1
|
Li Y, Zhu F, Manna AC, Chen L, Jiang J, Hong JI, Proctor RA, Bayer AS, Cheung AL, Xiong YQ. Gp05, a Prophage-Encoded Virulence Factor, Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection. Microbiol Spectr 2023; 11:e0060023. [PMID: 37358448 PMCID: PMC10434118 DOI: 10.1128/spectrum.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a serious public health threat. We recently demonstrated that the presence of a novel prophage ϕSA169 was associated with vancomycin (VAN) treatment failure in experimental MRSA endocarditis. In this study, we assessed the role of a ϕSA169 gene, ϕ80α_gp05 (gp05), in VAN-persistent outcome using gp05 isogenic MRSA strain sets. Of note, Gp05 significantly influences the intersection of MRSA virulence factors, host immune responses, and antibiotic treatment efficacy, including the following: (i) activity of the significant energy-yielding metabolic pathway (e.g., tricarboxylic acid cycle); (ii) carotenoid pigment production; (iii) (p)ppGpp (guanosine tetra- and pentaphosphate) production, which activates the stringent response and subsequent downstream functional factors (e.g., phenol-soluble modulins and polymorphonuclear neutrophil bactericidal activity); and (iv) persistence to VAN treatment in an experimental infective endocarditis model. These data suggest that Gp05 is a significant virulence factor which contributes to the persistent outcomes in MRSA endovascular infection by multiple pathways. IMPORTANCE Persistent endovascular infections are often caused by MRSA strains that are susceptible to anti-MRSA antibiotics in vitro by CLSI breakpoints. Thus, the persistent outcome represents a unique variant of traditional antibiotic resistance mechanisms and a significant therapeutic challenge. Prophage, a critical mobile genetic element carried by most MRSA isolates, provides their bacterial host with metabolic advantages and resistance mechanisms. However, how prophage-encoded virulence factors interact with the host defense system and antibiotics, driving the persistent outcome, is not well known. In the current study, we demonstrated that a novel prophage gene, gp05, significantly impacts tricarboxylic acid cycle activity, stringent response, and pigmentation, as well as vancomycin treatment outcome in an experimental endocarditis model using isogenic gp05 overexpression and chromosomal deletion mutant MRSA strain sets. The findings significantly advance our understanding of the role of Gp05 in persistent MRSA endovascular infection and provide a potential target for development of novel drugs against these life-threatening infections.
Collapse
Affiliation(s)
- Yi Li
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Fengli Zhu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Adhar C. Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Liang Chen
- Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Jason Jiang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Richard A. Proctor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Arnold S. Bayer
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ambrose L. Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yan Q. Xiong
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Bag K, Pal AK, Basu S, Singla M, Sarkar B, Chatterji D, Maiti PK, Ghosh A, Jayaraman N. C-4-Modified Isotetrones Prevent Biofilm Growth and Persister Cell Resuscitation in Mycobacterium smegmatis. ACS OMEGA 2023; 8:20513-20523. [PMID: 37323400 PMCID: PMC10268289 DOI: 10.1021/acsomega.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Hyperphosphorylated nucleotide (p)ppGpp, synthesized by Rel protein, regulates the stringent response pathway responsible for biofilm and persister cell growth in mycobacteria. The discovery of vitamin C as an inhibitor of Rel protein activities raises the prospect of tetrone lactones to prevent such pathways. The closely related isotetrone lactone derivatives are identified herein as inhibitors of the above processes in a mycobacterium. Synthesis and biochemical evaluations show that an isotetrone possessing phenyl substituent at C-4 inhibit the biofilm formation at 400 μg mL-1, 84 h post-exposure, followed by moderate inhibition by the isotetrone possessing the p-hydroxyphenyl substituent. The latter isotetrone inhibits the growth of persister cells at 400 μg mL-1 f.c. when monitored for 2 weeks, under PBS starvation. Isotetrones also potentiate the inhibition of antibiotic-tolerant regrowth of cells by ciprofloxacin (0.75 μg mL-1) and thus act as bioenhancers. Molecular dynamics studies show that isotetrone derivatives bind to the RelMsm protein more efficiently than vitamin C at a binding site possessing serine, threonine, lysine, and arginine.
Collapse
Affiliation(s)
- Kingshuk Bag
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560 012, India
| | - Aditya Kumar Pal
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Subhadip Basu
- Department
of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Mamta Singla
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Biplab Sarkar
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Dipankar Chatterji
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Prabal Kumar Maiti
- Department
of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Anirban Ghosh
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
3
|
Sun Z, Wu R, Zhao B, Zeinert R, Chien P, You M. Live-Cell Imaging of Guanosine Tetra- and Pentaphosphate (p)ppGpp with RNA-based Fluorescent Sensors*. Angew Chem Int Ed Engl 2021; 60:24070-24074. [PMID: 34487413 PMCID: PMC8545912 DOI: 10.1002/anie.202111170] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Guanosine tetra- and pentaphosphate, (p)ppGpp, are important alarmone nucleotides that regulate bacterial survival in stressful environment. A direct detection of (p)ppGpp in living cells is critical for our understanding of the mechanism of bacterial stringent response. However, it is still challenging to image cellular (p)ppGpp. Here, we report RNA-based fluorescent sensors for the live-cell imaging of (p)ppGpp. Our sensors are engineered by conjugating a recently identified (p)ppGpp-specific riboswitch with a fluorogenic RNA aptamer, Broccoli. These sensors can be genetically encoded and enable direct monitoring of cellular (p)ppGpp accumulation. Unprecedented information on cell-to-cell variation and cellular dynamics of (p)ppGpp levels is now obtained under different nutritional conditions. These RNA-based sensors can be broadly adapted to study bacterial stringent response.
