1
|
Patel KP, Chen WT, Delbecq L, Bruner SD. Alternative Linkage Chemistries in the Chemoenzymatic Synthesis of Microviridin-Based Cyclic Peptides. Org Lett 2024; 26:1138-1142. [PMID: 38306609 DOI: 10.1021/acs.orglett.3c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Engineering biosynthetic pathways to ribosomally synthesized and post-translationally modified peptides (RiPPs) offers several advantages for both in vivo and in vitro applications. Here we probe the ability of peptide cyclases to generate trimacrocycle microviridin analogs with non-native cross-links. The results demonstrate that diverse chemistries are tolerated by macrocyclases in the ATP-grasp family and allow for the construction of unique cyclic peptide architectures that retain protease inhibition activity. In addition, cocomplex structures of analogs bound to a model protease were determined, illustrating how changes in functional groups maintain peptide conformation and target binding.
Collapse
Affiliation(s)
- Krishna P Patel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Wen-Ting Chen
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Léa Delbecq
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Marschall E, Cass RW, Prasad KM, Swarbrick JD, McKay AI, Payne JAE, Cryle MJ, Tailhades J. Synthetic ramoplanin analogues are accessible by effective incorporation of arylglycines in solid-phase peptide synthesis. Chem Sci 2023; 15:195-203. [PMID: 38131086 PMCID: PMC10732013 DOI: 10.1039/d3sc01944f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/09/2023] [Indexed: 12/23/2023] Open
Abstract
The threat of antimicrobial resistance to antibiotics requires a continual effort to develop alternative treatments. Arylglycines (or phenylglycines) are one of the signature amino acids found in many natural peptide antibiotics, but their propensity for epimerization in solid-phase peptide synthesis (SPPS) has prevented their use in long peptide sequences. We have now identified an optimized protocol that allows the synthesis of challenging non-ribosomal peptides including precursors of the glycopeptide antibiotics and an analogue of feglymycin (1 analogue, 20%). We have exploited this protocol to synthesize analogues of the peptide antibiotic ramoplanin using native chemical ligation/desulfurization (1 analogue, 6.5%) and head-to-tail macrocyclization in excellent yield (6 analogues, 3-9%), with these compounds extensively characterized by NMR (U-shaped structure) and antimicrobial activity assays (two clinical isolates). This method significantly reduces synthesis time (6-9 days) when compared with total syntheses (2-3 months) and enables drug discovery programs to include arylglycines in structure-activity relationship studies and drug development.
Collapse
Affiliation(s)
- Edward Marschall
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Clayton VIC 3800 Australia
| | - Rachel W Cass
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Clayton VIC 3800 Australia
| | - Komal M Prasad
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Clayton VIC 3800 Australia
| | - James D Swarbrick
- Department of Microbiology, Monash University Clayton VIC 3800 Australia
| | - Alasdair I McKay
- Department of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Jennifer A E Payne
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Clayton VIC 3800 Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Clayton VIC 3800 Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Clayton VIC 3800 Australia
| |
Collapse
|
3
|
Comprehensive degradation study of lipoglycodepsipeptide antibiotic ramoplanin by liquid chromatography and mass spectrometry. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Al Ayed K, Ballantine RD, Hoekstra M, Bann SJ, Wesseling CMJ, Bakker AT, Zhong Z, Li YX, Brüchle NC, van der Stelt M, Cochrane SA, Martin NI. Synthetic Studies with the Brevicidine and Laterocidine Lipopeptide Antibiotics Including Analogues with Enhanced Properties and in vivo Efficacy. Chem Sci 2022; 13:3563-3570. [PMID: 35432860 PMCID: PMC8943889 DOI: 10.1039/d2sc00143h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Brevicidine and laterocidine are two recently discovered lipopeptide antibiotics with promising antibacterial activity. Possessing a macrocyclic core, multiple positive charges, and a lipidated N-terminus, these lipopeptides exhibit potent and selective activity against Gram-negative pathogens, including polymyxin-resistant isolates. Given the low amounts of brevicidine and laterocidine accessible by fermentation of the producing microorganisms, synthetic routes to these lipopeptides present an attractive alternative. We here report the convenient solid-phase syntheses of both brevicidine and laterocidine and confirm their potent anti-Gram-negative activities. The synthetic routes developed also provide convenient access to novel structural analogues of both brevicidine and laterocidine that display improved hydrolytic stability while maintaining potent antibacterial activity in both in vitro assays and in vivo infection models. Convenient solid-phase approaches are described for the synthesis of brevicidine and laterocidine. Also reported are novel analogues including a laterocidine variant with enhanced hydrolytic stability and potent in vivo antibacterial activity.![]()
Collapse
Affiliation(s)
- Karol Al Ayed
- Biological Chemistry Group, Institute of Biology, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Ross D Ballantine
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road BT9 5AG Belfast UK
| | - Michael Hoekstra
