1
|
Wang JX, Chen MQ, Zhang Y, Han B, Mou ZD, Feng X, Zhang X, Niu D. A Modified Arbuzov-Michalis Reaction for Selective Alkylation of Nucleophiles. Angew Chem Int Ed Engl 2024; 63:e202409931. [PMID: 38957113 DOI: 10.1002/anie.202409931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The alkylation of nucleophiles is among the most fundamental and well-developed transformations in chemistry. However, to achieve selective alkylation of complex substrates remains a nontrivial task. We report herein a general and selective alkylation method without using strong acids, bases, or metals. In this method, the readily available phosphinites/phosphites, in combination with ethyl acrylate, function as effective alkylating agents. Various nucleophilic groups, including alcohols, phenols, carboxylic acids, imides, and thiols can be alkylated. This method can be applied in the late-stage alkylation of natural products and pharmaceutical agents, achieving chemo- and site-selective modification of complex substrates. Experimental studies indicate the relative reactivity of a nucleophile depends on its acidity and its steric environment. Mechanistic studies suggest the reaction pathway resembles that of the Arbuzov-Michalis reaction.
Collapse
Affiliation(s)
- Jia-Xi Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Mu-Qiu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xitong Feng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
2
|
Kaster SHM, Zhu L, Lyon WL, Ma R, Ammann SE, White MC. Palladium-catalyzed cross-coupling of alcohols with olefins by positional tuning of a counteranion. Science 2024; 385:1067-1076. [PMID: 39236162 DOI: 10.1126/science.ado8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Transition metal-catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp3)-O functionalization step have precluded general methods. Here, we describe computationally guided transition metal-ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved. The mild conditions tolerate functionality that is prone to substitution, elimination, and epimerization and achieve site selectivity in polyol settings. Mechanistic studies support the hypothesis that the ligand's geometry and electronics direct positioning of the phosphate anion at the π-allyl-palladium terminus, facilitating the phosphate's hydrogen-bond acceptor role toward the alcohol. Ligand-directed counteranion positioning in cationic transition metal catalysis has the potential to be a general strategy for promoting challenging bimolecular reactivity.
Collapse
Affiliation(s)
- Sven H M Kaster
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Lei Zhu
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - William L Lyon
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Rulin Ma
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Stephen E Ammann
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| |
Collapse
|
3
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Watanabe N, Saito-Nakano Y, Kurisawa N, Otomo K, Suenaga K, Nakano K, Nozaki T. Fumagillin inhibits growth of the enteric protozoan parasite Entamoeba histolytica by covalently binding to and selectively inhibiting methionine aminopeptidase 2. Antimicrob Agents Chemother 2023; 67:e0056023. [PMID: 37874291 PMCID: PMC10648944 DOI: 10.1128/aac.00560-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology and Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kentaro Nakano
- Degree Programs in Biology, Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Sultana J, Garg A, Kulshrestha A, Rohman SS, Dutta B, Singh K, Kumar A, Guha AK, Sarma D. Zn@CS: An Efficient Cu-Free Catalyst System for Direct Azide-Alkyne Cycloadditions and Multicomponent Synthesis of 4-Aryl-NH-1,2,3-triazoles in H2O and DES. Catal Letters 2022. [DOI: 10.1007/s10562-022-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
McGinnis TM, Thane TA, Jarvo ER. Zinc-Mediated Transformation of 1,3-Diols to Cyclopropanes for Late-Stage Modification of Natural Products and Medicinal Agents. Org Lett 2022; 24:5619-5623. [PMID: 35867876 PMCID: PMC9361355 DOI: 10.1021/acs.orglett.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/28/2022]
Abstract
A method for incorporating cyclopropane motifs into complex molecules has been developed. Herein we report a zinc dust-mediated cross-electrophile coupling reaction of 1,3-dimesylates to synthesize cyclopropanes. 1,3-Dimesylates can be readily accessed from 1,3-diols, a functionality prevalent in many natural products and medicinal agents. The reaction conditions are mild, such that functional groups, including amides, esters, heterocycles, and alkenes, are tolerated. Notably, we have demonstrated late-stage cyclopropanation of statin medicinal agents.
Collapse
Affiliation(s)
- Tristan M McGinnis
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Taylor A Thane
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Elizabeth R Jarvo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Dong C, Zhang C, Wang X, Shen R. Rhodium‐Catalyzed O−H Bond Insertion Reaction between H‐Phosphoryl Compounds and 2‐Pyridyl Carbenes Generated from Pyridotriazoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Can Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
8
|
Zhang Z, He Z, Xie Y, He T, Fu Y, Yu Y, Huang F. Brønsted acid-catalyzed homogeneous O–H and S–H insertion reactions under metal- and ligand-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01401j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The economical and accessible CF3SO3H successfully catalyzed homogeneous O–H and S–H bond insertion reactions between hydroxyl compounds, thiols and diazo compounds under metal- and ligand-free conditions.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Biology and Biological Engineering
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Tiantong He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yaofeng Fu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
9
|
Mori K, Sakurai K. Clickable gold-nanoparticles as generic probe precursors for facile photoaffinity labeling application. Org Biomol Chem 2021; 19:1268-1273. [DOI: 10.1039/d0ob01688h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clickable photoreactive gold nanoparticles have been developed to facilitate one-step preparation of photoaffinity probes for bioactive small molecules and their application to target protein analysis.
