field Effects on Liquid-Vapor Equilibrium: A Study on the Water-Ethanol Mixture. J Phys Chem B 2023; 127:9181-9190. [PMID: 37844296 DOI: 10.1021/acs.jpcb.3c05345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
This study investigates phase equilibrium manipulation in nonideal mixtures through a combined capillary and external electric field approach. Utilizing thermodynamic principles, an expression is established for estimating the equilibrium liquid mole fraction in a confined system subjected to a localized electric field within a capillary that is filled with a liquid phase in equilibrium with its vapor counterpart. Applied to a water-ethanol system, the model suggests large shifts in the equilibrium liquid mole fraction of water due to the electric field and capillary effects. These findings reveal that while the capillary's influence remains negligible for radii exceeding 10 nm, capillaries of smaller dimensions, when exposed to electric fields of around 300 MV/m, can amplify the equilibrium liquid water mole fraction by up to 55%. This suggests the potential for phase equilibrium control through larger capillaries and lower electric fields, while intriguing complexities arise at very small radii.
Collapse
Affiliation(s)
- Samira Safaripour
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Gaurav Anand
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Craig Snoeyink
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Giacomello A. What keeps nanopores boiling. J Chem Phys 2023; 159:110902. [PMID: 37724724 DOI: 10.1063/5.0167530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liquid-to-vapor transition can occur under unexpected conditions in nanopores, opening the door to fundamental questions and new technologies. The physics of boiling in confinement is progressively introduced, starting from classical nucleation theory, passing through nanoscale effects, and terminating with the material and external parameters that affect the boiling conditions. The relevance of boiling in specific nanoconfined systems is discussed, focusing on heterogeneous lyophobic systems, chromatographic columns, and ion channels. The current level of control of boiling in nanopores enabled by microporous materials such as metal organic frameworks and biological nanopores paves the way to thrilling theoretical challenges and to new technological opportunities in the fields of energy, neuromorphic computing, and sensing.
Collapse
Affiliation(s)
- Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
8
|
Carmona Esteva FJ, Zhang Y, Colón YJ, Maginn EJ. Molecular Dynamics Simulation of the Influence of External Electric Fields on the Glass Transition Temperature of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J Phys Chem B 2023; 127:4623-4632. [PMID: 37192465 DOI: 10.1021/acs.jpcb.3c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present the results of molecular dynamics simulations of the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C2C1im][NTf2] in the presence of external electric fields (EEFs) of varying strengths to understand the effects of EEFs on the glass transition temperature Tg. We compute Tg with an automated and objective method and observe a depression in Tg when cooling the IL within an EEF above a critical strength. The effect is reversible, and glasses prepared with EEFs recover their original zero-field Tg when heated. By examining the dynamics and structure of the liquid phase, we find that the EEF lowers the activation energy for diffusion, reducing the energetic barrier for movement and consequently Tg. We show that the effect can be leveraged to drive an electrified nonvapor compression refrigeration cycle.
Collapse
Affiliation(s)
- Fernando J Carmona Esteva
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yamil J Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Electric field direction-induced gas/water selectively entering nanochannel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Polster JW, Aydin F, de Souza JP, Bazant MZ, Pham TA, Siwy ZS. Rectified and Salt Concentration Dependent Wetting of Hydrophobic Nanopores. J Am Chem Soc 2022; 144:11693-11705. [PMID: 35729706 PMCID: PMC9264351 DOI: 10.1021/jacs.2c03436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanopores lined with hydrophobic groups function as switches for water and all dissolved species, such that transport is allowed only when applying a sufficiently high transmembrane pressure difference or voltage. Here we show a hydrophobic nanopore system whose wetting and ability to transport water and ions is rectified and can be controlled with salt concentration. The nanopore we study contains a junction between a hydrophobic zone and a positively charged hydrophilic zone. The nanopore is closed for transport at low salt concentrations and exhibits finite current only when the concentration reaches a threshold value that is dependent on the pore opening diameter, voltage polarity and magnitude, and type of electrolyte. The smallest nanopore studied here had a 4 nm diameter and did not open for transport in any concentration of KCl or KI examined. A 12 nm nanopore was closed for all KCl solutions but conducted current in KI at concentrations above 100 mM for negative voltages and opened for both voltage polarities at 500 mM KI. Nanopores with a hydrophobic/hydrophilic junction can thus function as diodes, such that one can identify a range of salt concentrations where the pores transport water and ions for only one voltage polarity. Molecular dynamics simulations together with continuum models provided a multiscale explanation of the observed phenomena and linked the salt concentration dependence of wetting with an electrowetting model. Results presented are crucial for designing next-generation chemical and ionic separation devices as well as understanding fundamental properties of hydrophobic interfaces under nanoconfinement.
Collapse
Affiliation(s)
- Jake W Polster
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Fikret Aydin
- Quantum Simulations Group and Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tuan Anh Pham
- Quantum Simulations Group and Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Zuzanna S Siwy
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Zhang X, Liu Y, Su J. Promoting Electroosmotic Water Flow through a Carbon Nanotube by Weakening the Competition between Cations and Anions in a Lateral Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3530-3539. [PMID: 35259293 DOI: 10.1021/acs.langmuir.1c03473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the electroosmotic flow through a nanochannel is essential to the design of novel nanofluidic devices, ranging from desalination to nanometer water pumps. Nonetheless, the competition between cation and anion in electric fields inevitably leads to a limited pumping of water, and thus weakening their competition could be a new avenue for the fundamental control of water transport. In this work, through a series of molecular dynamics simulations, we find a surprising phenomenon in which under the drive of a traditional longitudinal electric field, an additional lateral electric field can significantly weaken the competitive transport of a cation and anion through a carbon nanotube, which spontaneously leads to a massive increase in electroosmotic water flux. Specifically, with the increase in the lateral electric field, the anion flux exhibits an almost linear reduction, and the cation flux is stable and can even be enhanced. As a result, the net water flux along the cation direction increases significantly. The key to this unexpected phenomenon lies in the size and mobility difference between the cation and anion. The anion is larger and has greater mobility and is thus more susceptible to the lateral electric field, which ultimately leads to the reduction of its flux. For different ion types and CNT lengths, we can observe similar electropumping phenomenon, where the friction force induced by the lateral electric field becomes nontrivial for long CNTs. Our results provide a new route to tune the competitive transport of cations and anions and should be useful for the design of novel electroosmotic pumps.
