1
|
Zheng M, Kong L, Gao J. Boron enabled bioconjugation chemistries. Chem Soc Rev 2024. [PMID: 39479937 PMCID: PMC11525960 DOI: 10.1039/d4cs00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 11/02/2024]
Abstract
Novel bioconjugation reactions have been heavily pursued for the past two decades. A myriad of conjugation reactions have been developed for labeling molecules of interest in their native context as well as for constructing multifunctional molecular entities or stimuli-responsive materials. A growing cluster of bioconjugation reactions were realized by tapping into the unique properties of boron. As a rare element in human biology, boronic acids and esters exhibit remarkable biocompatibility. A number of organoboron reagents have been evaluated for bioconjugation, targeting the reactivity of either native biomolecules or those incorporating bioorthogonal functional groups. Owing to the dynamic nature of B-O and B-N bond formation, a significant portion of the boron-enabled bioconjugations exhibit rapid reversibility and accordingly have found applications in the development of reversible covalent inhibitors. On the other hand, stable bioconjugations have been developed that display fast kinetics and significantly expand the repertoire of bioorthogonal chemistry. This contribution presents a summary and comparative analysis of the recently developed boron-mediated bioconjugations. Importantly, this article seeks to provide an in-depth discussion of the thermodynamic and kinetic profiles of these boron-enabled bioconjugations, which reveals structure-reactivity relationships and provides guidelines for bioapplications.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Lingchao Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
2
|
Zhang R, Xu J, Liu S, Si S, Chen J, Wang L, Chen WW, Zhao B. Direct Enantioselective α-C-H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis. J Am Chem Soc 2024; 146:25927-25933. [PMID: 39259771 DOI: 10.1021/jacs.4c09840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Direct asymmetric α-C-H conjugate addition of propargylamines to α,β-unsaturated ketones remains a great challenge due to the low α-amino C-H acidity of propargylamines and the nucleophilic interference of the NH2 group. Utilizing a new type of pyridoxals featuring a benzene-pyridine biaryl skeleton and a bulky amide side chain as carbonyl catalyst, we have accomplished direct asymmetric α-C-H conjugate addition of NH2-unprotected propargylamines to α,β-unsaturated ketones. The adducts undergo subsequent in situ intramolecular cyclization, delivering a wide range of chiral polysubstituted 1-pyrrolines in high yields (up to 92%) with excellent diastereo- and enatioelectivities (up to >20:1 dr and 99% ee). This work has demonstrated a straightforward approach to access pharmaceutically important chiral 1-pyrrolines, and it has also provided an impressive instance of direct asymmetric functionalization of inert C-H bonds enabled by biomimetic organocatalysts.
Collapse
Affiliation(s)
- Ruixin Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Siqi Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shibo Si
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiayao Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Lingxiao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
3
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Cai W, Cai D, Liang H, Ren X, Zhao B. Asymmetric Biomimetic Transamination of Trifluoromethyl Ketones. J Org Chem 2023. [PMID: 36696680 DOI: 10.1021/acs.joc.2c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the presence of chiral pyridoxamine 4b as the catalyst and 2,2-diphenylglycine (3) as the amine source, asymmetric biomimetic transamination of trifluoromethyl ketones produces optically active α-trifluoromethyl amines 6 in 81-98% yields with 88-95% ee's under mild conditions.