- Biological Chemistry Group, Institute of Biology, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Samantha J Bann
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road BT9 5AG Belfast UK
| | - Charlotte M J Wesseling
- Biological Chemistry Group, Institute of Biology, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Alexander T Bakker
- Molecular Physiology Group, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Zheng Zhong
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Nora C Brüchle
- Biological Chemistry Group, Institute of Biology, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Mario van der Stelt
- Molecular Physiology Group, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road BT9 5AG Belfast UK
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| |
Collapse
|
5
|
|
6
|
Gene editing enables rapid engineering of complex antibiotic assembly lines. Nat Commun 2021; 12:6872. [PMID: 34824225 PMCID: PMC8616955 DOI: 10.1038/s41467-021-27139-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022] Open
Abstract
Re-engineering biosynthetic assembly lines, including nonribosomal peptide synthetases (NRPS) and related megasynthase enzymes, is a powerful route to new antibiotics and other bioactive natural products that are too complex for chemical synthesis. However, engineering megasynthases is very challenging using current methods. Here, we describe how CRISPR-Cas9 gene editing can be exploited to rapidly engineer one of the most complex megasynthase assembly lines in nature, the 2.0 MDa NRPS enzymes that deliver the lipopeptide antibiotic enduracidin. Gene editing was used to exchange subdomains within the NRPS, altering substrate selectivity, leading to ten new lipopeptide variants in good yields. In contrast, attempts to engineer the same NRPS using a conventional homologous recombination-mediated gene knockout and complementation approach resulted in only traces of new enduracidin variants. In addition to exchanging subdomains within the enduracidin NRPS, subdomains from a range of NRPS enzymes of diverse bacterial origins were also successfully utilized.
Collapse
|
7
|
Walker AS, Clardy J. A Machine Learning Bioinformatics Method to Predict Biological Activity from Biosynthetic Gene Clusters. J Chem Inf Model 2021; 61:2560-2571. [PMID: 34042443 PMCID: PMC8243324 DOI: 10.1021/acs.jcim.0c01304] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research in natural products, the genetically encoded small molecules produced by organisms in an idiosyncratic fashion, deals with molecular structure, biosynthesis, and biological activity. Bioinformatics analyses of microbial genomes can successfully reveal the genetic instructions, biosynthetic gene clusters, that produce many natural products. Genes to molecule predictions made on biosynthetic gene clusters have revealed many important new structures. There is no comparable method for genes to biological activity predictions. To address this missing pathway, we developed a machine learning bioinformatics method for predicting a natural product's antibiotic activity directly from the sequence of its biosynthetic gene cluster. We trained commonly used machine learning classifiers to predict antibacterial or antifungal activity based on features of known natural product biosynthetic gene clusters. We have identified classifiers that can attain accuracies as high as 80% and that have enabled the identification of biosynthetic enzymes and their corresponding molecular features that are associated with antibiotic activity.
Collapse
Affiliation(s)
- Allison S Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
9
|
Wu ZC, Boger DL. The quest for supernatural products: the impact of total synthesis in complex natural products medicinal chemistry. Nat Prod Rep 2020; 37:1511-1531. [PMID: 33169762 PMCID: PMC7678878 DOI: 10.1039/d0np00060d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: 2000 up to 2020This review presents select recent advances in the medicinal chemistry of complex natural products that are prepared by total synthesis. The underlying studies highlight enabling divergent synthetic strategies and methods that permit the systematic medicinal chemistry studies of key analogues bearing deep-seated structural changes not readily accessible by semisynthetic or biosynthetic means. Select and recent examples are detailed where the key structural changes are designed to improve defined properties or to overcome an intrinsic limitation of the natural product itself. In the examples presented, the synthetic efforts provided supernatural products, a term first introduced by our colleague Ryan Shenvi (Synlett, 2016, 27, 1145-1164), with properties superseding the parent natural product. The design principles and approaches for creating the supernatural products are highlighted with an emphasis on the properties addressed that include those that improve activity or potency, increase selectivity, enhance durability, broaden the spectrum of activity, improve chemical or metabolic stability, overcome limiting physical properties, add mechanisms of action, enhance PK properties, overcome drug resistance, and/or improve in vivo efficacy. Some such improvements may be regarded by some as iterative enhancements whereas others, we believe, truly live up to their characterization as supernatural products. Most such efforts are also accompanied by advances in synthetic organic chemistry, inspiring the development of new synthetic methodology and providing supernatural products with improved synthetic accessibility.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
10
|