Collapse
Affiliation(s)
- Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, USA
| |
Collapse
|
4
|
Sun Z, Wu R, Zhao B, Zeinert R, Chien P, You M. Live‐Cell Imaging of Guanosine Tetra‐ and Pentaphosphate (p)ppGpp with RNA‐based Fluorescent Sensors**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhining Sun
- Department of Chemistry University of Massachusetts Amherst USA
| | - Rigumula Wu
- Department of Chemistry University of Massachusetts Amherst USA
| | - Bin Zhao
- Department of Chemistry University of Massachusetts Amherst USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology University of Massachusetts Amherst USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology University of Massachusetts Amherst USA
| | - Mingxu You
- Department of Chemistry University of Massachusetts Amherst USA
| |
Collapse
|
5
|
Li L, Bayer AS, Cheung A, Lu L, Abdelhady W, Donegan NP, Hong JI, Yeaman MR, Xiong YQ. The Stringent Response Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection Through the Purine Biosynthetic Pathway. J Infect Dis 2021; 222:1188-1198. [PMID: 32333768 DOI: 10.1093/infdis/jiaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/02/2023] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinical-therapeutic challenge. Of particular concern is antibiotic treatment failure in infections caused by MRSA that are "susceptible" to antibiotic in vitro. In the current study, we investigate specific purine biosynthetic pathways and stringent response mechanism(s) related to this life-threatening syndrome using genetic matched persistent and resolving MRSA clinical bacteremia isolates (PB and RB, respectively), and isogenic MRSA strain sets. We demonstrate that PB isolates (vs RB isolates) have significantly higher (p)ppGpp production, phenol-soluble-modulin expression, polymorphonuclear leukocyte lysis and survival, fibronectin/endothelial cell (EC) adherence, and EC damage. Importantly, an isogenic strain set, including JE2 parental, relP-mutant and relP-complemented strains, translated the above findings into significant outcome differences in an experimental endocarditis model. These observations indicate a significant regulation of purine biosynthesis on stringent response, and suggest the existence of a previously unknown adaptive genetic mechanism in persistent MRSA infection.
Collapse
Affiliation(s)
- Liang Li
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arnold S Bayer
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ambrose Cheung
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lou Lu
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wessam Abdelhady
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Niles P Donegan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Michael R Yeaman
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Yan Q Xiong
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
6
|
(p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy. mBio 2021; 12:mBio.03193-20. [PMID: 33531402 PMCID: PMC7858065 DOI: 10.1128/mbio.03193-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus. However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment.
Collapse
|
7
|
Wang S, Gong L, El Fakhri G, Wang J. Efficient synthesis of 6,6′-diamido-2,2′-dipicolylamine ligands for potential phosphate anion sensing. NEW J CHEM 2021; 45:16833-16840. [DOI: 10.1039/d1nj03030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through retrosynthetic analysis, functionalized 6,6′-diamido-2,2′-dipicolylamines (DA-DPAs) have been efficiently synthesized, which may accelerate the development of selective probes towards phosphate anions.
Collapse
Affiliation(s)
- Shuai Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lichong Gong
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA
| |
Collapse
|
8
|
Li A, Liu Y, Bi C, Xu W, Ma Z, Cui H, Xu S. Pressure-dependent distinct luminescent evolutions of pyrene and TPA-Py single crystals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118390. [PMID: 32361518 DOI: 10.1016/j.saa.2020.118390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The effects of the high pressure on two single crystals, pyrene and N,N-diphenyl-4-(pyren-1-yl)aniline (TPA-Py), were studied by in situ fluorescent and Raman spectroscopies. During the compression, the pyrene with one structureless excimer emission band showed a continuous bathochromic-shift. In contrast, with the pressure increasing to 10.36 GPa, TPA-Py previously dominated with the hybridized local and charge transfer (HLCT) excited state gradually exhibited a new band at longer wavelengths, which is assigned to a new excited state species with the intramolecular charge transfer (ICT) state, caused by the pressure-induced changes on its molecular configuration. Accompanied by the spectral changes, a sequential color variation from blue to cyan was observed, giving a change to yellow and then red. The significant broadening of the full-width half-maximum (FWHM) of the TPA-Py is observed due to the enhanced dipole-dipole interaction and the existence of pressure gradient. Both pyrene and TPA-Py showed the delayed recovery of the luminescence in the compression-decompression cycle, which results from the poor reversibility of electronic structure caused by the compression-induced piezochromic effect. Furthermore, the evolutions of the Raman spectra of pyrene and TPA-Py indicated that the pressure-induced reversible transformation is caused by the molecular conformational change. This study is a deeper understanding of the structure-property relation of the HLCT species and will be a helpful reference for the regulation of photoluminescence in these intramolecular electron donor-acceptor crystal materials.