Collapse
Affiliation(s)
- Kanna Mori
- Tokyo University of Agriculture and Technology
- Department of Biotechnology and Life Science
- Tokyo 184-8588
- Japan
| | - Kaori Sakurai
- Tokyo University of Agriculture and Technology
- Department of Biotechnology and Life Science
- Tokyo 184-8588
- Japan
| |
Collapse
|
10
|
Zhu Y, Zhang Z, Jin R, Liu J, Liu G, Han B, Jiao N. DMSO‐Enabled Selective Radical O−H Activation of 1,3(4)‐Diols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuchao Zhu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ziyao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
11
|
Zhu Y, Zhang Z, Jin R, Liu J, Liu G, Han B, Jiao N. DMSO-Enabled Selective Radical O-H Activation of 1,3(4)-Diols. Angew Chem Int Ed Engl 2020; 59:19851-19856. [PMID: 32701184 DOI: 10.1002/anie.202007187] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Indexed: 12/16/2022]
Abstract
Control of selectivity is one of the central topics in organic chemistry. Although unprecedented alkoxyl-radical-induced transformations have drawn a lot of attention, compared to selective C-H activation, selective radical O-H activation remains less explored. Herein, we report a novel selective radical O-H activation strategy of diols by combining spatial effects with proton-coupled electron transfer (PCET). It was found that DMSO is an essential reagent that enables the regioselective transformation of diols. Mechanistic studies indicated the existence of the alkoxyl radical and the selective interaction between DMSO and hydroxyl groups. Moreover, the distal C-C cleavage was realized by this selective alkoxyl-radical-initiation protocol.
Collapse
Affiliation(s)
- Yuchao Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ziyao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
12
|
Xie J, Wang S, Ma P, Ma F, Li J, Wang W, Lu F, Xiong H, Gu Y, Zhang S, Xu H, Yang G, Lerner RA. Selection of Small Molecules that Bind to and Activate the Insulin Receptor from a DNA-Encoded Library of Natural Products. iScience 2020; 23:101197. [PMID: 32544667 PMCID: PMC7298650 DOI: 10.1016/j.isci.2020.101197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Although insulin is a life-saving medicine, administration by daily injection remains problematic. Our goal was to exploit the power of DNA-encoded libraries to identify molecules with insulin-like activity but with the potential to be developed as oral drugs. Our strategy involved using a 104-member DNA-encoded library containing 160 Traditional Chinese Medicines (nDEL) to identify molecules that bind to and activate the insulin receptor. Importantly, we used the natural ligand, insulin, to liberate bound molecules. Using this selection method on our relatively small, but highly diverse, nDEL yielded a molecule capable of both binding to and activating the insulin receptor. Chemical analysis showed this molecule to be a polycyclic analog of the guanidine metformin, a known drug used to treat diabetes. By using our protocol with other, even larger, DELs we can expect to identify additional organic molecules capable of binding to and activating the insulin receptor. Annotation of natural products via complementary bifunctional linkers Function-guided DEL selection using the natural ligand for competitive elution Identification of Rutaecarpine as a binder and activator of insulin receptor
Collapse
Affiliation(s)
- Jia Xie
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fei Ma
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Mikhael M, Adler SA, Wengryniuk SE. Chemoselective Oxidation of Equatorial Alcohols with N-Ligated λ 3-Iodanes. Org Lett 2019; 21:5889-5893. [PMID: 31310133 PMCID: PMC7060929 DOI: 10.1021/acs.orglett.9b02018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The site-selective and chemoselective functionalization of alcohols in complex polyols remains a formidable synthetic challenge. Whereas significant advancements have been made in selective derivatization at the oxygen center, chemoselective oxidation to the corresponding carbonyls is less developed. In cyclic systems, whereas the selective oxidation of axial alcohols is well known, a complementary equatorial selective process has not yet been reported. Herein we report the utility of nitrogen-ligated (bis)cationic λ3-iodanes (N-HVIs) for alcohol oxidation and their unprecedented levels of selectivity for the oxidation of equatorial over axial alcohols. The conditions are mild, and the simple pyridine-ligated reagent (Py-HVI) is readily synthesized from commercial PhI(OAc)2 and can be either isolated or generated in situ. Conformational selectivity is demonstrated in both flexible 1,2-substituted cyclohexanols and rigid polyol scaffolds, providing chemists with a novel tool for chemoselective oxidation.