Morgan KT, Zheng J, McCafferty DG. Discovery of Six Ramoplanin Family Gene Clusters and the Lipoglycodepsipeptide Chersinamycin*. Chembiochem 2020; 22:176-185. [PMID: 32805078 DOI: 10.1002/cbic.202000555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/10/2022]
Abstract
Ramoplanins and enduracidins are peptidoglycan lipid intermediate II-binding lipodepsipeptides with broad-spectrum activity against methicillin- and vancomycin-resistant Gram-positive pathogens. Targeted genome mining using probes from conserved sequences within the ramoplanin/enduracidin biosynthetic gene clusters (BGCs) was used to identify six microorganisms with BGCs predicted to produce unique lipodepsipeptide congeners of ramoplanin and enduracidin. Fermentation of Micromonospora chersina yielded a novel lipoglycodepsipeptide, called chersinamycin, which exhibited good antibiotic activity against Gram-positive bacteria (1-2 μg/mL) similar to the ramoplanins and enduracidins. The covalent structure of chersinamycin was determined by NMR spectroscopy and tandem mass spectrometry in conjunction with chemical degradation studies. These six new BGCs and isolation of a new antimicrobial peptide provide much-needed tools to investigate the fundamental aspects of lipodepsipeptide biosynthesis and to facilitate efforts to produce novel antibiotics capable of combating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Kelsey T Morgan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Jeffrey Zheng
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
11
|
Garona J, Pifano M, Ripoll G, Alonso DF. Development and therapeutic potential of vasopressin synthetic analog [V 4Q 5]dDAVP as a novel anticancer agent. VITAMINS AND HORMONES 2020; 113:259-289. [PMID: 32138951 DOI: 10.1016/bs.vh.2019.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since its discovery, arginine vasopressin (AVP) was subjected to several modifications with the aim of obtaining novel derivatives with increased potency and selectivity for biomedical use. Desmopressin (dDAVP) is a first generation synthetic analog of AVP with hemostatic and antimetastatic activity. dDAVP acts as a selective agonist of the arginine vasopressin type 2 receptor (AVPR2) present in microvascular endothelium and cancer cells. Considering its selective effects on AVPR2-expressing malignant and vascular tissue, and interesting antitumor profile, dDAVP was used as a lead compound for the development of novel peptide analogs with enhanced anticancer efficacy. After conducting different structure-activity relationship studies to determine key aminoacidic positions for its antitumor activity against AVPR2-expressing malignant cells, dDAVP was rationally modified and a wide panel of synthetic analogs with different sequence and structural modifications was assessed. As a result of this structure-based drug derivatization novel AVP analog [V4Q5]dDAVP (1-deamino-4-valine-5-glutamine-8-d-arginine vasopressin) was selected as the most active candidate and further developed. [V4Q5]dDAVP was evaluated in highly aggressive and metastatic cancer preclinical models deploying enhanced cytostatic, antimetastatic and angiostatic effects in comparison to parental peptide dDAVP. In addition, novel compound demonstrated good tolerability as evaluated in several toxicological studies, and cooperative therapeutic effects after combination with standard-of-care chemotherapy. In summary, due to its ability to inhibit growth and tumor-associated angiogenesis, as well as impairing progression of metastatic disease, AVP analogs such as novel [V4Q5]dDAVP are promising compounds for further development as coadjuvant agents for the management of advance or recurrent cancers.
Collapse
Affiliation(s)
- Juan Garona
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.
| | - Marina Pifano
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Giselle Ripoll
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|
12
|
Yang H, Pishenko AV, Li X, Nowick JS. Design, Synthesis, and Study of Lactam and Ring-Expanded Analogues of Teixobactin. J Org Chem 2019; 85:1331-1339. [PMID: 31746604 DOI: 10.1021/acs.joc.9b02631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes the chemical synthesis, X-ray crystallographic structure, and antibiotic activity assay of lactam analogues of teixobactin and explores ring-expanded analogues of teixobactin with β3-homo amino acids. Lactam analogues of teixobactin containing all four stereoisomers of aza-threonine at position 8 were synthesized on a solid support from commercially available stereoisomeric threonine derivatives. The threonine stereoisomers are converted to the diastereomeric aza-threonines by mesylation, azide displacement, and reduction during the synthesis. d-Aza-Thr8,Arg10-teixobactin exhibits 2-8-fold greater antibiotic activity than the corresponding macrolactone Arg10-teixobactin. Azateixobactin analogues containing other stereoisomers of aza-threonine are inactive. A dramatic 16-128-fold increase in the activity of teixobactin and teixobactin analogues is observed with the inclusion of 0.002% of the mild detergent polysorbate 80 in the MIC assay. The X-ray crystallographic structure of N-Me-d-Gln4,d-aza-Thr8,Arg10-teixobactin reveals an amphipathic hydrogen-bonded antiparallel β-sheet dimer that binds chloride anions. In the binding site, the macrolactam amide NH groups of residues 8, 10, and 11, as well as the extra amide NH group of the lactam ring, hydrogen bond to the chloride anion. The teixobactin pharmacophore tolerates ring expansion of the 13-membered ring to 14-,15-, and 16-membered rings containing β3-homo amino acids with retention of partial or full antibiotic activity.