Collapse
Affiliation(s)
- Weiqi Cai
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Dongchen Cai
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Hanyu Liang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xinyi Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
5
|
Catalytic asymmetric α C(sp3)–H addition of benzylamines to aldehydes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ji P, Liu X, Xu J, Zhang X, Guo J, Chen W, Zhao B. Direct Asymmetric α‐C−H Addition of N‐unprotected Propargylic Amines to Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206111. [DOI: 10.1002/anie.202206111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Pengwei Ji
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xiaopei Liu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xu Zhang
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Wen‐Wen Chen
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
7
|
Ji P, Liu X, Xu J, Zhang X, Guo J, Chen W, Zhao B. Direct Asymmetric α‐C−H Addition of N‐unprotected Propargylic Amines to Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengwei Ji
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xiaopei Liu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xu Zhang
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Wen‐Wen Chen
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
8
|
Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen WW, Zhao B. Asymmetric α-Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200850. [PMID: 35182094 DOI: 10.1002/anie.202200850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Ruixin Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Qingfang Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Zi Ye
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
9
|
Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen WW, Zhao B. Asymmetric a‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiguo Ma
- Shanghai Normal University Chemistry CHINA
| | - Bin Gao
- Shanghai Normal University Chemistry CHINA
| | | | | | | | - Zi Ye
- Shanghai Normal University Chemistry CHINA
| | - Wen-Wen Chen
- Shanghai Normal University Chemistry 100 Guilin Rd 200234 Shanghai CHINA
| | - Baoguo Zhao
- Shanghai Normal University Chemistry Department 100 Guiling Rd 200234 Shanghai CHINA
| |
Collapse
|
10
|
Mayer RJ, Kaur H, Rauscher SA, Moran J. Mechanistic Insight into Metal Ion-Catalyzed Transamination. J Am Chem Soc 2021; 143:19099-19111. [PMID: 34730975 DOI: 10.1021/jacs.1c08535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several classes of biological reactions that are mediated by an enzyme and a co-factor can occur, to a slower extent, not only without the enzyme but even without the co-factor, under catalysis by metal ions. This observation has led to the proposal that metabolic pathways progressively evolved from using inorganic catalysts to using organocatalysts of increasing complexity. Transamination, the biological process by which ammonia is transferred between amino acids and α-keto acids, has a mechanism that has been well studied under enzyme/co-factor catalysis and under co-factor catalysis, but the metal ion-catalyzed variant was generally studied mostly at high temperatures (70-100 °C), and the details of its mechanism remained unclear. Here, we investigate which metal ions catalyze transamination under conditions relevant to biology (pH 7, 20-50 °C) and study the mechanism in detail. Cu2+, Ni2+, Co2+, and V5+ were identified as the most active metal ions under these constraints. Kinetic, stereochemical, and computational studies illuminate the mechanism of the reaction. Cu2+ and Co2+ are found to predominantly speed up the reaction by stabilizing a key imine intermediate. V5+ is found to accelerate the reaction by increasing the acidity of the bound imine. Ni2+ is found to do both to a limited extent. These results show that direct metal ion-catalyzed amino group transfer is highly favored even in the absence of co-factors or protein catalysts under biologically compatible reaction conditions.
Collapse
Affiliation(s)
- Robert J Mayer
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Harpreet Kaur
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Sophia A Rauscher
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Joseph Moran
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| |
Collapse
|
11
|
Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aolin Cheng
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Liangliang Zhang
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Tao Liu
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kun Zhang
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
12
|
Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:20166-20172. [PMID: 34139067 DOI: 10.1002/anie.202104031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Indexed: 01/26/2023]
Abstract
The direct asymmetric aldol reaction of glycinates represents an intriguing and straightforward strategy to make biologically significant chiral β-hydroxy-α-amino-acid derivatives. But it is not easy to realize the transformation due to the disruption of the reactive NH2 group of glycinates. Inspired by the enzymatic aldol reaction of glycine, we successfully developed an asymmetric aldol reaction of glycinate 5 and trifluoromethyl ketones 4 with 0.1-0.0033 mol % of chiral N-methyl pyridoxal 7 a as the catalyst, producing chiral β-trifluoromethyl-β-hydroxy-α-amino-acid esters 6 in 55-82 % yields (for the syn-diastereomers) with up to >20:1 dr and 99 % ee under very mild conditions. The reaction proceeds via a catalytic cycle similar to the enzymatic aldol reaction of glycine. Pyridoxal catalyst 7 a activates both reactants at the same time and brings them together in a specific spatial orientation, accounting for the high efficiency as well as excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Aolin Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Liangliang Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tao Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kun Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
13
|
Asymmetric biomimetic transamination of α-keto amides to peptides. Nat Commun 2021; 12:5174. [PMID: 34462436 PMCID: PMC8405696 DOI: 10.1038/s41467-021-25449-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Peptides are important compounds with broad applications in many areas. Asymmetric transamination of α-keto amides can provide an efficient strategy to synthesize peptides, however, the process has not been well developed yet and still remains a great challenge in both enzymatic and catalytic chemistry. For biological transamination, the high activity is attributed to manifold structural and electronic factors of transaminases. Based on the concept of multiple imitation of transaminases, here we report N-quaternized axially chiral pyridoxamines 1 for enantioselective transamination of α-keto amides, to produce various peptides in good yields with excellent enantio- and diastereoselectivities. The reaction is especially attractive for the synthesis of peptides made of unnatural amino acids since it doesn’t need great efforts to make chiral unnatural amino acids before amide bond formation. Asymmetric transamination of α-keto amides could provide an efficient strategy to synthesise peptides, but has not been well developed yet. Here, the authors design chiral pyridoxamine catalyst and realize the asymmetric biomimetic transamination of α-keto amides, providing access to various peptides with excellent enantiopurities.