Collapse
Affiliation(s)
- Aisen Li
- College of Physics, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Liu
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjiang Bi
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haining Cui
- College of Physics, Jilin University, Changchun 130012, PR China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
9
|
Clinical Mutations That Partially Activate the Stringent Response Confer Multidrug Tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2020; 64:AAC.02103-19. [PMID: 31871080 DOI: 10.1128/aac.02103-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Antibiotic tolerance is an underappreciated antibiotic escape strategy that is associated with recurrent and relapsing infections, as well as acting as a precursor to resistance. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting an elevated MIC. It is detected in time-kill assays as a lower rate of killing than a susceptible strain and can be quantified by the metric minimum duration for killing (MDK). The molecular mechanisms behind tolerance are varied, but activation of the stringent response (SR) via gene knockouts and/or chemical induction has long been associated with tolerance. More recently, two Gram-positive clinical isolates from persistent bacteremias were found to bear mutations in the SR controller, Rel, that caused elevated levels of the alarmone (p)ppGpp. Here, we show that introduction of either of these mutations into Staphylococcus aureus confers tolerance to five different classes of antibiotic as a result of (p)ppGpp-mediated growth defects (longer lag time and/or lower growth rate). The degree of tolerance is related to the severity of the growth defect and ranges from a 1.5- to 3.1-fold increase in MDK. Two classes of proposed SR inhibitor were unable to reverse or reduce this tolerance. Our findings reveal the significance of SR-activating mutations in terms of tolerance and clinical treatment failures. The panel of strains reported here provide a clinically relevant model of tolerance for further investigation of its link to resistance development, as well as potential validation of high-throughput tolerance screens.
Collapse
|
10
|
Conti G, Minneci M, Sattin S. Optimised Synthesis of the Bacterial Magic Spot (p)ppGpp Chemosensor PyDPA. Chembiochem 2019; 20:1717-1721. [PMID: 30843657 PMCID: PMC6618120 DOI: 10.1002/cbic.201900013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/05/2019] [Indexed: 01/23/2023]
Abstract
Guanosine penta- or tetraphosphate (pppGpp or ppGpp, respectively) is a nucleotide signalling molecule with a marked effect on bacterial physiology during stress. Its accumulation slows down cell metabolism and replication, supposedly leading to the formation of the antibiotic-tolerant persister phenotype. A specifically tailored fluorescent chemosensor, PyDPA, allows the detection of (p)ppGpp in solution with high selectivity, relative to that of other nucleotides. Herein, an optimised synthetic approach is presented that improves the overall yield from 9 to 67 % over 7 steps. The simplicity and robustness of this approach will allow groups investigating the many facets of (p)ppGpp easy access to this probe.
Collapse
Affiliation(s)
- Gabriele Conti
- Department of ChemistryUniversità degli Studi di Milanovia Golgi, 1920133MilanoItaly
| | - Marco Minneci
- Department of ChemistryUniversità degli Studi di Milanovia Golgi, 1920133MilanoItaly
| | - Sara Sattin
- Department of ChemistryUniversità degli Studi di Milanovia Golgi, 1920133MilanoItaly
| |
Collapse
|
11
|
Li Y, Shu Y, Wang X, Jiao X, Xie X, Zhang J, Tang B. An H 2S-activated ratiometric CO photoreleaser enabled by excimer/monomer conversion. Chem Commun (Camb) 2019; 55:6301-6304. [PMID: 31089585 DOI: 10.1039/c9cc02352f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Based on the excimer-monomer conversion of a pyrene-flavone hybrid, a ratiometric CO photoreleaser, PFN, was constructed for simultaneous H2S quantification and CO release in inflammatory cells.
Collapse
Affiliation(s)
- Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
13
|
Xu Y, Luo Z, Chen J, Huang Z, Wang X, An H, Duan Y. Ω-Shaped Fiber-Optic Probe-Based Localized Surface Plasmon Resonance Biosensor for Real-Time Detection of Salmonella Typhimurium. Anal Chem 2018; 90:13640-13646. [PMID: 30359519 DOI: 10.1021/acs.analchem.8b03905] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel, Ω-shaped fiber-optic localized surface plasmon resonance (FOLSPR) biosensor was designed for sensitive real-time and label-free bacterial detection. The designed Ω-shaped fiber-optic probe exhibits an outstanding sensitivity, due to the effect of unique geometry on performance. The results show that refractive index (RI) sensitivity of the Ω-shaped fiber-optic probe is 14 times and 2.5 times higher than those of the straight-shaped and the U-shaped FOLSPR, respectively. In addition, the reason for the geometry and the bending radius effects on RI sensitivity was discussed by investigating the relationship between RI sensitivity and the bending area. The results show that RI sensitivity was enhanced with the increase of bending area, and the best RI sensitivity obtained by Ω-shaped FOLSPR was 64.582 (a.u.)/RIU. Combined with this newly designed Ω-shaped FOLSPR biosensor, a real-time, label-free, sensitive, and highly selective bacterial detection method was established. In this work, the aptamers immobilized on the surface of FOLSPR could specifically capture Salmonella Typhimurium, resulting in an intense change of the absorption peak. In line with this principle, the FOLSPR biosensor achieved high detection sensitivity for Salmonella Typhimurium down to 128 CFU/mL within a linear range from 5 × 102 to 1 × 108 CFU/mL and showed good selectivity for Salmonella Typhimurium detection compared to other bacteria. Furthermore, the FOLSPR biosensor was successfully applied to the detection of Salmonella Typhimurium in a chicken sample with the recoveries of 85-123%. With these characteristics, the novel biosensor is a potential alternative tool in food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Ya Xu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| | - Junman Chen
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| | - Xu Wang
- School of Manufacturing Science and Engineering , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| | - Huifang An
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences , Sichuan University , Chengdu , Sichuan 610065 , P. R. China
| |
Collapse
|
14
|
Chen J, Huang Y, Yang X, Zhang H, Li Z, Qin B, Chen X, Qiu H. Highly sensitive and visual detection of guanosine 3'-diphosphate-5'-di(tri)phosphate (ppGpp) in bacteria based on copper ions-mediated 4-mercaptobenzoic acid modified gold nanoparticles. Anal Chim Acta 2018; 1023:89-95. [PMID: 29754611 DOI: 10.1016/j.aca.2018.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/21/2023]
Abstract