Collapse
|
12
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
13
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
14
|
Bhattacharjee S, Khan S. Molecular insights into the electrowetting behavior of aqueous ionic liquids. Phys Chem Chem Phys 2022; 24:1803-1813. [PMID: 34985472 DOI: 10.1039/d1cp01821c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics (MD) simulations were applied to investigate the wettability of aqueous hydrophilic and hydrophobic imidazolium-based ionic liquid (IL) nano-droplets on a graphite surface under a perpendicular electric field. Imminent transformation in the droplet configuration was observed at E = 0.08 V Å-1 both for hydrophobic ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTF2] and SPC/E water droplets. However, for the hydrophilic IL, 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4], the droplet was entirely elongated to column-shaped at E = 0.09 V Å-1 for lower weight percentages of ILs and at E = 0.15 V Å-1 for a higher weight percentage of ILs (i.e., 50 wt%). We explored the impact of the electric field through various parameters such as mass and charge density distribution across the droplet, contact angle of the droplet, orientation of water dipoles, and hydrogen bond analysis. The external electric field was found to influence the orientation of water dipoles and the accumulation of charge at various interfaces was observed with an increase in an electric field, which finally leads to shape deformation and depletion of ions from the liquid-vapor interface of the droplet. However, this behavior strongly depends on the hydrophilicity or hydrophobicity of the ILs and thus, is critically examined for both the ILs.
Collapse
Affiliation(s)
- Sanchari Bhattacharjee
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, 801103, India.
| | - Sandip Khan
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, 801103, India.
| |
Collapse
|
15
|
Chatterjee S, Kumar I, Ghanta KC, Hens A, Biswas G. Insight into molecular rearrangement of a sessile ionic nanodroplet with applied electric field. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Vanzo D, Luzar A, Bratko D. Reversible electrowetting transitions on superhydrophobic surfaces. Phys Chem Chem Phys 2021; 23:27005-27013. [PMID: 34846052 DOI: 10.1039/d1cp04220c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electric field applied across the interface has been shown to enable transitions from the Cassie to the Wenzel state on superhydrophobic surfaces with miniature corrugations. Molecular dynamics (MD) simulations manifest the possibility of reversible cycling between the two states when narrow surface wells support spontaneous expulsion of water in the absence of the field. With approximately 1 nm sized wells between the surface asperities, the response times to changes in the electric field are of O(0.1) ns, allowing up to GHz frequency of the cycle. Because of the orientation preferences of interfacial water in contact with the solid, the phenomenon depends on the polarity of the field normal to the interface. The threshold field strength for the Cassie-to-Wenzel transition is significantly lower for the field pointing from the aqueous phase to the surface; however, once in the Wenzel state, the opposite field direction secures tighter filling of the wells. Considerable hysteresis revealed by the delayed water retraction at decreasing field strength indicates the presence of moderate kinetic barriers to expulsion. Known to scale approximately with the square of the length scale of the corrugations, these barriers preclude the use of increased corrugation sizes while the reduction of the well diameter necessitates stronger electric fields. Field-controlled Cassie-to-Wenzel transitions are therefore optimized by using superhydrophobic surfaces with nanosized corrugations. Abrupt changes indicate a high degree of cooperativity reflecting the correlations between the wetting states of interconnected wells on the textured surface.
Collapse
Affiliation(s)
- D Vanzo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.
| | - A Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.
| | - D Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.
| |
Collapse
|
17
|
Montenegro A, Dutta C, Mammetkuliev M, Shi H, Hou B, Bhattacharyya D, Zhao B, Cronin SB, Benderskii AV. Asymmetric response of interfacial water to applied electric fields. Nature 2021; 594:62-65. [PMID: 34079138 DOI: 10.1038/s41586-021-03504-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 03/29/2021] [Indexed: 11/09/2022]
Abstract
Our understanding of the dielectric response of interfacial water, which underlies the solvation properties and reaction rates at aqueous interfaces, relies on the linear response approximation: an external electric field induces a linearly proportional polarization. This implies antisymmetry with respect to the sign of the field. Atomistic simulations have suggested, however, that the polarization of interfacial water may deviate considerably from the linear response. Here we present an experimental study addressing this issue. We measured vibrational sum-frequency generation spectra of heavy water (D2O) near a monolayer graphene electrode, to study its response to an external electric field under controlled electrochemical conditions. The spectra of the OD stretch show a pronounced asymmetry for positive versus negative electrode charge. At negative charge below 5 × 1012 electrons per square centimetre, a peak of the non-hydrogen-bonded OD groups pointing towards the graphene surface is observed at a frequency of 2,700 per centimetre. At neutral or positive electrode potentials, this 'free-OD' peak disappears abruptly, and the spectra display broad peaks of hydrogen-bonded OD species (at 2,300-2,650 per centimetre). Miller's rule1 connects the vibrational sum-frequency generation response to the dielectric constant. The observed deviation from the linear response for electric fields of about ±3 × 108 volts per metre calls into question the validity of treating interfacial water as a simple dielectric medium.