Collapse
Affiliation(s)
- Hyunjun Yang
- Department of Chemistry and Department of Pharmaceutical Sciences , University of California , Irvine , California 92697-2025 , United States
| | - Arthur V Pishenko
- Department of Chemistry and Department of Pharmaceutical Sciences , University of California , Irvine , California 92697-2025 , United States
| | - Xingyue Li
- Department of Chemistry and Department of Pharmaceutical Sciences , University of California , Irvine , California 92697-2025 , United States
| | - James S Nowick
- Department of Chemistry and Department of Pharmaceutical Sciences , University of California , Irvine , California 92697-2025 , United States
| |
Collapse
|
13
|
Wesche F, Adihou H, Kaiser A, Wurglics M, Schubert-Zsilavecz M, Kaiser M, Bode HB. Combined Approach of Backbone Amide Linking and On-Resin N-Methylation for the Synthesis of Bioactive and Metabolically Stable Peptides. J Med Chem 2018; 61:3930-3938. [DOI: 10.1021/acs.jmedchem.7b01809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Frank Wesche
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Hélène Adihou
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
- University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Search of vasopressin analogs with antiproliferative activity on small-cell lung cancer: drug design based on two different approaches. Future Med Chem 2018; 10:879-894. [PMID: 29589487 DOI: 10.4155/fmc-2017-0178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Development of compounds with therapeutic application requires the interaction of different disciplines. Several tumors express vasopressin (AVP; arginine vasopressin) receptors with contrasting effects depending on receptor subtype. Desmopressin (dDAVP) is an AVP-selective analog with antiproliferative properties. In this work, an evolutionary approach and a rational strategy were applied in order to design novel AVP analogs. RESULTS We designed two novel analogs; dDInotocin (dDINT, insect analog), and [V4Q5]dDAVP, and demonstrated the importance of the dDAVP conformational loop for its antiproliferative activity. [V4Q5] dDAVP showed major cytostatic effect on lung cancer cells than dDAVP and its cytostatic effect was abolished by V2R blockade. CONCLUSION Combination of these strategies could provide the basis for future studies for the development of improved compounds with potential therapeutic applications.
Collapse
|
15
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Okano A, Isley NA, Boger DL. Total Syntheses of Vancomycin-Related Glycopeptide Antibiotics and Key Analogues. Chem Rev 2017; 117:11952-11993. [PMID: 28437097 DOI: 10.1021/acs.chemrev.6b00820] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A review of efforts that have provided total syntheses of vancomycin and related glycopeptide antibiotics, their agylcons, and key analogues is provided. It is a tribute to developments in organic chemistry and the field of organic synthesis that not only can molecules of this complexity be prepared today by total synthesis but such efforts can be extended to the preparation of previously inaccessible key analogues that contain deep-seated structural changes. With the increasing prevalence of acquired bacterial resistance to existing classes of antibiotics and with the emergence of vancomycin-resistant pathogens (VRSA and VRE), the studies pave the way for the examination of synthetic analogues rationally designed to not only overcome vancomycin resistance but provide the foundation for the development of even more powerful and durable antibiotics.
Collapse
Affiliation(s)
- Akinori Okano
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas A Isley
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
18
|
Goodreid JD, Janetzko J, Santa Maria JP, Wong KS, Leung E, Eger BT, Bryson S, Pai EF, Gray-Owen SD, Walker S, Houry WA, Batey RA. Development and Characterization of Potent Cyclic Acyldepsipeptide Analogues with Increased Antimicrobial Activity. J Med Chem 2016; 59:624-46. [PMID: 26818454 DOI: 10.1021/acs.jmedchem.5b01451] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The problem of antibiotic resistance has prompted the search for new antibiotics with novel mechanisms of action. Analogues of the A54556 cyclic acyldepsipeptides (ADEPs) represent an attractive class of antimicrobial agents that act through dysregulation of caseinolytic protease (ClpP). Previous studies have shown that ADEPs are active against Gram-positive bacteria (e.g., MRSA, VRE, PRSP (penicillin-resistant Streptococcus pneumoniae)); however, there are currently few studies examining Gram-negative bacteria. In this study, the synthesis and biological evaluation of 14 novel ADEPs against a variety of pathogenic Gram-negative and Gram-positive organisms is outlined. Optimization of the macrocyclic core residues and N-acyl side chain culminated in the development of 26, which shows potent activity against the Gram-negative species Neisseria meningitidis and Neisseria gonorrheae and improved activity against the Gram-positive organisms Staphylococcus aureus and Enterococcus faecalis in comparison with known analogues. In addition, the co-crystal structure of an ADEP-ClpP complex derived from N. meningitidis was solved.
Collapse
Affiliation(s)
- Jordan D Goodreid
- Davenport Research Laboratories, Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John Janetzko
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - John P Santa Maria
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Keith S Wong
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Elisa Leung
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Steve Bryson
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- The Campbell Family Institute for Cancer Research, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- The Campbell Family Institute for Cancer Research, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Walid A Houry
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Robert A Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
19
|
Abstract
In this article strategies for the design and synthesis of natural product analogues are summarized and illustrated with some selected examples. Proven strategies include diverted total synthesis (DTS), function-oriented synthesis (FOS), biology-oriented synthesis (BIOS), complexity to diversity (CtD), hybrid molecules, and biosynthesis inspired synthesis. The latter includes mutasynthesis, the synthesis of natural products encoded by silent genes, and propionate scanning. Most of the examples from our group fall in the quite general concept of DTS. Thus, in case an efficient strategy to a natural product is at hand, modifications are possible at almost any stage of a synthesis. However, even for compounds of moderate complexity, organic synthesis remains a bottle neck. Unless some method for predicting the biological activity of a designed molecule becomes available, the design and synthesis of natural product analogues will remain what it is now, namely it will largely rely on trial and error.