Guanosine 3'-diphosphate-5'-di(tri)phosphate (ppGpp) plays a crucial role in the gene expression, metabolism, growth, and other significant processes of microorganisms. In this work, a facile sensitive and visual strategy for the detection of ppGpp has been established by developing a colorimetric probe of copper ions (Cu2+)-mediated 4-mercaptobenzoic acid (4-MBA) modified gold nanoparticles (AuNPs). The sensing process was characterized by transmission electron microscopy (TEM), zeta potential, dynamic light scattering (DLS) and UV-vis spectroscopy. The strategy not only achieves desirable performance over a wide concentration range (0.05-10 μM), but also exhibits excellent selectivity over other nucleotides and biomolecules. In addition, the results could be visualized by the naked eye. We have demonstrated the determination of ppGpp in Bacillus subtilis lysate samples.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanni Huang
- Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP. Molecules 2018. [PMID: 29534528 PMCID: PMC6017074 DOI: 10.3390/molecules23030635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The construction of supramolecular recognition systems based on specific host–guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type fluorescent indicator. We synthesized dipicolylamine (DPA)-modified CyD–Cu2+ complexes (Cu·1α, Cu·1β, and Cu·1γ), and evaluated their recognition capabilities toward phosphoric acid derivatives in water. The UV-Vis absorption and fluorescence spectra revealed that Cu·1β selectively recognized ATP over other organic and inorganic phosphates, and that β-CyD had the most suitable cavity size for complexation with ATP. The 1D and 2D NMR analyses suggested that the ATP recognition was based on the host–guest interaction between the adenine moiety of ATP and the CyD cavity, as well as the recognition of phosphoric moieties by the Cu2+–DPA complex site. The specific interactions between the CyD cavity and the nucleobases enabled us to distinguish ATP from other nucleoside triphosphates, such as guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). This study clarified the basic mechanisms of molecular recognition by modified CyDs, and suggested the potential for further application of CyDs in the design of highly selective supramolecular recognition systems for certain molecular targets in water.
Collapse
|
16
|
Chen BB, Liu ML, Zhan L, Li CM, Huang CZ. Terbium(III) Modified Fluorescent Carbon Dots for Highly Selective and Sensitive Ratiometry of Stringent. Anal Chem 2018; 90:4003-4009. [PMID: 29493236 DOI: 10.1021/acs.analchem.7b05149] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Highly selective and sensitive detection of guanosine 3'-diphosphate-5'-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb3+) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.
Collapse
Affiliation(s)
- Bin Bin Chen
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry, Ministry of Education College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400716 , China
| | - Meng Li Liu
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry, Ministry of Education College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400716 , China
| | - Lei Zhan
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science , Southwest University , Chongqing 400716 , China
| | - Chun Mei Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science , Southwest University , Chongqing 400716 , China
| | - Cheng Zhi Huang
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry, Ministry of Education College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400716 , China.,Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science , Southwest University , Chongqing 400716 , China
| |
Collapse
|
17
|
Pokhilko A. Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor. BMC SYSTEMS BIOLOGY 2017; 11:106. [PMID: 29157236 PMCID: PMC5697348 DOI: 10.1186/s12918-017-0490-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 11/26/2022]
Abstract
Background E. coli can be used as bacterial cell factories for production of biofuels and other useful compounds. The efficient production of the desired products requires careful monitoring of growth conditions and the optimization of metabolic fluxes. To avoid nutrient depletion and maximize product yields we suggest using a natural mechanism for sensing nutrient limitation, related to biosynthesis of an intracellular messenger - guanosine tetraphosphate (ppGpp). Results We propose a design for a biosensor, which monitors changes in the intracellular concentration of ppGpp by coupling it to a fluorescent output. We used mathematical modelling to analyse the intracellular dynamics of ppGpp, its fluorescent reporter, and cell growth in normal and fatty acid-producing E. coli lines. The model integrates existing mechanisms of ppGpp regulation and predicts the biosensor response to changes in nutrient state. In particular, the model predicts that excessive stimulation of fatty acid production depletes fatty acid intermediates, downregulates growth and increases the levels of ppGpp-related fluorescence. Conclusions Our analysis demonstrates that the ppGpp sensor can be used for early detection of nutrient limitation during cell growth and for testing productivity of engineered lines. Electronic supplementary material The online version of this article (10.1186/s12918-017-0490-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:667-675. [DOI: 10.1016/j.msec.2016.11.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 11/23/2022]
|
19
|
Fujita K, Fujiwara S, Yamada T, Tsuchido Y, Hashimoto T, Hayashita T. Design and Function of Supramolecular Recognition Systems Based on Guest-Targeting Probe-Modified Cyclodextrin Receptors for ATP. J Org Chem 2017; 82:976-981. [PMID: 27997800 DOI: 10.1021/acs.joc.6b02513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, we have developed a rational design strategy to obtain highly selective supramolecular recognition systems of cyclodextrins (CyDs) on the basis of the lock and key principle. We designed and synthesized dipicolylamine (dpa)-modified γ-CyD-Cu2+ complexes possessing an azobenzene unit (Cu·1-γ-CyD) and examined how they recognized phosphoric acid derivatives in water. The results revealed that Cu·1-γ-CyD recognized ATP with high selectivity over other phosphoric acid derivatives. The significant blue shift in the UV-vis spectra and 1H NMR analysis suggested that the selective ATP recognition was based on the multipoint interactions between the adenine moiety of ATP and both the CyD cavity and the azobenzene unit in addition to the recognition of phosphoric moieties by the Cu-dpa complex site. Our unique receptor made it capable of distinguishing ATP from AMP and ADP, revealing the discrimination of even a length of one phosphoric group. This study demonstrates that, compared to conventional recognition systems of CyDs, this multipoint recognition system confers a higher degree of selectivity for certain organic molecules, such as ATP, over their similar derivatives.