Collapse
Affiliation(s)
- Angelo Montenegro
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Chayan Dutta
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | | - Haotian Shi
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Bingya Hou
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Bofan Zhao
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen B Cronin
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
18
|
Both AK, Gao Y, Zeng XC, Cheung CL. Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. NANOSCALE 2021; 13:7447-7470. [PMID: 33876814 DOI: 10.1039/d1nr00751c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gas hydrates (clathrate hydrates, clathrates, or hydrates) are crystalline inclusion compounds composed of water and gas molecules. Methane hydrates, the most well-known gas hydrates, are considered a menace in flow assurance. However, they have also been hailed as an alternative energy resource because of their high methane storage capacity. Since the formation of gas hydrates generally requires extreme conditions, developing porous material hosts to synthesize gas hydrates with less-demanding constraints is a topic of great interest to the materials and energy science communities. Though reports of modeling and experimental analysis of bulk gas hydrates are plentiful in the literature, reliable phase data for gas hydrates within confined spaces of nanoporous media have been sporadic. This review examines recent studies of both experiments and theoretical modeling of gas hydrates within four categories of nanoporous material hosts that include porous carbons, metal-organic frameworks, graphene nanoslits, and carbon nanotubes. We identify challenges associated with these porous systems and discuss the prospects of gas hydrates in confined space for potential applications.
Collapse
Affiliation(s)
- Avinash Kumar Both
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Yurui Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Chin Li Cheung
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
19
|
Yao S, Zhou S, Zhang J, Yang Z, Zhang X. Improved wettability and enhanced ionic transport in highly porous CNT sponge. NANOTECHNOLOGY 2021; 32:105709. [PMID: 33260168 DOI: 10.1088/1361-6528/abcf6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the effect of an electric treatment on the wettability of aqueous solution on carbon nanotubes (CNT) and ion transport behaviors in superhydrophobic porous carbon nanotube sponges (CNTS). This electric activation treatment where an electric voltage was applied across highly porous CNT sponge induced an electrowetting effect. This effect significantly reduced interfacial tensions between CNT sidewalls and aqueous liquids. Meanwhile, polar functional groups were also introduced on CNTs. Both electrowetting effect and polar functional groups greatly improved the wettability of aqueous solutions on CNT sidewalls. After the electric treatment, we observed a dramatic increase in the overall rate of ion flow across porous CNT sponges. The formation of solution channels during the electric treatment is responsible for the enhanced ionic transport in porous CNT sponges. The overall rate of ion flow increased with the increases in electric treatment time and voltage. The crucial role of electric treatment parameters in the ion transport provides a new strategy for precisely controlling the ion transport across CNT sponges by tuning electric treatment time or voltage. Importantly, the good wettability of aqueous solution on CNT sidewalls greatly increased the effective surface area of CNT sponges and thus significantly improved the performance of CNTS-based supercapacitors after the electric treatment.
Collapse
Affiliation(s)
- Sicheng Yao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
| | - Shenglin Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
| | - Jiapeng Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, People's Republic of China
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, People's Republic of China
| |
Collapse
|
20
|
Dhattarwal HS, Remsing RC, Kashyap HK. Intercalation-deintercalation of water-in-salt electrolytes in nanoscale hydrophobic confinement. NANOSCALE 2021; 13:4195-4205. [PMID: 33586725 DOI: 10.1039/d0nr08163a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intercalation-deintercalation of water-in-salt (WIS) electrolytes in nanoscale confinement is an important phenomenon relevant to energy storage and self-assembly applications. In this article, we use molecular simulations to investigate the effects of intersurface separation on the structure and free energy underlying the intercalation-deintercalation of the Li bis(trifluoromethane)sulfonimide ([Li][TFSI]) water-in-salt (WIS) electrolyte confined between nanoscale hydrophobic surfaces. We employ enhanced sampling to estimate the free energy profiles for the intercalation behaviour of WIS in confining sheets at several intersurface separations. We observe that the relative stability of the condensed and vapour phases of WIS in the confinement depends on the separation between the confining surfaces and the WIS concentration. We find that the critical separation at which the condensed and vapour phases are equally stable in confinement depends on the concentration of WIS. The relative height of the free energy barrier also strongly depends on the concentration of [Li][TFSI] inside the confined space, and we find that this concentration dependence can be attributed to changes in line tension. The process of deintercalation passes through vapour tube formation inside the confined space, and this process is initiated by vapour bubble formation. The size of the critical vapour tube required for spontaneous evaporation of WIS from the confinement is also found to depend on the intersurface separation and WIS concentration.
Collapse
Affiliation(s)
- Harender S Dhattarwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
21
|
Xie Z, Li Z, Li J, Kou J, Yao J, Fan J. Electric field-induced gas dissolving in aqueous solutions. J Chem Phys 2021; 154:024705. [PMID: 33445907 DOI: 10.1063/5.0037387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gas dissolution or accumulation regulating in an aqueous environment is important but difficult in various fields. Here, we performed all-atom molecular dynamics simulations to study the dissolution/accumulation of gas molecules in aqueous solutions. It was found that the distribution of gas molecules at the solid-water interface is regulated by the direction of the external electric field. Gas molecules attach and accumulate to the interface with an electric field parallel to the interface, while the gas molecules depart and dissolve into the aqueous solutions with a vertical electric field. The above phenomena can be attributed to the redistribution of water molecules as a result of the change of hydrogen bonds of water molecules at the interface as affected by the electric field. This finding reveals a new mechanism of regulating gas accumulation and dissolution in aqueous solutions and can have tremendous applications in the synthesis of drugs, the design of microfluidic device, and the extraction of natural gas.