Collapse
Affiliation(s)
- Myriam Mikhael
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Sophia A. Adler
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Sarah E. Wengryniuk
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
14
|
Kanegusuku ALG, Castanheiro T, Ayer SK, Roizen JL. Sulfamyl Radicals Direct Photoredox-Mediated Giese Reactions at Unactivated C(3)-H Bonds. Org Lett 2019; 21:6089-6095. [PMID: 31313933 DOI: 10.1021/acs.orglett.9b02234] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alcohol-anchored sulfamate esters guide the alkylation of tertiary and secondary aliphatic C(3)-H bonds. The transformation proceeds directly from N-H bonds with a catalytic oxidant, a contrast to prior methods which have required preoxidation of the reactive nitrogen center, or employed stoichiometric amounts of strong oxidants to obtain the sulfamyl radical. These sulfamyl radicals template otherwise rare 1,6-hydrogen-atom transfer (HAT) processes via seven-membered ring transition states to enable C(3)-H functionalization during Giese reactions.
Collapse
Affiliation(s)
- Anastasia L G Kanegusuku
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| | - Thomas Castanheiro
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| | - Suraj K Ayer
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| | - Jennifer L Roizen
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| |
Collapse
|
15
|
Okamura T, Fujiki S, Iwabuchi Y, Kanoh N. Gold(i)-catalyzed Nicholas reaction with aromatic molecules utilizing a bifunctional propargyl dicobalt hexacarbonyl complex. Org Biomol Chem 2019; 17:8522-8526. [DOI: 10.1039/c9ob01348b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A benchtop-stable reagent for the catalytic Nicholas reaction with aromatic molecules was developed.
Collapse
Affiliation(s)
- Toshitaka Okamura
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Shogo Fujiki
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Naoki Kanoh
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Institute of Medicinal Chemistry
| |
Collapse
|
16
|
Jiang H, Chen F, Zhu C, Zhu R, Zeng H, Liu C, Wu W. Two C-O Bond Formations on a Carbenic Carbon: Palladium-Catalyzed Coupling of N-Tosylhydrazones and Benzo-1,2-quinones To Construct Benzodioxoles. Org Lett 2018; 20:3166-3169. [PMID: 29756450 DOI: 10.1021/acs.orglett.8b00888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient method for the formation of two C-O bonds on a carbenic carbon is reported. This palladium-catalyzed coupling of N-tosylhydrazones and benzo-1,2-quinones were involved the process of carbonyl ylides generation, aromatization, and intramolecular nucleophilic addition, delivering various useful benzodioxoles in high yields.
Collapse
Affiliation(s)
- Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Rui Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
17
|
Hill CK, Hartwig JF. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation. Nat Chem 2017; 9:1213-1221. [PMID: 29168493 PMCID: PMC5728688 DOI: 10.1038/nchem.2835] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 11/08/2022]
Abstract
Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.
Collapse
Affiliation(s)
- Christopher K. Hill
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
18
|
Abstract
The application of small molecules as catalysts for the diversification of natural product scaffolds is reviewed. Specifically, principles that relate to the selectivity challenges intrinsic to complex molecular scaffolds are summarized. The synthesis of analogues of natural products by this approach is then described as a quintessential "late-stage functionalization" exercise wherein natural products serve as the lead scaffolds. Given the historical application of enzymatic catalysts to the site-selective alteration of complex molecules, the focus of this Review is on the recent studies of nonenzymatic catalysts. Reactions involving hydroxyl group derivatization with a variety of electrophilic reagents are discussed. C-H bond functionalizations that lead to oxidations, aminations, and halogenations are also presented. Several examples of site-selective olefin functionalizations and C-C bond formations are also included. Numerous classes of natural products have been subjected to these studies of site-selective alteration including polyketides, glycopeptides, terpenoids, macrolides, alkaloids, carbohydrates, and others. What emerges is a platform for chemical remodeling of naturally occurring scaffolds that targets virtually all known chemical functionalities and microenvironments. However, challenges for the design of very broad classes of catalysts, with even broader selectivity demands (e.g., stereoselectivity, functional group selectivity, and site-selectivity) persist. Yet, a significant spectrum of powerful, catalytic alterations of complex natural products now exists such that expansion of scope seems inevitable. Several instances of biological activity assays of remodeled natural product derivatives are also presented. These reports may foreshadow further interdisciplinary impacts for catalytic remodeling of natural products, including contributions to SAR development, mode of action studies, and eventually medicinal chemistry.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Ross SP, Hoye TR. Reactions of hexadehydro-Diels-Alder benzynes with structurally complex multifunctional natural products. Nat Chem 2017; 9:523-530. [PMID: 28537589 DOI: 10.1038/nchem.2732] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022]
Abstract
An important question in organic chemistry concerns the extent to which benzynes-one of the classical reactive intermediates in organic chemistry-can react in discriminating fashion with trapping reagents. In particular, whether these species can react selectively with substrates containing multiple functional groups and possible sites of reactivity has remained unanswered. Natural products comprise a palette of multifunctional compounds with which to address this question. Here, we show that benzynes produced by the hexadehydro-Diels-Alder (HDDA) reaction react with many secondary metabolites with a preference for one among several pathways. Examples demonstrating such selectivity include reactions with: phenolics, through dearomatizing ortho-substitution; alkaloids, through Hofmann-type elimination; tropolone and furan, through cycloaddition; and alkaloids, through three-component fragmentation-coupling reactions. We also demonstrate that the cinchona alkaloids quinidine and quinine give rise to products (some in as few as three steps) that enable subsequent and rapid access to structurally diverse polyheterocyclic compounds. The results show that benzynes are quite discriminating in their reactivity-a trait perhaps not broadly enough appreciated.