Collapse
|
14
|
Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021; 10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Designing simple biomaterials to replicate the biochemical and mechanical properties of tissues is an ongoing challenge in tissue engineering. For several decades, new biomaterials have been engineered using cytocompatible chemical reactions and spontaneous ligations via click chemistries to generate scaffolds and water swollen polymer networks, known as hydrogels, with tunable properties. However, most of these materials are static in nature, providing only macroscopic tunability of the scaffold mechanics, and do not reflect the dynamic environment of natural extracellular microenvironment. For more complex applications such as organoids or co-culture systems, there remain opportunities to investigate cells that locally remodel and change the physicochemical properties within the matrices. In this review, advanced biomaterials where dynamic covalent chemistry is used to produce stable 3D cell culture models and high-resolution constructs for both in vitro and in vivo applications, are discussed. The implications of dynamic covalent chemistry on viscoelastic properties of in vitro models are summarized, case studies in 3D cell culture are critically analyzed, and opportunities to further improve the performance of biomaterials for 3D tissue engineering are discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Alexander E. G. Baker
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| |
Collapse
|
15
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
16
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:10588-10592. [PMID: 33554429 DOI: 10.1002/anie.202017306] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Direct α-functionalization of NH2 -free glycinates with relatively weak electrophiles such as α,β-unsaturated esters still remains a big challenge in organic synthesis. With chiral pyridoxal 5 d as a carbonyl catalyst, direct asymmetric conjugated addition at the α-C of glycinate 1 a with α,β-unsaturated esters 2 has been successfully realized, to produce various chiral pyroglutamic acid esters 4 in 14-96 % yields with 81-97 % ee's after in situ lactamization. The trans and cis diastereomers can be obtained at the same time by chromatography and both of them can be easily converted into chiral 4-substituted pyrrolidin-2-ones such as Alzheimer's drug Rolipram (11) with the same absolute configuration via tert-butyl group removal and subsequent Barton decarboxylation.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
17
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
18
|
Ooi T, Ohmatsu K, Kiyokawa M, Shirai Y, Nagato Y. Hybrid Catalysis of 8-Quinolinecarboxaldehyde and Brønsted Acid for Efficient Racemization of α-Amino Amides and Its Application in Chemoenzymatic Dynamic Kinetic Resolution. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Cambray S, Gao J. Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes. Acc Chem Res 2018; 51:2198-2206. [PMID: 30110146 DOI: 10.1021/acs.accounts.8b00154] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biocompatible and bioorthogonal conjugation reactions have proven to be powerful tools in biological research and medicine. While the advent of bioorthogonal conjugation chemistries greatly expands our capacity to interrogate specific biomolecules in situ, biocompatible reactions that target endogenous reactive groups have given rise to a number of covalent drugs as well as a battery of powerful research tools. Despite the impressive progress, limitations do exist with the current conjugation chemistries. For example, most known bioorthogonal conjugations suffer from slow reaction rates and imperfect bioorthogonality. On the other hand, covalent drugs often display high toxicity due to off-target labeling and immunogenicity. These limitations demand continued pursuit of conjugation chemistries with optimal characteristics for biological applications. A spate of papers appearing in recent literature report the conjugation chemistries of 2-formyl and 2-acetyl phenylboronic acids (abbreviated as 2-FPBA and 2-APBA, respectively). These simple reactants are found to undergo fast conjugation with various nucleophiles under physiological conditions, showing great promise for biological applications. The versatile reactivity of 2-FPBA and 2-APBA manifests in dynamic conjugation with endogenous nucleophiles as well as conjugation with designer nucleophiles in a bioorthogonal manner. 