Collapse
Affiliation(s)
- Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Zheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310058, China
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Jun Yao
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jintu Fan
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, USA
| |
Collapse
|
22
|
Cao Y, Yang R, Sun J, Zhang W, Lee I, Wang W, Meng X. Effects of amino acid modifications on the permeability of the pentameric sarcolipin channel. Proteins 2020; 89:427-435. [PMID: 33244801 DOI: 10.1002/prot.26028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Sarcolipin (SLN) is an important transmembrane (TM) protein encoded by long noncoding RNA. SLN is expressed in the sarcoplasmic reticulum and regulates cardiac and skeletal muscle contractions. SLN forms a pentameric hydrophobic ligand-gated ion channel. The protonation of Glu7 (protonated SLN, pSLN) and mutation of Thr18 to Ala18 (T18A) have been reported to exert a significant influence on the permeability of the channel. In this study, the altered permeability of both the pSLN and T18A pentameric channels was simulated. Combined with molecular dynamics simulation, the free-energy landscape for single ions, computational electrophysiology, diffusion coefficient, and pore geometrical characteristic analyses were performed to further understand the properties of amino acid modifications in the SLN pentameric channel. The results suggest that both the pSLN and T18A pentameric channels form stable hydrophobic ligand-gated channels. The TM voltage has a positive effect on the permeability of water molecules and ions. By using pSLN and T18A, our study provides helpful information on the pore-forming mechanism of SLN and furthers our understanding of the regulatory mechanisms underlying the permeation of ions and water molecules in the pentameric SLN channel.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| | - Rui Yang
- Department of Infection and Immunity, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Imshik Lee
- College of Physics, Nankai University, Tianjin, China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| |
Collapse
|
23
|
Cao Y, Yang R, Wang W, Lee I, Zhang R, Zhang W, Sun J, Xu B, Meng X. Computational Study of the Ion and Water Permeation and Transport Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel. Front Mol Biosci 2020; 7:565797. [PMID: 33173781 PMCID: PMC7538787 DOI: 10.3389/fmolb.2020.565797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus (SARS-CoV-2) and represents the causative agent of a potentially fatal disease that is a public health emergency of international concern. Coronaviruses, including SARS-CoV-2, encode an envelope (E) protein, which is a small, hydrophobic membrane protein; the E protein of SARS-CoV-2 shares a high level of homology with severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, we provide insights into the function of the SARS-CoV-2 E protein channel and the ion and water permeation mechanisms using a combination of in silico methods. Based on our results, the pentameric E protein promotes the penetration of cation ions through the channel. An analysis of the potential mean force (PMF), pore radius and diffusion coefficient reveals that Leu10 and Phe19 are the hydrophobic gates of the channel. In addition, the pore exhibits a clear wetting/dewetting transition with cation selectivity under transmembrane voltage, indicating that it is a hydrophobic voltage-dependent channel. Overall, these results provide structure-based insights and molecular dynamic information that are needed to understand the regulatory mechanisms of ion permeability in the pentameric SARS-CoV-2 E protein channel.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| | - Rui Yang
- Department of Infection and Immunity, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Imshik Lee
- College of Physics, Nankai University, Tianjin, China
| | - Ruiping Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Center for Intelligent Oncology, Chongqing University School of Medicine and Chongqing University Cancer Hospital, Chongqing, China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| |
Collapse
|
24
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
25
|
Klesse G, Tucker SJ, Sansom MSP. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT 3 Receptor Channel. ACS NANO 2020; 14:10480-10491. [PMID: 32673478 PMCID: PMC7450702 DOI: 10.1021/acsnano.0c04387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 05/14/2023]
Abstract
In this study we examined the influence of a transmembrane voltage on the hydrophobic gating of nanopores using molecular dynamics simulations. We observed electric field induced wetting of a hydrophobic gate in a biologically inspired model nanopore based on the 5-HT3 receptor in its closed state, with a field of at least ∼100 mV nm-1 (corresponding to a supra-physiological potential difference of ∼0.85 V across the membrane) required to hydrate the pore. We also found an unequal distribution of charged residues can generate an electric field intrinsic to the nanopore which, depending on its orientation, can alter the effect of the external field, thus making the wetting response asymmetric. This wetting response could be described by a simple model based on water surface tension, the volumetric energy contribution of the electric field, and the influence of charged amino acids lining the pore. Finally, the electric field response was used to determine time constants characterizing the phase transitions of water confined within the nanopore, revealing liquid-vapor oscillations on a time scale of ∼5 ns. This time scale was largely independent of the water model employed and was similar for different sized pores representative of the open and closed states of the pore. Furthermore, our finding that the threshold voltage required for hydrating a hydrophobic gate depends on the orientation of the electric field provides an attractive perspective for the design of rectifying artificial nanopores.
Collapse
Affiliation(s)
- Gianni Klesse
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
| | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
- OXION
Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
26
|
Yadav S, Chandra A. Transport of hydrated nitrate and nitrite ions through graphene nanopores in aqueous medium. J Comput Chem 2020; 41:1850-1858. [PMID: 32500955 DOI: 10.1002/jcc.26356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Abstract
Nitrate ( NO 3 - ) and nitrite ( NO 2 - ) ions are naturally occurring inorganic ions that are part of the nitrogen cycle. High doses of these ions in drinking water impose a potential risk to public health. In this work, molecular dynamics simulations are carried out to study the passage of nitrate and nitrite ions from water through graphene nanosheets (GNS) with hydrogen-functionalized narrow pores in presence of an external electric field. The passage of ions through the pores is investigated through calculations of ion flux, and the results are analyzed through calculations of various structural and thermodynamic properties such as the density of ions and water, ion-water radial distribution functions, two-dimensional density distribution functions, and the potentials of mean force of the ions. Current simulations show that the nitrite ions can pass more in numbers than the nitrate ions in a given time through GNS hydrogen-functionalized pore of different geometry. It is found that the nitrite ions can permeate faster than the nitrate ions despite the former having higher hydration energy in the bulk. This can be explained in terms of the competition between the number density of the ions along the pore axis and the free energy barrier calculated from the potential of mean force. Also, an externally applied electric field is found to be important for faster permeation of the nitrite over the nitrate ions. The current study suggests that graphene nanosheets with carefully created pores can be effective in achieving selective passage of ions from aqueous solutions.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
27
|
Polster JW, Acar ET, Aydin F, Zhan C, Pham TA, Siwy ZS. Gating of Hydrophobic Nanopores with Large Anions. ACS NANO 2020; 14:4306-4315. [PMID: 32181640 DOI: 10.1021/acsnano.9b09777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding ion transport in nanoporous materials is critical to a wide variety of energy and environmental technologies, ranging from ion-selective membranes, drug delivery, and biosensing, to ion batteries and supercapacitors. While nanoscale transport is often described by continuum models that rely on a point charge description for ions and a homogeneous dielectric medium for the solvent, here, we show that transport of aqueous solutions at a hydrophobic interface can be highly dependent on the size and hydration strength of the solvated ions. Specifically, measurements of ion current through single silicon nitride nanopores that contain a hydrophobic-hydrophilic junction show that transport properties are dependent not only on applied voltage but also on the type of anion. We find that in Cl--containing solutions the nanopores only conducted ionic current above a negative voltage threshold. On the other hand, introduction of large polarizable anions, such as Br- and I-, facilitated the pore wetting, making the pore conductive at all examined voltages. Molecular dynamics simulations revealed that the large anions, Br- and I-, have a weaker solvation shell compared to that of Cl- and consequently were prone to migrate from the aqueous solution to the hydrophobic surface, leading to the anion accumulation responsible for pore wetting. The results are essential for designing nanoporous systems that are selective to ions of the same charge, for realization of ion-induced wetting in hydrophobic pores, as well as for a fundamental understanding on the role of ion hydration shell on the properties of solid/liquid interfaces.