Collapse
Affiliation(s)
- Sean P Ross
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
20
|
Yan M, Lo JC, Edwards JT, Baran PS. Radicals: Reactive Intermediates with Translational Potential. J Am Chem Soc 2016; 138:12692-12714. [PMID: 27631602 PMCID: PMC5054485 DOI: 10.1021/jacs.6b08856] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 02/08/2023]
Abstract
This Perspective illustrates the defining characteristics of free radical chemistry, beginning with its rich and storied history. Studies from our laboratory are discussed along with recent developments emanating from others in this burgeoning area. The practicality and chemoselectivity of radical reactions enable rapid access to molecules of relevance to drug discovery, agrochemistry, material science, and other disciplines. Thus, these reactive intermediates possess inherent translational potential, as they can be widely used to expedite scientific endeavors for the betterment of humankind.
Collapse
Affiliation(s)
- Ming Yan
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julian C. Lo
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacob T. Edwards
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Affiliation(s)
- Yi-Feng Wang
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ming Hu
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hirohito Hayashi
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
22
|
Marsh A, Casey-Green K, Probert F, Withall D, Mitchell DA, Dilly SJ, James S, Dimitri W, Ladwa SR, Taylor PC, Singer DRJ. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein. PLoS One 2016; 11:e0148266. [PMID: 26863535 PMCID: PMC4749215 DOI: 10.1371/journal.pone.0148266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 01/15/2016] [Indexed: 11/26/2022] Open
Abstract
Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin's role in therapeutic and adverse effects of statins in a range of disease states.
Collapse
Affiliation(s)
- Andrew Marsh
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | - Fay Probert
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - David Withall
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Daniel A. Mitchell
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, United Kingdom
| | - Suzanne J. Dilly
- Tangent Reprofiling Ltd, c/o SEEK, Central Point, 45 Beech Street, London, EC2Y 8AD, United Kingdom
| | - Sean James
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| | - Wade Dimitri
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| | - Sweta R. Ladwa
- Tangent Reprofiling Ltd, c/o SEEK, Central Point, 45 Beech Street, London, EC2Y 8AD, United Kingdom
| | - Paul C. Taylor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Donald R. J. Singer
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
- Fellowship of Postgraduate Medicine, 11 Chandos St, London W1G 9EB, United Kingdom
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, United Kingdom
| |
Collapse
|
23
|
Zhang C, Welborn M, Zhu T, Yang NJ, Santos MS, Van Voorhis T, Pentelute BL. Π-Clamp-mediated cysteine conjugation. Nat Chem 2016; 8:120-8. [PMID: 26791894 PMCID: PMC4861612 DOI: 10.1038/nchem.2413] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matthew Welborn
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tianyu Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nicole J. Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael S. Santos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chem Rev 2015; 115:9981-10080. [PMID: 26284754 DOI: 10.1021/acs.chemrev.5b00121] [Citation(s) in RCA: 1113] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Hugues Miel
- Almac Discovery Ltd. , David Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | | | | | | | - M Anthony McKervey
- Almac Sciences Ltd. , Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| |
Collapse
|
25
|
Suzuki T, Okamura T, Tomohiro T, Iwabuchi Y, Kanoh N. Third generation photo-cross-linked small-molecule affinity matrix: a photoactivatable and photocleavable system enabling quantitative analysis of the photo-cross-linked small molecules and their target purification. Bioconjug Chem 2015; 26:389-95. [PMID: 25668603 DOI: 10.1021/bc500559e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The third generation of photoactivatable beads designed to capture bioactive small molecules in a chemo- and site-nonselective manner upon irradiation at 365 nm of UV light and release them as coumarin conjugates after exposure to UV light of 302 nm is described. These photoactivatable and photocleavable beads enable quantification of the amount and distribution of immobilized small molecules prior to the pull-down experiments to identify target protein(s) for the immobilized small molecules. The newly developed system was then used to analyze the functional group compatibility of the photo-cross-linking technology as well as the preferable nature of small molecules to be immobilized. As a result, compounds having a hydroxyl group, carboxylic acid, or aromatic ring were shown to give multiple conjugates, indicating that these compounds are well compatible with the photoactivatable beads system.