2-FPBA/APBA conjugates with amines in biomolecules, such as lysine side chains and aminophospholipids, in a highly dynamic manner to give iminoboronates. In contrast to typical imines, iminoboronates enjoy much improved thermodynamic stability, yet are kinetically labile for hydrolysis due to imine activation by the boronic acid. Dynamic conjugations as such present a novel binding mechanism analogous to hydrogen bonding and electrostatic interactions. Implementation of this covalent binding mechanism has yielded reversible covalent probes of prevalent bacterial pathogens. It has also resulted in reversible covalent inhibitors of a therapeutically important protein Mcl-1. Such covalent probes/inhibitors with 2-FPBA/APBA warheads avoid permanent modification of their biological target, potentially able to mitigate off-target labeling and immunogenicity of covalent drugs. The dynamic conjugation of 2-FPBA/APBA has been recently extended to N-terminal cysteines, which can be selectively targeted via formation of a thiazolidino boronate (TzB) complex. The dynamic TzB formation expands the toolbox for site-specific protein labeling and the development of covalent drugs. On the front of bioorthogonal conjugation, 2-FPBA/APBA has been found to conjugate with α-nucleophiles under physiologic conditions with rate constant ( k2) over 1000 M-1 s-1, which overcomes the slow kinetics problems and rekindles the interest of using the conjugation of α-nucleophiles for biological studies. With fast kinetics being a shared feature, this family of conjugation chemistries gives remarkably diverse product structures depending on the choice of nucleophile. Importantly, both dynamic and irreversible conjugations have been developed, which we believe will enable a wide array of applications in biological research. In this Account, we collectively examine this rapidly expanding family of conjugation reactions, seeking to elucidate the unifying principles that would guide further development of novel conjugation reactions, as well as their applications in biology.
Collapse
Affiliation(s)
- Samantha Cambray
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
20
|
Wen W, Chen L, Luo MJ, Zhang Y, Chen YC, Ouyang Q, Guo QX. Chiral Aldehyde Catalysis for the Catalytic Asymmetric Activation of Glycine Esters. J Am Chem Soc 2018; 140:9774-9780. [PMID: 29995401 DOI: 10.1021/jacs.8b06676] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral aldehyde catalysis is uniquely suitable for the direct asymmetric α-functionalization of N-unprotected amino acids, because aldehydes can reversibly form imines. However, there have been few successful reports of these transformations. In fact, only chiral aldehyde catalyzed aldol reactions of amino acids and alkylation of 2-amino malonates have been reported with good chiral induction. Here, we report a novel type of chiral aldehyde catalyst based on face control of the enolate intermediates. The resulting chiral aldehyde is the first efficient nonpyridoxal-dependent catalyst that can promote the direct asymmetric α-functionalization of N-unprotected glycine esters. Possible transition states and the proton transfer process were investigated by density functional theory calculations.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Lei Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ming-Jing Luo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Yan Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ying-Chun Chen
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Qin Ouyang
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
21
|
Amyes TL, Richard JP. Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites. Synlett 2017; 28:2407-2421. [PMID: 28993718 DOI: 10.1055/s-0036-1588778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methods are described for the determination of pKas for weak carbon acids in water. The application of these methods to the determination of the pKas for a variety of carbon acids including nitriles, imidazolium cations, amino acids, peptides and their derivatives and, α-iminium cations is presented. The substituent effects on the acidity of these different classes of carbon acids are discussed; and, the relevance of these results to catalysis of the deprotonation of amino acids by enzymes and by pyridoxal 5'-phosphate is reviewed. The procedure for estimating the pKa of uridine 5'-phosphate for C-6 deprotonation at the active site of orotidine 5'-phosphate decarboxylase is described, and the effect of a 5-F substituent on carbon acidity of the enzyme-bound substrate is discussed.
Collapse
Affiliation(s)
- Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000
| |
Collapse
|
22
|
Targeting biomolecules with reversible covalent chemistry. Curr Opin Chem Biol 2016; 34:110-116. [PMID: 27599186 DOI: 10.1016/j.cbpa.2016.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
Interaction of biomolecules typically proceeds in a highly selective and reversible manner, for which covalent bond formation has been largely avoided due to the potential difficulty of dissociation. However, employing reversible covalent warheads in drug design has given rise to covalent enzyme inhibitors that serve as powerful therapeutics, as well as molecular probes with exquisite target selectivity. This review article summarizes the recent advances in the development of reversible covalent chemistry for biological and medicinal applications. Specifically, we document the chemical strategies that allow for reversible modification of the three major classes of nucleophiles in biology: thiols, alcohols and amines. Emphasis is given to the chemical mechanisms that underlie the development of these reversible covalent reactions and their utilization in biology.