Collapse
Affiliation(s)
- Jake W Polster
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Elif Turker Acar
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcılar, 34320 Istanbul, Turkey
| | - Fikret Aydin
- Quantum Simulations Group and Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Cheng Zhan
- Quantum Simulations Group and Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Tuan Anh Pham
- Quantum Simulations Group and Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Zuzanna S Siwy
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
28
|
Shafiei M, Ojaghlou N, Zamfir SG, Bratko D, Luzar A. Modulation of structure and dynamics of water under alternating electric field and the role of hydrogen bonding. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1651919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - N. Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - S. G. Zamfir
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - D. Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - A. Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
29
|
Zhao L, Cheng J. Characterizing the bifurcating configuration of hydrogen bonding network in interfacial liquid water and its adhesion on solid surfaces. RSC Adv 2019; 9:16423-16430. [PMID: 35516358 PMCID: PMC9064418 DOI: 10.1039/c9ra02578b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
The interfacial structures of liquid water molecules adjacent to a solid surface contribute significantly to the interfacial properties of aqueous solutions, and are of prime importance in a wide spectrum of applications. In this work, we use molecular dynamics (MD) simulations to explore the interfacial structures, mainly in term of hydrogen bonding network, of a liquid water film interacting intimately with solid surfaces, which are composed of [100] face centered cubic (FCC) lattices. We disclose the formation of a bifurcating configuration of hydrogen bonds in interfacial liquid water and ascribe its occurrence to the collective effects of water density depletion, hydrogen bonds and local polarization. Such bifurcating configuration of interfacial water molecules consists of repetitive layer by layer water sheets with intra-layer hydrogen bonding network being formed in each layer, and inter-layer defects, i.e., hydrogen bonds formed between two neighboring layers of interfacial water. A lower bound of 2.475 for the average number of hydrogen bonds per interfacial water molecule is expected. Our MD study on the interfacial configuration of water on solid surfaces reveals a quadratic dependence of adhesion on the solid-liquid affinity, bridging the gap between the macroscopic interfacial property W adh and the microscopic parameter ε SL of the depth of the Lennard-Jones solid-liquid potential.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA +1 (540) 231 4161
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA +1 (540) 231 4161
| |
Collapse
|
30
|
Moučka F, Zamfir S, Bratko D, Luzar A. Molecular polarizability in open ensemble simulations of aqueous nanoconfinements under electric field. J Chem Phys 2019; 150:164702. [PMID: 31042910 DOI: 10.1063/1.5094170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Molecular polarization at aqueous interfaces involves fast degrees of freedom that are often averaged-out in atomistic-modeling approaches. The resulting effective interactions depend on a specific environment, making explicit account of molecular polarizability particularly important in solutions with pronounced anisotropic perturbations, including solid/liquid interfaces and external fields. Our work concerns polarizability effects in nanoscale confinements under electric field, open to an unperturbed bulk environment. We model aqueous molecules and ions in hydrophobic pores using the Gaussian-charge-on-spring BK3-AH representation. This involves nontrivial methodology developments in expanded ensemble Monte Carlo simulations for open systems with long-ranged multibody interactions and necessitates further improvements for efficient modeling of polarizable ions. Structural differences between fixed-charge and polarizable models were captured in molecular dynamics simulations for a set of closed systems. Our open ensemble results with the BK3 model in neat-aqueous systems capture the ∼10% reduction of molecular dipoles within the surface layer near the hydrophobic pore walls in analogy to reported quantum mechanical calculations at water/vapor interfaces. The polarizability affects the interfacial dielectric behavior and weakens the electric-field dependence of water absorption at pragmatically relevant porosities. We observe moderate changes in thermodynamic properties and atom and charged-site spatial distributions; the Gaussian distribution of mobile charges on water and ions in the polarizable model shifts the density amplitudes and blurs the charge-layering effects associated with increased ion absorption. The use of polarizable force field indicates an enhanced response of interfacial ion distributions to applied electric field, a feature potentially important for in silico modeling of electric double layer capacitors.