Collapse
Affiliation(s)
- Takahiro Suzuki
- †Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Toshitaka Okamura
- †Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Takenori Tomohiro
- ‡Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiharu Iwabuchi
- †Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Naoki Kanoh
- †Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
26
|
Giuliano MW, Miller SJ. Site-Selective Reactions with Peptide-Based Catalysts. SITE-SELECTIVE CATALYSIS 2015; 372:157-201. [DOI: 10.1007/128_2015_653] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Robles O, Romo D. Chemo- and site-selective derivatizations of natural products enabling biological studies. Nat Prod Rep 2014; 31:318-34. [PMID: 24468713 PMCID: PMC4041598 DOI: 10.1039/c3np70087a] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive natural products and derivatives remain an enduring starting point for the discovery of new cellular targets for disease intervention and lead compounds for the development of new therapeutic agents. The former goal is accomplished through the synthesis of bioactive cellular probes from natural products, enabling insights into the mechanism of action of these natural products by classical affinity chromatography or more recent proteome profiling methods. However, the direct and selective modification of native natural products for these purposes remains a challenge due to the structural complexity and the wide functional group diversity found in these natural substances. The lack of selective synthetic methods available to directly manipulate unprotected complex small molecules, in particular to perform structure-activity relationship studies and prepare appropriate cellular probes, has recently begun to be addressed, benefitting from the broader emerging area of chemoselective synthetic methodology. Thus, new reagents, catalysts and reaction processes are enabling both chemo- and site-selective modifications of complex, native natural products. In this review, we describe selected recent examples of these functionalization strategies in this emerging area.
Collapse
Affiliation(s)
- Omar Robles
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA.
| | | |
Collapse
|
28
|
Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Hydrotrifluoromethylthiolation of α-diazo esters – synthesis of α-SCF3 substituted esters. Chem Commun (Camb) 2014; 50:6617-9. [DOI: 10.1039/c4cc02060j] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Rodier F, Parrain JL, Chouraqui G, Commeiras L. First studies directed towards the diastereoselective synthesis of the BCD tricyclic core of brownin F. Org Biomol Chem 2013; 11:4178-85. [PMID: 23677035 DOI: 10.1039/c3ob40363g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The BCD tricyclic core of brownin F was prepared in eight synthetic operations for the first time. Our synthesis features a diastereo-, chemo- and regioselective intramolecular [3 + 2] cycloaddition between a cyclic carbonyl ylide and a γ-alkylidenebutenolide.
Collapse
Affiliation(s)
- Fabien Rodier
- Aix Marseille Université, CNRS, iSm2 UMR 7313, 13397 Marseille cedex 20, France
| | | | | | | |
Collapse
|
30
|
Zhou Q, Gui J, Pan CM, Albone E, Cheng X, Suh EM, Grasso L, Ishihara Y, Baran PS. Bioconjugation by native chemical tagging of C-H bonds. J Am Chem Soc 2013; 135:12994-7. [PMID: 23957305 DOI: 10.1021/ja407739y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A general C-H functionalization method for the tagging of natural products and pharmaceuticals is described. An azide-containing sulfinate reagent allows the appendage of azidoalkyl chains onto heteroaromatics, the product of which can then be attached to a monoclonal antibody by a "click" reaction. This strategy expands the breadth of bioactive small molecules that can be linked to macromolecules in a manner that is beyond the scope of existing methods in bioconjugation to permit tagging of the "seemingly untaggable".
Collapse
Affiliation(s)
- Qianghui Zhou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate. Nat Chem 2013; 5:510-7. [PMID: 23695633 DOI: 10.1038/nchem.1653] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at 'unfunctionalized' positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these-the marine-derived anticancer diterpene, eupalmerin acetate-quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.
Collapse
|
32
|
Beale TM, Taylor MS. Synthesis of Cardiac Glycoside Analogs by Catalyst-Controlled, Regioselective Glycosylation of Digitoxin. Org Lett 2013; 15:1358-61. [DOI: 10.1021/ol4003042] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas M. Beale
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| |
Collapse
|
33
|
Cai Y, Lu Y, Yu C, Lyu H, Miao Z. Combined C–H functionalization/O–H insertion reaction to form tertiary β-alkoxy substituted β-aminophosphonates catalyzed by [Cu(MeCN)4]PF6. Org Biomol Chem 2013; 11:5491-9. [DOI: 10.1039/c3ob40941d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Jiang J, Guan X, Liu S, Ren B, Ma X, Guo X, Lv F, Wu X, Hu W. Highly Diastereoselective Multicomponent Cascade Reactions: Efficient Synthesis of Functionalized 1-Indanols. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201208391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Highly Diastereoselective Multicomponent Cascade Reactions: Efficient Synthesis of Functionalized 1-Indanols. Angew Chem Int Ed Engl 2012; 52:1539-42. [DOI: 10.1002/anie.201208391] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Indexed: 11/07/2022]
|
36
|
Wilcock BC, Uno BE, Bromann GL, Clark MJ, Anderson TM, Burke MD. Electronic tuning of site-selectivity. Nat Chem 2012; 4:996-1003. [PMID: 23174979 PMCID: PMC3545056 DOI: 10.1038/nchem.1495] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/03/2012] [Indexed: 11/24/2022]
Abstract
Site-selective functionalizations of complex small molecules can generate targeted derivatives with exceptional step efficiency, but general strategies for maximizing selectivity in this context are rare. Here, we report that site-selectivity can be tuned by simply modifying the electronic nature of the reagents. A Hammett analysis is consistent with linking this phenomenon to the Hammond postulate: electronic tuning to a more product-like transition state amplifies site-discriminating interactions between a reagent and its substrate. This strategy transformed a minimally site-selective acylation reaction into a highly selective and thus preparatively useful one. Electronic tuning of both an acylpyridinium donor and its carboxylate counterion further promoted site-divergent functionalizations. With these advances, we achieve a range of modifications to just one of the many hydroxyl groups appended to the ion channel-forming natural product amphotericin B. Thus, electronic tuning of reagents represents an effective strategy for discovering and optimizing site-selective functionalization reactions.