Collapse
Affiliation(s)
- Kyohhei Fujita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan.,Graduate School of Medicine, The University of Tokyo , 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Shoji Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan
| | - Tatsuru Yamada
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan
| |
Collapse
|
20
|
Surfactant-modulated discriminative sensing of HNO and H2S with a Cu2+-complex-based fluorescent probe. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 2015; 44:1526-60. [PMID: 25176175 DOI: 10.1039/c4cs00186a] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photon-upconverting nanoparticles (UCNPs) can be excited by near-infrared light and emit visible light (anti-Stokes emission) which prevents autofluorescence and light scattering of biological samples. The potential for background-free imaging has attracted wide interest in UCNPs in recent years. Small and homogeneous lanthanide-doped UCNPs that display high upconversion efficiency have typically been synthesized in organic solvents. Bioanalytical applications, however, require a subsequent phase transfer to aqueous solutions. Hence, the surface properties of UCNPs must be well designed and characterized to grant both a stable aqueous colloidal dispersion and the ability to conjugate biomolecules and other ligands on the nanoparticle surface. In this review, we introduce various routes for the surface modification of UCNPs and critically discuss their advantages and disadvantages. The last part covers various analytical methods that enable a thorough examination of the progress and success of the surface functionalization.
Collapse
Affiliation(s)
- Andreas Sedlmeier
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
22
|
Terenzi A, Lauria A, Almerico AM, Barone G. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element. Dalton Trans 2015; 44:3527-35. [PMID: 25375997 DOI: 10.1039/c4dt02881c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zinc(II) complexes are effective and selective nucleic acid-binders and strongly fluorescent molecules in the low energy range, from the visible to the near infrared. These two properties have often been exploited to quantitatively detect nucleic acids in biological samples, in both in vitro and in vivo models. In particular, the fluorescent emission of several zinc(II) complexes is drastically enhanced or quenched by the binding to nucleic acids and/or upon visible light exposure, in a different fashion in bulk solution and when bound to DNA. The twofold objective of this perspective is (1) to review recent utilisations of zinc(II) complexes as selective fluorescent probes for nucleic acids and (2) to highlight their novel potential applications as diagnostic tools based on their photophysical properties.
Collapse
Affiliation(s)
- Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
23
|
Zheng LL, Huang CZ. Selective and sensitive colorimetric detection of stringent alarmone ppGpp with Fenton-like reagent. Analyst 2015; 139:6284-9. [PMID: 25315398 DOI: 10.1039/c4an01632g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stringent alarmone, namely, guanosine 3'-diphosphate-5'-diphosphate (ppGpp), is a global regulator that plays a critical role in the survival, growth, metabolism, and many other vital processes of microorganisms. Because of its structural similarity to normal nucleotides, it is also a challenge for the selective and sensitive detection of ppGpp nowadays. Herein, we developed a colorimetric method for the selective detection of ppGpp by inhibiting the redox reaction between Fenton-like reagent (composed of Fe(3+) and H2O2) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Owing to the strong coordination affinity between ppGpp and Fe(3+), the chromogenic reaction between ABTS and Fenton-like reagent, occurred in aqueous medium at 37 °C and resulted in a bluish-green solution, which was inhibited with the addition of ppGpp. This phenomenon forms the basis for the colorimetric detection of ppGpp, with a detection limit of 0.19 μM and good selectivity for ppGpp over other nucleotides and anions. Furthermore, the results could be visualized by the naked eye, and the sensitivity of the naked-eye observation could even be further improved with the aid of the introduction of a background color.
Collapse
Affiliation(s)
- Lin Ling Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | |
Collapse
|
24
|
The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J Bacteriol 2015; 197:1433-43. [PMID: 25666138 DOI: 10.1128/jb.02551-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional.
Collapse
|
25
|
Jiao SY, Li K, Wang X, Huang Z, Pu L, Yu XQ. Making pyrophosphate visible: the first precipitable and real-time fluorescent sensor for pyrophosphate in aqueous solution. Analyst 2015; 140:174-81. [DOI: 10.1039/c4an01615g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in situ generated Zn2+ complex of di-2-(picoly) amine BINOL–DPA was presented as a precipitable and real-time fluorescent sensor for PPi with a detection limit of 95 nm, and it could be successfully applied in imaging PPi in living cells.