Collapse
Affiliation(s)
- Martin E Maier
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep 2015; 32:1207-35. [DOI: 10.1039/c5np00025d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylglycine-type amino acids occur in a wide variety of peptide natural products. Herein structures and properties of these peptides as well as the biosynthetic origin and incorporation of phenylglycines are discussed.
Collapse
Affiliation(s)
| | - Clara Brieke
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | - Max J. Cryle
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | | |
Collapse
|
21
|
Cheng M, Huang JX, Ramu S, Butler MS, Cooper MA. Ramoplanin at bactericidal concentrations induces bacterial membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58:6819-27. [PMID: 25182650 PMCID: PMC4249368 DOI: 10.1128/aac.00061-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Ramoplanin is an actinomycetes-derived antibiotic with broad-spectrum activity against Gram-positive bacteria that has been evaluated in clinical trials for the treatment of gastrointestinal vancomycin-resistant enterococci (VRE) and Clostridium difficile infections. Recent studies have proposed that ramoplanin binds to bacterial membranes as a C2 symmetrical dimer that can sequester Lipid II, which causes inhibition of cell wall peptidoglycan biosynthesis and cell death. In this study, ramoplanin was shown to bind to anionic and zwitterionic membrane mimetics with a higher affinity for anionic membranes and to induce membrane depolarization of methicillin-susceptible Staphylococcus aureus (MSSA) ATCC 25923 at concentrations at or above the minimal bactericidal concentration (MBC). The ultrastructural effects of ramoplanin on S. aureus were also examined by transmission electron microscopy (TEM), and this showed dramatic changes to bacterial cell morphology. The correlation observed between membrane depolarization and bacterial cell viability suggests that this mechanism may contribute to the bactericidal activity of ramoplanin.
Collapse
Affiliation(s)
- Mu Cheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Soumya Ramu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 2014; 53:8840-69. [PMID: 24990531 PMCID: PMC4536949 DOI: 10.1002/anie.201310843] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 01/13/2023]
Abstract
The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.
Collapse
Affiliation(s)
- Peter M. Wright
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Ian B. Seiple
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| |
Collapse
|
23
|
Wright PM, Seiple IB, Myers AG. Zur Rolle der chemischen Synthese in der Entwicklung antibakterieller Wirkstoffe. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310843] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Pastrian MB, Guzmán F, Garona J, Pifano M, Ripoll GV, Cascone O, Ciccia GN, Albericio F, Gómez DE, Alonso DF, Iannucci NB. Structure-activity relationship of 1-desamino-8-D-arginine vasopressin as an antiproliferative agent on human vasopressin V2 receptor-expressing cancer cells. Mol Med Rep 2014; 9:2568-72. [PMID: 24737067 DOI: 10.3892/mmr.2014.2140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
Abstract
The synthetic nonapeptide 1‑desamino‑8‑D‑arginine vasopressin (dDAVP) can reduce tumor cell growth through agonist action on the vasopressin V2 receptor. A structure‑antiproliferative activity relationship analysis of dDAVP was performed using the alanine scanning technique on the aggressive MDA‑MB‑231 human breast carcinoma cell line. The results from this analysis demonstrated that the amino acids located at the loop of dDAVP are important for the antiproliferative activity of dDAVP, highlighting the key role of the N‑terminal region of the peptide in the interaction with the tumor cell surface receptor. The findings from this study present novel strategies for designing improved compounds with enhanced stability for cancer therapy.