Collapse
Affiliation(s)
- Brandon C Wilcock
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
37
|
Vella-Zarb L, Baisch U, Dinnebier RE. Small molecule, big difference: the role of water in the crystallization of paclitaxel. J Pharm Sci 2012. [PMID: 23203212 DOI: 10.1002/jps.23404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paclitaxel is an important antineoplastic drug, which is used widely in the treatment of many forms of cancer. The crystal structures of the anhydrous form and the hemihydrate were determined from laboratory X-ray powder diffraction data, whereas the dihydrate was solved from single-crystal synchrotron diffraction data. Intermolecular spaces allow for the inclusion of loosely bound water molecules, which are then lost easily upon heating. All three forms were found to crystallize in the orthorhombic spacegroup P2(1)2(1)2(1), with Z' = 2. The unit cell parameters were found to be a = 9.6530(3) Å, b = 28.1196(8) Å, c = 33.5378(14) Å, and V = 9103.5(5) Å for the anhydrous form (363 K); a = 9.6890(2) Å, b = 28.0760(4) Å, c = 33.6166(8) Å, and V = 9144.7(3) Å(3) for the hemihydrate (333 K); and a = 9.512(6) Å, b = 28.064(16) Å, c = 33.08(2) Å, and V = 8829.0(9) Å(3) for the dihydrate (120 K). Water loss occurs in two steps between 120 K ≤ t ≤ 363 K. The thermal stability of the hydrates and accompanying unit cell changes were observed in situ via temperature-resolved X-ray powder diffraction and thermogravimetric analysis.
Collapse
Affiliation(s)
- Liana Vella-Zarb
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany
| | | | | |
Collapse
|
38
|
Trader DJ, Carlson EE. Chemoselective hydroxyl group transformation: an elusive target. MOLECULAR BIOSYSTEMS 2012; 8:2484-93. [PMID: 22695722 PMCID: PMC3430791 DOI: 10.1039/c2mb25122a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described.
Collapse
Affiliation(s)
- Darci J. Trader
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive Bloomington, IN 47405
| | - Erin E. Carlson
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive Bloomington, IN 47405
| |
Collapse
|
39
|
Abstract
An effective strategy for personalized medicine requires a major conceptual change in the development and application of therapeutics. In this article, we argue that further advances in this field should be made with reference to another conceptual shift, that of network pharmacology. We examine the intersection of personalized medicine and network pharmacology to identify strategies for the development of personalized therapies that are fully informed by network pharmacology concepts. This provides a framework for discussion of the impact personalized medicine will have on chemistry in terms of drug discovery, formulation and delivery, the adaptations and changes in ideology required and the contribution chemistry is already making. New ways of conceptualizing chemistry's relationship with medicine will lead to new approaches to drug discovery and hold promise of delivering safer and more effective therapies.
Collapse
|
40
|
DeAngelis A, Dmitrenko O, Fox JM. Rh-catalyzed intermolecular reactions of cyclic α-diazocarbonyl compounds with selectivity over tertiary C-H bond migration. J Am Chem Soc 2012; 134:11035-43. [PMID: 22676258 PMCID: PMC3486930 DOI: 10.1021/ja3046712] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intermolecular Rh-catalyzed reactions of cyclic α-diazocarbonyl compounds with chemoselectivity over β-hydride elimination are described. These methods represent the first general intermolecular reactions of Rh-carbenoids that are selective over tertiary β-C-H bond migration. Successful transformations include cyclopropanation, cyclopropenation, and various X-H insertion reactions with a broad scope of substrates. We propose that the intermolecular approach of substrates to carbenes from acyclic diazo precursors may be relatively slow due to a steric interaction with the ester function, which is perpendicular to the π-system of the carbene. For carbenes derived from five- and six-membered cyclic α-diazocarbonyls, it is proposed that the carbene is constrained to be more conjugated with the carbonyl, thereby relieving the steric interaction for intermolecular reactions, and accelerating the rate of intermolecular reactivity relative to intramolecular β-hydride migration. However, attempts to use α-diazo-β-ethylcaprolactone in intermolecular cyclopropanation with styrene were unsuccessful. It is proposed that the conformational flexibility of the seven-membered ring allows the carbonyl to be oriented perpendicular to Rh-carbene. The significant intermolecular interaction between the carbonyl and approaching substrate is in agreement with the poor ability of α-diazo-β-ethylcaprolactone to participate in intermolecular cyclopropanation reactions. DFT calculations provide support for the mechanistic proposals that are described.