Collapse
Affiliation(s)
- Shu-Yan Jiao
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xin Wang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Zeng Huang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Lin Pu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
26
|
A regulatory feedback loop between RpoS and SpoT supports the survival of Legionella pneumophila in water. Appl Environ Microbiol 2014; 81:918-28. [PMID: 25416763 DOI: 10.1128/aem.03132-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a waterborne pathogen, and survival in the aquatic environment is central to its transmission to humans. Therefore, identifying genes required for its survival in water could help prevent Legionnaires' disease outbreaks. In the present study, we investigate the role of the sigma factor RpoS in promoting survival in water, where L. pneumophila experiences severe nutrient deprivation. The rpoS mutant showed a strong survival defect compared to the wild-type strain in defined water medium. The transcriptome of the rpoS mutant during exposure to water revealed that RpoS represses genes associated with replication, translation, and transcription, suggesting that the mutant fails to shut down major metabolic programs. In addition, the rpoS mutant is transcriptionally more active than the wild-type strain after water exposure. This could be explained by a misregulation of the stringent response in the rpoS mutant. Indeed, the rpoS mutant shows an increased expression of spoT and a corresponding decrease in the level of (p)ppGpp, which is due to the presence of a negative feedback loop between RpoS and SpoT. Therefore, the lack of RpoS causes an aberrant regulation of the stringent response, which prevents the induction of a successful response to starvation.
Collapse
|
27
|
Wang J, Liu X, Pang Y. A Benzothiazole-Based Sensor for Pyrophosphate (PPi) and ATP: Mechanistic Insight for Anion-Induced ESIPT Turn-On. J Mater Chem B 2014; 2:6634-6638. [PMID: 25530852 PMCID: PMC4269837 DOI: 10.1039/c4tb01109k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzothiazole derivative 2 bearing two 2,2'-dipicolylamine (DPA) groups was examined for its zinc-binding and subsequent anion sensing properties. The study revealed the anion sensing mechanism of polyphosphate anions via sequential binding to two zinc centers, on the basis of both 1H NMR and mass spectral evidences. The mechanistic insight would provide valuable information for the future design of new excited state intramolecular proton transfer (ESIPT) sensors. In addition, the zinc complex exhibited the solvent-switchible selectivity, responding to pyrophosphate (PPi) in EtOH but adenosine 5'-triphosphate (ATP) in water.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Xiumin Liu
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325 U.S.A
| |
Collapse
|
28
|
Wang J, Liu B, Liu X, Panzner M, Wesdemiotis C, Pang Y. A binuclear Zn(II)-Zn(II) complex from a 2-hydroxybenzohydrazide-derived Schiff base for selective detection of pyrophosphate. Dalton Trans 2014; 43:14142-6. [PMID: 25135613 PMCID: PMC4161210 DOI: 10.1039/c4dt01799d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydroxybenzohydrazide-based Schiff base ligand was conveniently synthesized. Upon addition of Zn(2+) cations, the ligand exhibited a high tendency to form a binuclear structure with a 2 : 2 ligand-to-zinc ratio, which was accompanied by a large fluorescence turn-on (λem = 507 nm, ϕfl≈ 0.28). The reactivity of the zinc complex was examined using different phosphate anions, which reveals a higher response to acid pyrophosphate anions. Detailed spectroscopic studies show that the pyrophosphate response is based on the ligand displacement mechanism.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Bin Liu
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Xiumin Liu
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Matt Panzner
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325 U.S.A
| |
Collapse
|
29
|
Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 2014; 44:4185-91. [PMID: 25286013 DOI: 10.1039/c4cs00280f] [Citation(s) in RCA: 1052] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quantitative determination of specific analytes is essential for a variety of applications ranging from life sciences to environmental monitoring. Optical sensing allows non-invasive measurements within biological milieus, parallel monitoring of multiple samples, and less invasive imaging. Among the optical sensing methods currently being explored, ratiometric fluorescence sensing has received particular attention as a technique with the potential to provide precise and quantitative analyses. Among its advantages are high sensitivity and inherent reliability, which reflect the self-calibration provided by monitoring two (or more) emissions. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed for sensing, imaging, and biomedical applications. In this research highlight, we provide an overview of the design principles underlying small fluorescent probes that have been applied to the ratiometric detection of various analytes, including cations, anions, and biomolecules in solution and in biological samples. This highlight is designed to be illustrative, not comprehensive.
Collapse
Affiliation(s)
- Min Hee Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | | | | |
Collapse
|
30
|
Rao T, Liang L, Zhang L. Ratiometric fluorescence recognition for pyrophosphate on the basis of terpyridine derivative. ANAL SCI 2014; 29:1165-9. [PMID: 24334982 DOI: 10.2116/analsci.29.1165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diphosphate (pyrophosphate, PPi) is vital for organisms, and therefore its detection is of special importance. In this paper, one cadmium complex of terpyridine (tpy) derivative, 4'-(aminomethylphenyl)-2,2':6',2"-terpyridine (aptpy), has been reported for the ratiometric fluorescence recognition of PPi. When added with cadmium, the emission of aptpy at 358 nm was greatly enhanced and red shifted to 397 nm due to the complexation-induced ICT process, which then blue shifted to 349 nm upon the further addition of PPi. Based on the different response of dual fluorescence emissions at 349 and 397 nm, a ratiometric fluorescence method could be successfully established for the fluorescence recognition of PPi. With that, PPi could be successfully discriminated from other structurally similar anions, including nucleotide triphosphates.