Collapse
Affiliation(s)
- María B Pastrian
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Fanny Guzmán
- Biotechnology Nucleus, Pontifical Catholic University of Valparaiso, Valparaiso, Chile
| | - Juan Garona
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | - Marina Pifano
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | - Giselle V Ripoll
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | - Osvaldo Cascone
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Graciela N Ciccia
- Therapeutic Peptides Research and Development Laboratory, Chemo‑Romikin, Buenos Aires, Argentina
| | - Fernando Albericio
- Institute for Research in Biomedicine, Barcelona Science Park, Barcelona, Spain
| | - Daniel E Gómez
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | - Nancy B Iannucci
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Pharmacological properties of NAI-603, a well-tolerated semisynthetic derivative of ramoplanin. Antimicrob Agents Chemother 2014; 58:1922-9. [PMID: 24419352 DOI: 10.1128/aac.01620-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAI-603 is a ramoplanin derivative designed to overcome the tolerability issues of the parent drug as a systemic agent. NAI-603 is highly active against aerobic and anaerobic Gram-positive bacteria, with MICs ranging from 0.008 to 8 μg/ml. MICs were not significantly affected by pH (range, 6 to 8), by inoculum up to 10(8) CFU/ml, or by addition of 50% human serum. Against staphylococci and enterococci, NAI-603 was rapidly bactericidal, with minimum bactericidal concentration (MBC)/MIC ratios never exceeding 4. The frequency of spontaneous resistance was low at 2× to 4× MIC (≤1×10(-6) to ≤1×10(-8)) and below the detection limit (about ≤1×10(-9)) at 8×MIC. Serial subcultures at 0.5×MIC yielded at most an 8-fold increase in MICs. In a systemic infection induced by methicillin-resistant Staphylococcus aureus (MRSA), the 50% effective dose (ED50) of intravenous (i.v.) NAI-603 was 0.4 mg/kg, lower than that of oral (p.o.) linezolid (1.4 mg/kg) and subcutaneous (s.c.) teicoplanin (1.4 mg/kg) or vancomycin (0.6 mg/kg). In neutropenic mice infected with vancomycin-resistant enterococci (VRE), the ED50s for NAI-603 were 1.1 to 1.6 mg/kg i.v., compared to 0.5 mg/kg i.v. of ramoplanin. The bactericidal activity was confirmed in vivo in the rat granuloma pouch model induced by MRSA, where NAI-603, at 40 mg/kg i.v., induced about a 2- to 3-log10-reduction in viable bacteria in the exudates, which persisted for more than 72 h. The pharmacokinetic (PK) profiles of NAI-603 and ramoplanin at 20 mg/kg show similar half-lives (3.27 and 3.80 h, respectively) with the maximum concentration (Cmax) markedly higher for NAI-603 (207 μg/ml versus 79 μg/ml). The favorable pharmacological profile of NAI-603, coupled with the absence of local tolerability issues, supports further investigation.
Collapse
|
26
|
Bionda N, Pitteloud JP, Cudic P. Cyclic lipodepsipeptides: a new class of antibacterial agents in the battle against resistant bacteria. Future Med Chem 2013; 5:1311-30. [PMID: 23859209 PMCID: PMC3845972 DOI: 10.4155/fmc.13.86] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to provide effective treatment options for infections caused by multidrug-resistant bacteria, innovative antibiotics are necessary, preferably with novel modes of action and/or belonging to novel classes of drugs. Naturally occurring cyclic lipodepsipeptides, which contain one or more ester bonds along with the amide bonds, have emerged as promising candidates for the development of new antibiotics. Some of these natural products are either already marketed or in advanced stages of clinical development. However, despite the progress in the development of new antibacterial agents, it is inevitable that resistant strains of bacteria will emerge in response to the widespread use of a particular antibiotic and limit its lifetime. Therefore, development of new antibiotics remains our most efficient way to counteract bacterial resistance.
Collapse
Affiliation(s)
- Nina Bionda
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Post St Lucie, FL 34987, USA
| | - Jean-Philippe Pitteloud
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Post St Lucie, FL 34987, USA
| | - Predrag Cudic
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Post St Lucie, FL 34987, USA
| |
Collapse
|
27
|
Production of ramoplanin analogues by genetic engineering of Actinoplanes sp. Biotechnol Lett 2013; 35:1685-92. [DOI: 10.1007/s10529-013-1261-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
28
|
Hänchen A, Rausch S, Landmann B, Toti L, Nusser A, Süssmuth RD. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity. Chembiochem 2013; 14:625-32. [PMID: 23447362 DOI: 10.1002/cbic.201300032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 01/08/2023]
Abstract
The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin.