Collapse
Affiliation(s)
- F Moučka
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
| | - S Zamfir
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
| | - D Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
| | - A Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
| |
Collapse
|
31
|
Li W, Zuo X, Zhou X, Lu H. Effect of aggregated gas molecules on dewetting transition of water between nanoscale hydrophobic plates. J Chem Phys 2019; 150:104702. [PMID: 30876371 DOI: 10.1063/1.5082229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Weijian Li
- College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoliang Zuo
- College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoyan Zhou
- College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Hangjun Lu
- College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
32
|
Shafiei M, von Domaros M, Bratko D, Luzar A. Anisotropic structure and dynamics of water under static electric fields. J Chem Phys 2019; 150:074505. [DOI: 10.1063/1.5079393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mahdi Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
33
|
Zhang X, Liu H, Jiang L. Wettability and Applications of Nanochannels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804508. [PMID: 30345614 DOI: 10.1002/adma.201804508] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 07/30/2018] [Indexed: 05/27/2023]
Abstract
Wettability in nanochannels is of great importance for understanding many challenging problems in interface chemistry and fluid mechanics, and presents versatile applications including mass transport, catalysis, chemical reaction, nanofabrication, batteries, and separation. Recently, both molecular dynamic simulations and experimental measurements have been employed to study wettability in nanochannels. Here, wettability in three types of nanochannels comprising 1D nanochannels, 2D nanochannels, and 3D nanochannels is summarized both theoretically and experimentally. The proposed concept of "quantum-confined superfluid" for ultrafast mass transport in nanochannels is first introduced, and the mostly studied 1D nanochannels are reviewed from molecular simulation to water wettability, followed by reversible switching of water wettability via external stimuli (temperature and voltage). Liquid transport and two confinement strategies in nanochannels of melt wetting and liquid wetting are also included. Then, molecular simulation, water wettability, liquid transport, and confinement in nanochannels are introduced for 2D nanochannels and 3D nanochannels, respectively. Based on the wettability in nanochannels, broad applications of various nanochannels are presented. Finally, the perspective for future challenges in the wettability and applications of nanochannels is discussed.
Collapse
Affiliation(s)
- Xiqi Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
34
|
Daub CD, Hänninen V, Halonen L. Ab Initio Molecular Dynamics Simulations of the Influence of Lithium Bromide on the Structure of the Aqueous Solution-Air Interface. J Phys Chem B 2019; 123:729-737. [PMID: 30605330 PMCID: PMC6727360 DOI: 10.1021/acs.jpcb.8b10552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present the results of ab initio molecular dynamics simulations
of the solution–air interface of aqueous lithium bromide (LiBr).
We find that, in agreement with the experimental data and previous
simulation results with empirical polarizable force field models,
Br– anions prefer to accumulate just below the first
molecular water layer near the interface, whereas Li+ cations
remain deeply buried several molecular layers from the interface,
even at very high concentration. The separation of ions has a profound
effect on the average orientation of water molecules in the vicinity
of the interface. We also find that the hydration number of Li+ cations in the center of the slab Nc,Li+–H2O ≈ 4.7 ±
0.3, regardless of the salt concentration. This estimate is consistent
with the recent experimental neutron scattering data, confirming that
results from nonpolarizable empirical models, which consistently predict
tetrahedral coordination of Li+ to four solvent molecules,
are incorrect. Consequently, disruption of the hydrogen bond network
caused by Li+ may be overestimated in nonpolarizable empirical
models. Overall, our results suggest that empirical models, in particular
nonpolarizable models, may not capture all of the properties of the
solution–air interface necessary to fully understand the interfacial
chemistry.
Collapse
Affiliation(s)
- Christopher D Daub
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Vesa Hänninen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Lauri Halonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| |
Collapse
|
35
|
Ojaghlou N, Tafreshi HV, Bratko D, Luzar A. Dynamical insights into the mechanism of a droplet detachment from a fiber. SOFT MATTER 2018; 14:8924-8934. [PMID: 30232489 DOI: 10.1039/c8sm01257a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantifying the detachment behavior of a droplet from a fiber is important in many applications such as fog harvesting, oil-water separation, or water management in fuel cells. When the droplets are forcibly removed from hydrophilic fibers, the ease of detachment strongly depends on droplet volume and the rate of the process controlled by the applied force. Experiments, conducted on a ferrofluid under magnetic force, as well as continuum level calculations from fluid mechanics have so far been unable to resolve the time-dependent dynamics of droplet detachment and, most importantly, to assess the role of the applied force as the key determinant of the volume of the droplet residue remaining on the fiber after detachment. In the present work, we study the mechanism of water droplet detachment and retention of residual water on smooth hydrophilic fibers using nonequilibrium molecular dynamics simulations. We investigate how the applied force affects the breakup of a droplet and how the minimal detaching force per unit mass decreases with droplet size. We extract scaling relations that allow extrapolation of our findings to larger length scales that are not directly accessible by molecular models. We find that the volume of the residue on a fiber varies nonmonotonically with the detaching force, reaching the maximal size at an intermediate force and associated detachment time. The strength of this force decreases with the size of the drop, while the maximal residue increases with the droplet volume, V, sub-linearly, in proportion to the V2/3.
Collapse
Affiliation(s)
- Neda Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA.
| | | | | | | |
Collapse
|
36
|
Waskasi MM, Martin DR, Matyushov DV. Wetting of the Protein Active Site Leads to Non-Marcusian Reaction Kinetics. J Phys Chem B 2018; 122:10490-10495. [PMID: 30365331 DOI: 10.1021/acs.jpcb.8b10376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes exist in continuously fluctuating water bath dramatically affecting their function. Water not only forms the solvation shell but also penetrates into the protein interior. Changing the wetting pattern of the protein's active site in response to altering redox state initiates a highly nonlinear structural change and non-Gaussian electrostatic fluctuations at the active site. The free-energy surfaces of electron transfer are highly nonparabolic (non-Marcusian), as shown by atomistic molecular dynamics simulations of hydrated ferredoxin protein and by an analytical model in agreement with simulations. The reorganization energy of electron transfer passes through a spike marking equal probabilities of the wet and dry states of the active site. The activation thermodynamics affected by wetting leads to a non-Arrhenius, passing through a maximum, plot for the reaction rate vs the inverse temperature.