Collapse
|
23
|
Bandyopadhyay A, Gao J. Iminoboronate Formation Leads to Fast and Reversible Conjugation Chemistry of α-Nucleophiles at Neutral pH. Chemistry 2015; 21:14748-52. [PMID: 26311464 DOI: 10.1002/chem.201502077] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/09/2022]
Abstract
Bioorthogonal reactions that are fast and reversible under physiological conditions are in high demand for biological applications. Herein, it is shown that an ortho boronic acid substituent makes aryl ketones rapidly conjugate with α-nucleophiles at neutral pH. Specifically, 2-acetylphenylboronic acid and derivatives were found to conjugate with phenylhydrazine with rate constants of 10(2) to 10(3) M(-1) s(-1) , comparable to the fastest bioorthogonal conjugations known to date. (11) B NMR analysis revealed the varied extent of iminoboronate formation of the conjugates, in which the imine nitrogen forms a dative bond with boron. The iminoboronate formation activates the imines for hydrolysis and exchange, rendering these oxime/hydrazone conjugations reversible and dynamic under physiological conditions. The fast and dynamic nature of the iminoboronate chemistry should find wide applications in biology.
Collapse
Affiliation(s)
- Anupam Bandyopadhyay
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467 (USA)
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467 (USA).
| |
Collapse
|
24
|
Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Nat Commun 2015; 6:6561. [PMID: 25761996 PMCID: PMC4363082 DOI: 10.1038/ncomms7561] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
Synthetic molecules that target specific lipids serve as powerful tools for understanding membrane biology and may also enable new applications in biotechnology and medicine. For example, selective recognition of bacterial lipids may give rise to novel antibiotics, as well as diagnostic methods for bacterial infection. Currently known lipid-binding molecules primarily rely on noncovalent interactions to achieve lipid selectivity. Here we show that targeted recognition of lipids can be realized by selectively modifying the lipid of interest via covalent bond formation. Specifically, we report an unnatural amino acid that preferentially labels amine-presenting lipids via iminoboronate formation under physiological conditions. By targeting phosphatidylethanolamine and lysylphosphatidylglycerol, the two lipids enriched on bacterial cell surfaces, the iminoboronate chemistry allows potent labelling of Gram-positive bacteria even in the presence of 10% serum, while bypassing mammalian cells and Gram-negative bacteria. The covalent strategy for lipid recognition should be extendable to other important membrane lipids.
Collapse
|
25
|
C–H Activation in Pyridoxal-5′-phosphate and Pyridoxamine-5′-phosphate Schiff Bases: Effect of Metal Chelation. A Computational Study. J Phys Chem B 2013; 117:2339-47. [DOI: 10.1021/jp311861p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Casasnovas R, Adrover M, Ortega-Castro J, Frau J, Donoso J, Muñoz F. C–H Activation in Pyridoxal-5′-phosphate Schiff Bases: The Role of the Imine Nitrogen. A Combined Experimental and Computational Study. J Phys Chem B 2012; 116:10665-75. [DOI: 10.1021/jp303678n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rodrigo Casasnovas
- Institut
d’Investigació en Ciènces de la Salut (IUNICS),
Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut
d’Investigació en Ciènces de la Salut (IUNICS),
Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Joaquin Ortega-Castro
- Institut
d’Investigació en Ciènces de la Salut (IUNICS),
Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut
d’Investigació en Ciènces de la Salut (IUNICS),
Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Josefa Donoso
- Institut
d’Investigació en Ciènces de la Salut (IUNICS),
Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Francisco Muñoz
- Institut
d’Investigació en Ciènces de la Salut (IUNICS),
Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
27
|
Ho J, Coote ML, Easton CJ. Validation of the distal effect of electron-withdrawing groups on the stability of peptide enolates and its exploitation in the controlled stereochemical inversion of amino acid derivatives. J Org Chem 2011; 76:5907-14. [PMID: 21714508 DOI: 10.1021/jo200994z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical studies had predicted that N-electron-withdrawing substituents, hydrogen bonding, and protonation at amide nitrogen selectively increase the acidity of a distal proton adjacent to the amide carbonyl to the extent that the α-carbonyl acidity of some N-substituted amides exceeds that of typical ketones. Now, in the present work, competitive, base-catalyzed hydrogen-deuterium exchange experiments, with diisopropyl ketone and a series of N-substituted acetamides and diketopiperazines, have established that there is a strong correlation between the calculated acidities and the experimental rates of deprotonation in these systems. The results show that the rates of exchange of the distal protons of N-acylated and N-sulfonylated amides are more than 4 orders of magnitude faster than those of the N-methylated analogues and that the acylated and sulfonylated amides are much more reactive in this regard than diisopropyl ketone. The magnitude and regioselectivity of the distal effect is sufficient for practical applications and has been exploited in the manipulation of N-acetyl α,α'-disubstituted diketopiperazines for the controlled α-deuteration and stereochemical inversion of N-methylamino acids, and in the production of α-deuterated (2R,3S)-N-methylalloisoleucine from the nondeuterated (2S,3S)-isoleucine diastereomer.