Collapse
Affiliation(s)
- Tongde Rao
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Chemistry and Environmental Engineering, Chongqing Three Gorges University
| | | | | |
Collapse
|
31
|
Lee SH, Rhee HW, van Noort D, Lee HJ, Park HH, Shin IS, Hong JI, Park TH. Microfluidic bead-based sensing platform for monitoring kinase activity. Biosens Bioelectron 2014; 57:1-9. [DOI: 10.1016/j.bios.2014.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
32
|
Fermi A, Ceroni P, Roy M, Gingras M, Bergamini G. Synthesis, Characterization, and Metal Ion Coordination of a Multichromophoric Highly Luminescent Polysulfurated Pyrene. Chemistry 2014; 20:10661-8. [DOI: 10.1002/chem.201402021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 02/04/2023]
|
33
|
A BODIPY-based fluorescent chemosensor for Cu2+ and biological thiols, and its application as a Cu2+ probe in live cell imaging. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Facile synthesis of multifunctional multi-walled carbon nanotube for pathogen Vibrio alginolyticus detection in fishery and environmental samples. Talanta 2014; 128:311-8. [PMID: 25059166 DOI: 10.1016/j.talanta.2014.04.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/09/2014] [Accepted: 04/12/2014] [Indexed: 11/22/2022]
Abstract
Interest in carbon nanotubes for detecting the presence of pathogens arises because of developments in chemical vapor deposition synthesis and progresses in biomolecular modification. Here we reported the facile synthesis of multi-walled carbon nanotubes (MWCNTs), which functioned as immuno-, magnetic, fluorescent sensors in detecting Vibrio alginolyticus (Va). The structures and properties of functionalized MWCNTs were characterized by ultraviolet (UV), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), magnetic property measurement system (MPMS) and fluorescent spectra (FL). It was found that the functionalized MWCNTs showed: (1) low nonspecific adsorption for antibody-antigen, (2) strong interaction with antibody, and (3) high immune-magnetic activity for pathogenic cells. Further investigations revealed a strong positive linear relationship (R=0.9912) between the fluorescence intensity and the concentration of Va in the range of 9.0 × 10(2) to 1.5 × 10(6) cfum L(-1). Moreover, the relative standard deviation for 11 replicate detections of 1.0 × 10(4) cfum L(-1) Va was 2.4%, and no cross-reaction with the other four strains was found, indicating a good specificity for Va detection. These results demonstrated the remarkable advantages of the multifunctional MWCNTs, which offer great potential for the rapid, sensitive and quantitative detection of Va in fishery and environmental samples.
Collapse
|
35
|
Push-Pull-Type Purine Nucleoside-Based Fluorescent Sensors for the Selective Detection of Pd2+in Aqueous Buffer. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Wang J, Chen W, Liu X, Wesdemiotis C, Pang Y. A Mononuclear Zinc Complex for Selective Detection of Diphosphate via Fluorescence ESIPT Turn-On. J Mater Chem B 2014; 2:3349-3354. [PMID: 24999430 DOI: 10.1039/c4tb00020j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear zinc complex has been found to exhibit unexpected selectivity for biologically important diphosphate anions (PPi and ADP). The diphosphate binding could turn-on the ESIPT, whose study reveals mechanistic insight to aid the future design of new sensors.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Weihua Chen
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Xiumin Liu
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A ; Maurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325 U.S.A
| |
Collapse
|
37
|
Zhu H, Fan J, Zhang S, Cao J, Song K, Ge D, Dong H, Wang J, Peng X. Ratiometric fluorescence imaging of lysosomal Zn2+release under oxidative stress in neural stem cells. Biomater Sci 2014; 2:89-97. [DOI: 10.1039/c3bm60186b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Zhang P, Wang Y, Chang Y, Xiong ZH, Huang CZ. Highly selective detection of bacterial alarmone ppGpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Biosens Bioelectron 2013; 49:433-7. [PMID: 23810912 DOI: 10.1016/j.bios.2013.05.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
In this study, a facile strategy for highly selective and sensitive detection of bacterial alarmone, ppGpp, which is generated when bacteria face stress circumstances such as nutritional deprivation, has been established by developing an off-on fluorescent probe of Cu(2+)-mediated silver nanoclusters (Ag NCs). This work not only achieves highly selective detection of ppGpp in a broad range concentration of 2-200 μM, but also improves our understanding of the specific recognitions among DNA-Ag NCs, Cu(2+), and ppGpp. The present strategy, together with other reports on the Ag NCs-related analytical methods, has also identified that Ag NCs functionalized with different molecules on their surfaces can be engineered fluorescent probes for a wide range of applications such as biosensing and bioimaging.
Collapse
Affiliation(s)
- Pu Zhang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | | | | | | | | |
Collapse
|
39
|
Oh J, Hong JI. Discrimination of redox-responsible biomolecules by a single molecular sensor. Org Lett 2013; 15:1210-3. [PMID: 23461730 DOI: 10.1021/ol303403x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new application of a fluorescent sensor (PyDPA) for the discrimination of redox-responsible molecules is reported. Nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(+)/NADP(+)) and flavin mononucleotide/flavin adenine dinucleotide (FMN/FAD) were differentiated by means of ratiometric fluorescence change from excimer-monomer equilibrium and time-dependent fluorescence change, respectively.