Collapse
Affiliation(s)
- Anne Hänchen
- Technische Universität Berlin, Fakultät II, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Bionda N, Stawikowski M, Stawikowska R, Cudic M, López-Vallejo F, Treitl D, Medina-Franco J, Cudic P. Effects of cyclic lipodepsipeptide structural modulation on stability, antibacterial activity, and human cell toxicity. ChemMedChem 2012; 7:871-82. [PMID: 22392790 PMCID: PMC3500847 DOI: 10.1002/cmdc.201200016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/09/2012] [Indexed: 11/07/2022]
Abstract
Bacterial infections are becoming increasingly difficult to treat due to the development and spread of antibiotic resistance. Therefore, identifying novel antibacterial targets and new antibacterial agents capable of treating infections by drug-resistant bacteria is of vital importance. The structurally simple yet potent fusaricidin or LI-F class of natural products represents a particularly attractive source of candidates for the development of new antibacterial agents. We synthesized 18 fusaricidin/LI-F analogues and investigated the effects of structure modification on their conformation, serum stability, antibacterial activity, and toxicity toward human cells. Our findings show that substitution of an ester bond in depsipeptides with an amide bond may afford equally potent analogues with improved stability and greatly decreased cytotoxicity. The lower overall hydrophobicity/amphiphilicity of amide analogues in comparison with their parent depsipeptides, as indicated by HPLC retention times, may explain the dissociation of antibacterial activity and human cell cytotoxicity. These results indicate that amide analogues may have significant advantages over fusaricidin/LI-F natural products and their depsipeptide analogues as lead structures for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Nina Bionda
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
- Department of Chemistry and BIochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (USA)
| | - Maciej Stawikowski
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
| | - Roma Stawikowska
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
| | - Maré Cudic
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
| | - Fabian López-Vallejo
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
| | - Daniela Treitl
- Department of Chemistry and BIochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (USA)
| | - José Medina-Franco
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
| | - Predrag Cudic
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987 (USA), Fax: (+1) 772-345-3649
| |
Collapse
|
30
|
Xie J, Okano A, Pierce JG, James RC, Stamm S, Crane CM, Boger DL. Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc 2012; 134:1284-97. [PMID: 22188323 PMCID: PMC3262083 DOI: 10.1021/ja209937s] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The total synthesis of [Ψ[C(═S)NH]Tpg(4)]vancomycin aglycon (8) and its unique AgOAc-promoted single-step conversion to [Ψ[C(═NH)NH]Tpg(4)]vancomycin aglycon (7), conducted on a fully deprotected substrate, are disclosed. The synthetic approach not only permits access to 7, but it also allows late-stage access to related residue 4 derivatives, alternative access to [Ψ[CH(2)NH]Tpg(4)]vancomycin aglycon (6) from a common late-stage intermediate, and provides authentic residue 4 thioamide and amidine derivatives of the vancomycin aglycon that will facilitate ongoing efforts on their semisynthetic preparation. In addition to early stage residue 4 thioamide introduction, allowing differentiation of one of seven amide bonds central to the vancomycin core structure, the approach relied on two aromatic nucleophilic substitution reactions for formation of the 16-membered diaryl ethers in the CD/DE ring systems, an effective macrolactamization for closure of the 12-membered biaryl AB ring system, and the defined order of CD, AB, and DE ring closures. This order of ring closures follows their increasing ease of thermal atropisomer equilibration, permitting the recycling of any newly generated unnatural atropisomer under progressively milder thermal conditions where the atropoisomer stereochemistry already set is not impacted. Full details of the evaluation of 7 and 8 along with several related key synthetic compounds containing the core residue 4 amidine and thioamide modifications are reported. The binding affinity of compounds containing the residue 4 amidine with the model D-Ala-D-Ala ligand 2 was found to be only 2-3 times less than the vancomycin aglycon (5), and this binding affinity is maintained with the model d-Ala-d-Lac ligand 4, representing a nearly 600-fold increase in affinity relative to the vancomycin aglycon. Importantly, the amidines display effective dual, balanced binding affinity for both ligands (K(a)2/4 = 0.9-1.05), and they exhibit potent antimicrobial activity against VanA resistant bacteria ( E. faecalis , VanA VRE) at a level accurately reflecting these binding characteristics (MIC = 0.3-0.6 μg/mL), charting a rational approach forward in the development of antibiotics for the treatment of vancomycin-resistant bacterial infections. In sharp contrast, 8 and related residue 4 thioamides failed to bind either 2 or 4 to any appreciable extent, do not exhibit antimicrobial activity, and serve to further underscore the remarkable behavior of the residue 4 amidines.
Collapse
Affiliation(s)
- Jian Xie
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Akinori Okano
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Joshua G. Pierce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Robert C. James
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Simon Stamm
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Christine M. Crane
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
31
|
Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci U S A 2011; 108:6733-8. [PMID: 21368185 DOI: 10.1073/pnas.1015023108] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amphotericin B is the archetype for small molecules that form transmembrane ion channels. However, despite extensive study for more than five decades, even the most basic features of this channel structure and its contributions to the antifungal activities of this natural product have remained unclear. We herein report that a powerful series of functional group-deficient probes have revealed many key underpinnings of the ion channel and antifungal activities of amphotericin B. Specifically, in stark contrast to two leading models, polar interactions between mycosamine and carboxylic acid appendages on neighboring amphotericin B molecules are not required for ion channel formation, nor are these functional groups required for binding to phospholipid bilayers. Alternatively, consistent with a previously unconfirmed third hypothesis, the mycosamine sugar is strictly required for promoting a direct binding interaction between amphotericin B and ergosterol. The same is true for cholesterol. Synthetically deleting this appendage also completely abolishes ion channel and antifungal activities. All of these results are consistent with the conclusion that a mycosamine-mediated direct binding interaction between amphotericin B and ergosterol is required for both forming ion channels and killing yeast cells. The enhanced understanding of amphotericin B function derived from these synthesis-enabled studies has helped set the stage for the more effective harnessing of the remarkable ion channel-forming capacity of this prototypical small molecule natural product.