Collapse
Affiliation(s)
- Andrew DeAngelis
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Olga Dmitrenko
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M. Fox
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
41
|
Li Z, Parr BT, Davies HML. Highly stereoselective C-C bond formation by rhodium-catalyzed tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and chiral allylic alcohols. J Am Chem Soc 2012; 134:10942-6. [PMID: 22694052 DOI: 10.1021/ja303023n] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor rhodium carbenoids and chiral allyl alcohols is a convergent C-C bond forming process, which generates two vicinal stereogenic centers. Any of the four possible stereoisomers can be selectively synthesized by appropriate combination of the chiral catalyst Rh(2)(DOSP)(4) and the chiral alcohol.
Collapse
Affiliation(s)
- Zhanjie Li
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
42
|
Robles O, Serna-Saldívar SO, Gutiérrez-Uribe JA, Romo D. Cyclopropanations of olefin-containing natural products for simultaneous arming and structure activity studies. Org Lett 2012; 14:1394-7. [PMID: 22360738 DOI: 10.1021/ol300105q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclopropanations of alkene-containing natural products that proceed under mild conditions are reported for simultaneous arming and structure-activity relationship studies. An alkynyl diazo ester under Rh(II) catalysis is employed for cyclopropanations of electron-rich olefins while an alkynyl sulfonium ylide is used for electron-poor olefins. This approach enables simultaneous natural product derivatization for SAR studies and arming (i.e., via alkyne attachment) for subsequent conjugation with reporter tags (e.g., biotin, fluorophores, photoaffinity labels) for mechanism of action studies including cellular target identification and proteome profiling experiments.
Collapse
Affiliation(s)
- Omar Robles
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | | | | | | |
Collapse
|
43
|
Tong R, Cheng J. Zinc complex mediated regioselective O-acylation of therapeutic agents. Chem Sci 2012. [DOI: 10.1039/c2sc20239e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
44
|
Chamni S, He QL, Dang Y, Bhat S, Liu JO, Romo D. Diazo reagents with small steric footprints for simultaneous arming/SAR studies of alcohol-containing natural products via O-H insertion. ACS Chem Biol 2011; 6:1175-81. [PMID: 21894934 DOI: 10.1021/cb2002686] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural products are essential tools for basic cellular studies leading to the identification of medically relevant protein targets and the discovery of potential therapeutic leads. The development of methods that enable mild and selective derivatization of natural products continues to be of significant interest for mining their information-rich content. Herein, we describe novel diazo reagents for simultaneous arming and structure-activity relationship (SAR) studies of alcohol-containing natural products with a small steric footprint, namely, an α-trifluoroethyl (HTFB) substituted reagent. The Rh(II)-catalyzed O-H insertion reaction of several natural products, including the potent translation inhibitor lactimidomycin, was investigated, and useful reactivity and both chemo- and site (chemosite) selectivities were observed. Differential binding to the known protein targets of both FK506 and fumagillol was demonstrated, validating the advantage of the smaller steric footprint of α-trifluoroethyl derivatives. A p-azidophenyl diazo reagent is also described that will prove useful for photoaffinity labeling of low affinity small molecule protein receptors.
Collapse
Affiliation(s)
- Supakarn Chamni
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Qing-Li He
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, Maryland 21205, United States
| | - Yongjun Dang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, Maryland 21205, United States
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, Maryland 21205, United States
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, Maryland 21205, United States
| | - Daniel Romo
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
45
|
Simmons RL, Yu RT, Myers AG. Storable arylpalladium(II) reagents for alkene labeling in aqueous media. J Am Chem Soc 2011; 133:15870-3. [PMID: 21888420 DOI: 10.1021/ja206339s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show that arylpalladium(II) reagents linked to biotin and indocyanine dye residues can be prepared by decarboxylative palladation of appropriately substituted electron-rich benzoic acid derivatives. When prepared under the conditions described, these organometallic intermediates are tolerant of air and water, can be stored for several months in solution in dimethyl sulfoxide, and permit biotin- and indocyanine dye-labeling of functionally complex olefinic substrates in water by Heck-type coupling reactions.