Collapse
Affiliation(s)
- Morteza M Waskasi
- School of Molecular Sciences , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | | | | |
Collapse
|
37
|
He Z, Cui H, Hao S, Wang L, Zhou J. Electric-Field Effects on Ionic Hydration: A Molecular Dynamics Study. J Phys Chem B 2018; 122:5991-5998. [DOI: 10.1021/acs.jpcb.8b02773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhongjin He
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Haishuai Cui
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Shihua Hao
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Liping Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
38
|
Zhao L, Cheng J. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. NANOSCALE 2018; 10:6426-6436. [PMID: 29564459 DOI: 10.1039/c8nr00354h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
39
|
Winarto, Takaiwa D, Yamamoto E, Yasuoka K. Separation of water-ethanol solutions with carbon nanotubes and electric fields. Phys Chem Chem Phys 2018; 18:33310-33319. [PMID: 27897278 DOI: 10.1039/c6cp06731j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioethanol has been used as an alternative energy source for transportation vehicles to reduce the use of fossil fuels. The separation of water-ethanol solutions from fermentation processes is still an important issue in the production of anhydrous ethanol. Using molecular dynamics simulations, we investigate the effect of axial electric fields on the separation of water-ethanol solutions with carbon nanotubes (CNTs). In the absence of an electric field, CNT-ethanol van der Waals interactions allow ethanol to fill the CNTs in preference to water, i.e., a separation effect for ethanol. However, as the CNT diameter increases, this ethanol separation effect significantly decreases owing to a decrease in the strength of the van der Waals interactions. In contrast, under an electric field, the energy of the electrostatic interactions within the water molecule structure induces water molecules to fill the CNTs in preference to ethanol, i.e., a separation effect for water. More importantly, the electrostatic interactions are dependent on the water molecule structure in the CNT instead of the CNT diameter. As a result, the separation effect observed under an electric field does not diminish over a wide CNT diameter range. Moreover, CNTs and electric fields can be used to separate methanol-ethanol solutions too. Under an electric field, methanol preferentially fills CNTs over ethanol in a wide CNT diameter range.
Collapse
Affiliation(s)
- Winarto
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. and Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, Jl. MT Haryono 167, Malang 65145, Indonesia
| | - Daisuke Takaiwa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
40
|
Zhang Q, Kang J, Xie Z, Diao X, Liu Z, Zhai J. Highly Efficient Gating of Electrically Actuated Nanochannels for Pulsatile Drug Delivery Stemming from a Reversible Wettability Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29215141 DOI: 10.1002/adma.201703323] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/16/2017] [Indexed: 05/16/2023]
Abstract
Many ion channels in the cell membrane are believed to function as gates that control the water and ion flow through the transitions between an inherent hydrophobic state and a stimuli-induced hydration state. The construction of nanofluidic gating systems with high gating efficiency and reversibility is inspired by this hydrophobic gating behavior. A kind of electrically actuated nanochannel is developed by integrating a polypyrrole (PPy) micro/nanoporous film doped with perfluorooctanesulfonate ions onto an anodic aluminum oxide nanoporous membrane. Stemming from the reversible wettability switch of the doped PPy film in response to the applied redox potentials, the nanochannels exhibit highly efficient and reversible gating behaviors. The optimized gating ratio is over 105 , which is an ultrahigh value when compared with that of the existing reversibly gated nanochannels with comparable pore diameters. Furthermore, the gating behavior of the electrically actuated nanochannels shows excellent repeatability and stability. Based on this highly efficient and reversible gating function, the electrically actuated nanochannels are further applied for drug delivery, which achieves the pulsatile release of two water-soluble drug models. The electrically actuated nanochannels may find potential applications in accurate and on-demand drug therapy.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianxin Kang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhiqiang Xie
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xungang Diao
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
41
|
Nikzad M, Azimian AR, Rezaei M, Nikzad S. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study. J Chem Phys 2017; 147:204701. [DOI: 10.1063/1.4985875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mohammadreza Nikzad
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, 84181-48499 Khomeinishahr/Isfahan, Iran
| | - Ahmad Reza Azimian
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, 84181-48499 Khomeinishahr/Isfahan, Iran
| | - Majid Rezaei
- Mechanical Engineering Department, Isfahan University of Technology, 84156-8311 Isfahan, Iran
| | - Safoora Nikzad
- Department of Medical Physics, Hamadan University of Medical Sciences, 65176-19654 Hamadan, Iran
| |
Collapse
|
42
|
Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context. Proc Natl Acad Sci U S A 2017; 114:13345-13350. [PMID: 29158409 DOI: 10.1073/pnas.1700092114] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrophobic interactions drive many important biomolecular self-assembly phenomena. However, characterizing hydrophobicity at the nanoscale has remained a challenge due to its nontrivial dependence on the chemistry and topography of biomolecular surfaces. Here we use molecular simulations coupled with enhanced sampling methods to systematically displace water molecules from the hydration shells of nanostructured solutes and calculate the free energetics of interfacial water density fluctuations, which quantify the extent of solute-water adhesion, and therefore solute hydrophobicity. In particular, we characterize the hydrophobicity of curved graphene sheets, self-assembled monolayers (SAMs) with chemical patterns, and mutants of the protein hydrophobin-II. We find that water density fluctuations are enhanced near concave nonpolar surfaces compared with those near flat or convex ones, suggesting that concave surfaces are more hydrophobic. We also find that patterned SAMs and protein mutants, having the same number of nonpolar and polar sites but different geometrical arrangements, can display significantly different strengths of adhesion with water. Specifically, hydroxyl groups reduce the hydrophobicity of methyl-terminated SAMs most effectively not when they are clustered together but when they are separated by one methyl group. Hydrophobin-II mutants show that a charged amino acid reduces the hydrophobicity of a large nonpolar patch when placed at its center, rather than at its edge. Our results highlight the power of water density fluctuations-based measures to characterize the hydrophobicity of nanoscale surfaces and caution against the use of additive approximations, such as the commonly used surface area models or hydropathy scales for characterizing biomolecular hydrophobicity and the associated driving forces of assembly.