Collapse
|
32
|
Schmidt JW, Greenough A, Burns M, Luteran AE, McCafferty DG. Generation of ramoplanin-resistant Staphylococcus aureus. FEMS Microbiol Lett 2010; 310:104-11. [PMID: 20659164 DOI: 10.1111/j.1574-6968.2010.02051.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ramoplanin is a lipoglycodepsipeptide antimicrobial active against clinically important Gram-positive bacteria including methicillin-resistant Staphylococcus aureus. To proactively examine ramoplanin resistance, we subjected S. aureus NCTC 8325-4 to serial passage in the presence of increasing concentrations of ramoplanin, generating the markedly resistant strain RRSA16. Susceptibility testing of RRSA16 revealed the unanticipated acquisition of cross-resistance to vancomycin and nisin. RRSA16 displayed phenotypes, including a thickened cell wall and reduced susceptibility to Triton X-100-induced autolysis, which are associated with vancomycin intermediate-resistant S. aureus strains. Passage of RRSA16 for 18 days in a drug-free medium yielded strain R16-18d with restored antibiotic susceptibility. The RRSA16 isolate may be used to identify the genetic and biochemical basis for ramoplanin resistance and to further our understanding of the evolution of antibiotic cross-resistance mechanisms in S. aureus.
Collapse
Affiliation(s)
- John W Schmidt
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | | | | | | |
Collapse
|
33
|
González R, Albericio F, Cascone O, Iannucci NB. Improved antimicrobial activity of h-lysozyme (107-115) by rational Ala substitution. J Pept Sci 2010; 16:424-9. [DOI: 10.1002/psc.1258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo) 2010; 63:423-30. [PMID: 20551985 DOI: 10.1038/ja.2010.62] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
New antibiotics are necessary to treat microbial pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. We offer an overview of the pipeline for new antibiotics at different stages, from compounds in clinical development to newly discovered chemical classes. Consistent with historical data, the majority of antibiotics under clinical development are natural products or derivatives thereof. However, many of them also represent improved variants of marketed compounds, with the consequent risk of being only partially effective against the prevailing resistance mechanisms. In the discovery arena, instead, compounds with promising activities have been obtained from microbial sources and from chemical modification of antibiotic classes other than those in clinical use. Furthermore, new natural product scaffolds have also been discovered by ingenious screening programs. After providing selected examples, we offer our view on the future of antibiotic discovery.
Collapse
|
35
|
Fang X, Nam J, Shin D, Rew Y, Boger DL, Walker S. Functional and biochemical analysis of a key series of ramoplanin analogues. Bioorg Med Chem Lett 2009; 19:6189-91. [PMID: 19783144 DOI: 10.1016/j.bmcl.2009.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 11/20/2022]
Abstract
Ramoplanin is a potent lipoglycodepsipeptide antibiotic that is active against a wide range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). It acts as an inhibitor of peptidoglycan (PG) biosynthesis that disrupts glycan chain polymerization by binding and sequestering Lipid II, a PG precursor. Herein, we report the functional antimicrobial activity (MIC, S. aureus) and fundamental biochemical assessments against a peptidoglycan glycosyltransferase (Escherichia coli PBP1b) of a set of key alanine scan analogues of ramoplanin that provide insight into the importance and role of each of its individual amino acid residues.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
36
|
A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface. Proc Natl Acad Sci U S A 2009; 106:13759-64. [PMID: 19666597 DOI: 10.1073/pnas.0904686106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 A. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.
Collapse
|
37
|
Nicolaou K, Chen J, Edmonds D, Estrada A. Fortschritte in der Chemie und Biologie natürlicher Antibiotika. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200801695] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Zimmermann TJ, Niesen FH, Pilka ES, Knapp S, Oppermann U, Maier ME. Discovery of a potent and selective inhibitor for human carbonyl reductase 1 from propionate scanning applied to the macrolide zearalenone. Bioorg Med Chem 2009; 17:530-6. [DOI: 10.1016/j.bmc.2008.11.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/26/2008] [Accepted: 11/29/2008] [Indexed: 11/26/2022]
|
39
|
Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA. Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed Engl 2009; 48:660-719. [PMID: 19130444 PMCID: PMC2730216 DOI: 10.1002/anie.200801695] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ever since the world-shaping discovery of penicillin, nature's molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with impressive discoveries and drug-development stories, the overwhelming majority of which have their origin in natural products. Chemistry, and in particular chemical synthesis, has played a major role in bringing naturally occurring antibiotics and their derivatives to the clinic, and no doubt these disciplines will continue to be key enabling technologies. In this review article, we highlight a number of recent discoveries and advances in the chemistry, biology, and medicine of naturally occurring antibiotics, with particular emphasis on total synthesis, analogue design, and biological evaluation of molecules with novel mechanisms of action.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
40
|
Van Bambeke F, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 2008; 29:124-34. [DOI: 10.1016/j.tips.2007.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
|
41
|
Palacios DS, Anderson TM, Burke MD. A post-PKS oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity. J Am Chem Soc 2007; 129:13804-5. [PMID: 17956100 DOI: 10.1021/ja075739o] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel S Palacios
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|