Collapse
Affiliation(s)
- Rebecca L Simmons
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
46
|
Wang RE, Hunt CR, Chen J, Taylor JS. Biotinylated quercetin as an intrinsic photoaffinity proteomics probe for the identification of quercetin target proteins. Bioorg Med Chem 2011; 19:4710-20. [PMID: 21798748 PMCID: PMC3397245 DOI: 10.1016/j.bmc.2011.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/01/2023]
Abstract
Quercetin is a flavonoid natural product, that is, found in many foods and has been found to have a wide range of medicinal effects. Though a number of quercetin binding proteins have been identified, there has been no systematic approach to identifying all potential targets of quercetin. We describe an O7-biotinylated derivative of quercetin (BioQ) that can act as a photoaffinity proteomics reagent for capturing quercetin binding proteins, which can then be identified by LC-MS/MS. BioQ was shown to inhibit heat induction of HSP70 with almost the same efficiency as quercetin, and to both inhibit and photocrosslink to CK2 kinase, a known target of quercetin involved in activation of the heat shock transcription factor. BioQ was also able to pull down a number of proteins from unheated and heated Jurkat cells following UV irradiation that could be detected by both silver staining and Western blot analysis with an anti-biotin antibody. Analysis of the protein bands by trypsinization and LC-MS/MS led to the identification of heat shock proteins HSP70 and HSP90 as possible quercetin target proteins, along with ubiquitin-activating enzyme, a spliceosomal protein, RuvB-like 2 ATPases, and eukaryotic translation initiation factor 3. In addition, a mitochondrial ATPase was identified that has been previously shown to be a target of quercetin. Most of the proteins identified have also been previously suggested to be potential anticancer targets, suggesting that quercetin's antitumor activity may be due to its ability to inhibit multiple target proteins.
Collapse
Affiliation(s)
- Rongsheng E. Wang
- Department of Chemistry, Washington University, St Louis, MO, 63130, USA
| | - Clayton R. Hunt
- Department of Radiation Oncology, School of Medicine, Washington University, St Louis, MO, 63108, USA
| | - Jiawei Chen
- Department of Chemistry, Washington University, St Louis, MO, 63130, USA
- Center for Biomedical and Bioorganic Mass Spectrometry, Washington University, St Louis, MO, 63130, USA
| | | |
Collapse
|
47
|
Vera B, Rodríguez AD, La Clair JJ. Aplysqualenol A binds to the light chain of dynein type 1 (DYNLL1). Angew Chem Int Ed Engl 2011; 50:8134-8. [PMID: 21744448 DOI: 10.1002/anie.201102546] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Indexed: 01/29/2023]
Abstract
A bidirectional affinity system has been developed for the identification of cancer-related natural products and their biological targets. Aplysqualenol A is thus selectively identified as a ligand of the dynein light chain. The use of forward and reverse affinity methods suggests that both small-molecule isolation and target identification can be conducted using conventional molecular biological methods.
Collapse
Affiliation(s)
- Brunilda Vera
- Department of Chemistry, University of Puerto Rico, UPR Station, San Juan, 00931-3346, USA
| | | | | |
Collapse
|
48
|
|
49
|
Kidwai M, Jain A. Regioselective synthesis of 1,4-disubstituted triazoles using bis[(L)prolinato-N,O]Zn complex as an efficient catalyst in water as a sole solvent. Appl Organomet Chem 2011. [DOI: 10.1002/aoc.1816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Park KD, Kim D, Reamtong O, Eyers C, Gaskell SJ, Liu R, Kohn H. Identification of a lacosamide binding protein using an affinity bait and chemical reporter strategy: 14-3-3 ζ. J Am Chem Soc 2011; 133:11320-30. [PMID: 21692503 DOI: 10.1021/ja2034156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have advanced a useful strategy to elucidate binding partners of ligands (drugs) with modest binding affinity. Key to this strategy is attaching to the ligand an affinity bait (AB) and a chemical reporter (CR) group, where the AB irreversibly attaches the ligand to the receptor upon binding and the CR group is employed for receptor detection and isolation. We have tested this AB&CR strategy using lacosamide ((R)-1), a low-molecular-weight antiepileptic drug. We demonstrate that using a (R)-lacosamide AB&CR agent ((R)-2) 14-3-3 ζ in rodent brain soluble lysates is preferentially adducted, adduction is stereospecific with respect to the AB&CR agent, and adduction depends upon the presence of endogenous levels of the small molecule metabolite xanthine. Substitution of lacosamide AB agent ((R)-5) for (R)-2 led to the identification of the 14-3-3 ζ adduction site (K120) by mass spectrometry. Competition experiments using increasing amounts of (R)-1 in the presence of (R)-2 demonstrated that (R)-1 binds at or near the (R)-2 modification site on 14-3-3 ζ. Structure-activity studies of xanthine derivatives provided information concerning the likely binding interaction between this metabolite and recombinant 14-3-3 ζ. Documentation of the 14-3-3 ζ-xanthine interaction was obtained with isothermal calorimetry using xanthine and the xanthine analogue 1,7-dimethylxanthine.
Collapse
Affiliation(s)
- Ki Duk Park
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | | | | | | | | | | | | |
Collapse
|