Collapse
|
43
|
Akıner T, Mason JK, Ertürk H. Nanolayering around and thermal resistivity of the water-hexagonal boron nitride interface. J Chem Phys 2017; 147:044709. [PMID: 28764352 DOI: 10.1063/1.4985913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The water-hexagonal boron nitride interface was investigated by molecular dynamics simulations. Since the properties of the interface change significantly with the interatomic potential, a new method for calibrating the solid-liquid interatomic potential is proposed based on the experimental energy of the interface. The result is markedly different from that given by Lorentz-Berthelot mixing for the Lennard-Jones parameters commonly used in the literature. Specifically, the extent of nanolayering and interfacial thermal resistivity is measured for several interatomic potentials, and the one calibrated by the proposed method gives the least thermal resistivity.
Collapse
Affiliation(s)
- Tolga Akıner
- Department of Mechanical Engineering, Boğaziçi University, Istanbul, 43210 Turkey
| | - Jeremy K Mason
- Department of Mathematics, Ohio State University, Columbus, Ohio 34342, USA
| | - Hakan Ertürk
- Department of Mechanical Engineering, Boğaziçi University, Istanbul, 43210 Turkey
| |
Collapse
|
44
|
Evans R, Stewart MC, Wilding NB. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory. J Chem Phys 2017; 147:044701. [DOI: 10.1063/1.4993515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Bristol BS8 1TL, United Kingdom
| | - Maria C. Stewart
- H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Bristol BS8 1TL, United Kingdom
| | - Nigel B. Wilding
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
45
|
Water Molecules in a Carbon Nanotube under an Applied Electric Field at Various Temperatures and Pressures. WATER 2017. [DOI: 10.3390/w9070473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Sheng J, Zhu Q, Zeng X, Yang Z, Zhang X. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11009-11015. [PMID: 28264153 DOI: 10.1021/acsami.7b00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.
Collapse
Affiliation(s)
| | | | | | - Zhaohui Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University , Tianjin 300387, China
| | | |
Collapse
|
47
|
Trick JL, Song C, Wallace EJ, Sansom MSP. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier. ACS NANO 2017; 11:1840-1847. [PMID: 28141923 DOI: 10.1021/acsnano.6b07865] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It is desirable that nanopores that are components of biosensors are gated, i.e., capable of controllable switching between closed (impermeable) and open (permeable) states. A central hydrophobic barrier within a nanopore may act as a voltage-dependent gate via electrowetting, i.e., changes in nanopore surface wettability by application of an electric field. We use "computational electrophysiology" simulations to demonstrate and characterize electrowetting of a biomimetic nanopore containing a hydrophobic gate. We show that a hydrophobic gate in a model β-barrel nanopore can be functionally opened by electrowetting at voltages that do not electroporate lipid bilayers. During the process of electrowetting, voltage-induced alignment of water dipoles occurs within the hydrophobic gate region of the nanopore, with water entry preceding permeation of ions through the opened nanopore. When the ionic imbalance that generates a transbilayer potential is dissipated, water is expelled from the hydrophobic gate and the nanopore recloses. The open nanopore formed by electrowetting of a "featureless" β-barrel is anionic selective due to the transmembrane dipole potential resulting from binding of Na+ ions to the headgroup regions of the surrounding lipid bilayer. Thus, hydrophobic barriers can provide voltage-dependent gates in designed biomimetic nanopores. This extends our understanding of hydrophobic gating in synthetic and biological nanopores, providing a framework for the design of functional nanopores with tailored gating functionality.
Collapse
Affiliation(s)
- Jemma L Trick
- Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Chen Song
- Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - E Jayne Wallace
- Oxford Nanopore Technologies Ltd., Edmund Cartwright House , 4 Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| |
Collapse
|
48
|
|
49
|
Trick JL, Chelvaniththilan S, Klesse G, Aryal P, Wallace EJ, Tucker SJ, Sansom MSP. Functional Annotation of Ion Channel Structures by Molecular Simulation. Structure 2016; 24:2207-2216. [PMID: 27866853 PMCID: PMC5145807 DOI: 10.1016/j.str.2016.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/12/2016] [Accepted: 10/12/2016] [Indexed: 01/30/2023]
Abstract
Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT3R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT3R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor.
Collapse
Affiliation(s)
- Jemma L Trick
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sivapalan Chelvaniththilan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Gianni Klesse
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Prafulla Aryal
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Lee JA, Kang IS. Geometric effects on electrocapillarity in nanochannels with an overlapped electric double layer. Phys Rev E 2016; 94:043105. [PMID: 27841466 DOI: 10.1103/physreve.94.043105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/07/2022]
Abstract
Unsteady filling of electrolyte solution inside a nanochannel by the electrocapillarity effect is studied. The filling rate is predicted as a function of the bulk concentration of the electrolyte, the surface potential (or surface charge density), and the cross sectional shape of the channel. For a nanochannel, the average outward normal stress exerted on the cross section of a channel (P[over ¯]_{zz}^{}) can be regarded as a measure of electrocapillarity and it is the driving force of the flow. This electrocapillarity measure is first analyzed by using the solution of the Poisson-Boltzmann equation. From the analysis, it is found that the results for many different cross sectional shapes can be unified with good accuracy if the hydraulic radius is adopted as the characteristic length scale of the problem. Especially in the case of constant surface potential, for both limits of κh→0 and κh→∞, it can be shown theoretically that the electrocapillarity is independent of the cross sectional shape if the hydraulic radius is the same. In order to analyze the geometric effects more systematically, we consider the regular N-polygons with the same hydraulic radius and the rectangles of different aspect ratios. Washburn's approach is then adopted to predict the filling rate of electrolyte solution inside a nanochannel. It is found that the average filling velocity decreases as N increases in the case of regular N-polygons with the same hydraulic radius. This is because the regular N-polygons of the same hydraulic radius share the same inscribing circle.
Collapse
Affiliation(s)
- Jung A Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| | - In Seok Kang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| |
Collapse
|