Collapse
Affiliation(s)
- Jinrok Oh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | | |
Collapse
|
40
|
Baek K, Eom MS, Kim S, Han MS. Metal ion-prompted pyrene–excimer formation via an anion-mediated process and its application for a ratiometric Zn2+ chemosensor with high selectivity over Cd2+. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Wu X, Li H, Kan Y, Yin B. A regeneratable and highly selective fluorescent probe for sulfide detection in aqueous solution. Dalton Trans 2013; 42:16302-10. [DOI: 10.1039/c3dt51953h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Liang LJ, Huang CZ. Spectral study on the unique enhanced fluorescence of guanosine triphosphate by zinc ions. Talanta 2012; 104:198-203. [PMID: 23597910 DOI: 10.1016/j.talanta.2012.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Binding effect of guanosine triphosphate (GTP) with metal ions is involved in many biologically important processes, and so its investigation has been one interesting research focus for many chemical and biochemical research groups. In this contribution, we presented the unique fluorescence recovery and enhancement of GTP induced by Zn(II) based on the spectrofluorometric method. When excited at 280 nm, GTP is hardly fluorescent at the alkaline condition. However, the presence of Zn(II) caused an obvious fluorescence emission of GTP at 346 nm, and the binding molar ratio between GTP and Zn(II) had been proved to be 1. The investigations of binding property of various nucleotides with metal ions demonstrated that this fluorescence recovery and enhancement of GTP with Zn(II) was highly specific, which could successfully discriminate GTP from other structurally similar nucleotides including GDP and GMP. Furthermore, similar fluorescence response of the bacterial alarmone ppGpp to Zn(II) had also been identified.
Collapse
Affiliation(s)
- Li Jiao Liang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | |
Collapse
|
43
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liang LJ, Zhen SJ, Zhao XJ, Huang CZ. A ratiometric fluorescence recognition of guanosine triphosphate on the basis of Zn(II) complex of 1,4-bis(imidazol-1-ylmethyl) benzene. Analyst 2012; 137:5291-6. [PMID: 23013938 DOI: 10.1039/c2an35743g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As one vital member among the family of phosphates, guanosine triphosphate (GTP) not only plays a very important role in many critical biological processes but also closely associates with definite pathological states. Based on the ratiometric fluorescence response of the zinc complex of 1,4-bis(imidazol-1-ylmethyl) benzene (bix) in this contribution, a highly selective recognition of GTP has been successfully developed. The fluorescence of bix-Zn(II) at 289 nm decreased in the presence of GTP with the appearance of one new emission band at 341 nm, resulting in ratiometric fluorescence changes with the concentration of GTP. With that, ratiometric fluorescence recognition for GTP could be effectively established, and so GTP could be successfully discriminated from other structurally similar anions, including ATP and PPi. Furthermore, bix-Zn(II) also has a ratiometric fluorescence response to DNA sequences containing guanine.
Collapse
Affiliation(s)
- Li Jiao Liang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | |
Collapse
|
45
|
Ngo HT, Liu X, Jolliffe KA. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 2012; 41:4928-65. [PMID: 22688834 DOI: 10.1039/c2cs35087d] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This critical review covers the developments in anion recognition and sensing using Zn(II)-dipicolylamine functionalized receptors over the past decade with emphasis on recent rapid advances in the last five years.
Collapse
Affiliation(s)
- Huy Tien Ngo
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
46
|
Pampanin DM, Larssen E, Provan F, Sivertsvik M, Ruoff P, Sydnes MO. Detection of small bioactive peptides from Atlantic herring (Clupea harengus L.). Peptides 2012; 34:423-6. [PMID: 22342594 DOI: 10.1016/j.peptides.2012.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 11/17/2022]
Abstract
Recent research has shown that fish residual materials contain a range of components with interesting biological activity. Therefore, there is a great potential in the marine bioprocess industry to utilize these by-products as starting material for generating more valuable products. The aim of the present study was to search for bioactive peptides (in particular small natural bioactive peptides with molecular weight lower than 10 kDa) in Atlantic herring (Clupea harengus L.) by-products such as skin and more general residual materials. By such means a range of peptides with claimed interesting biological activities was found. Herein the activity of the detected bioactive peptides and strategies for isolating peptide fragments containing the bioactive motif is discussed. Identification of bioactive peptides in crude peptide/protein sources (skin and residual materials) was performed directly using a combination of mass spectrometry (Orbitrap), bioinformatics and database search. This method was a good angle of approach in order to map the potential in new species and species that have been very little studied.
Collapse
Affiliation(s)
- Daniela M Pampanin
- Biomiljø, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Yan L, Ye Z, Peng C, Zhang S. A new perylene diimide-based fluorescent chemosensor for selective detection of ATP in aqueous solution. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Abstract
During stress, bacteria undergo extensive physiological transformations, many of which are coordinated by ppGpp. Although ppGpp is best known for enhancing cellular resilience by redirecting the RNA polymerase (RNAP) to certain genes, it also acts as a signal in many other cellular processes in bacteria. After a brief overview of ppGpp biosynthesis and its impact on promoter selection by RNAP, we discuss how bacteria exploit ppGpp to modulate the synthesis, stability or activity of proteins or regulatory RNAs that are crucial in challenging environments, using mechanisms beyond the direct regulation of RNAP activity.
Collapse
|
49
|
Wang H, Yang L, Zhang W, Zhou Y, Zhao B, Li X. A colorimetric probe for copper(II) ion based on 4-amino-1,8-naphthalimide. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2011.07.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
|