Collapse
Affiliation(s)
- Junming Ho
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
28
|
Controlling reaction specificity in pyridoxal phosphate enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1407-18. [PMID: 21664990 DOI: 10.1016/j.bbapap.2011.05.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/20/2022]
Abstract
Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carbanionic intermediates at Cα of the substrate. This review attempts to summarize the mechanisms by which reaction specificity can be achieved in PLP enzymes by focusing on three aspects of these reactions: stereoelectronic effects, protonation state of the external aldimine intermediate, and interaction of the carbanionic intermediate with the protein side chains present in the active site. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
|
29
|
Malabanan MM, Go MK, Amyes TL, Richard JP. Wildtype and engineered monomeric triosephosphate isomerase from Trypanosoma brucei: partitioning of reaction intermediates in D2O and activation by phosphite dianion. Biochemistry 2011; 50:5767-79. [PMID: 21553855 DOI: 10.1021/bi2005416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Product yields for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D2O at pD 7.9 catalyzed by wildtype triosephosphate isomerase from Trypanosoma brucei brucei (Tbb TIM) and a monomeric variant (monoTIM) of this wildtype enzyme were determined by (1)H NMR spectroscopy and were compared with the yields determined in earlier work for the reactions catalyzed by TIM from rabbit and chicken muscle [O'Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2005), Biochemistry 44, 2610 - 2621]. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen, d-DHAP from isomerization with incorporation of deuterium from D2O into C-1 of DHAP, and d-GAP from incorporation of deuterium from D2O into C-2 of GAP. The yield of DHAP formed by intramolecular transfer of hydrogen decreases from 49% for the muscle enzymes to 40% for wildtype Tbb TIM to 34% for monoTIM. There is no significant difference in the ratio of the yields of d-DHAP and d-GAP for wildtype TIM from muscle sources and Trypanosoma brucei brucei, but partitioning of the enediolate intermediate of the monoTIM reaction to form d-DHAP is less favorable ((k(C1))(D)/(k(C2))(D) = 1.1) than for the wildtype enzyme ((k(C1))(D)/(k(C2))(D) = 1.7). Product yields for the wildtype Tbb TIM and monoTIM-catalyzed reactions of glycolaldehyde labeled with carbon-13 at the carbonyl carbon ([1-(13)C]-GA) at pD 7.0 in the presence of phosphite dianion and in its absence were determined by (1)H NMR spectroscopy [Go, M. K., Amyes, T. L., and Richard, J. P. (2009) Biochemistry 48, 5769-5778]. There is no detectable difference in the yields of the products of wildtype muscle and Tbb TIM-catalyzed reactions of [1-(13)C]-GA in D2O. The kinetic parameters for phosphite dianion activation of the reactions of [1-(13)C]-GA catalyzed by wildtype Tbb TIM are similar to those reported for the enzyme from rabbit muscle [Amyes, T. L. and Richard, J. P. (2007) Biochemistry 46, 5841-5854], but there is no detectable dianion activation of the reaction catalyzed by monoTIM. The engineered disruption of subunit contacts at monoTIM causes movement of the essential side chains of Lys-13 and His-95 away from the catalytic active positions. We suggest that this places an increased demand that the intrinsic binding energy of phosphite dianion be utilized to drive the change in the conformation of monoTIM back to the active structure for wildtype TIM.
Collapse
Affiliation(s)
- M Merced Malabanan
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-3000, USA
| | | | | | | |
Collapse
|
30
|
Crugeiras J, Rios A, Riveiros E, Richard JP. Substituent effects on electrophilic catalysis by the carbonyl group: anatomy of the rate acceleration for PLP-catalyzed deprotonation of glycine. J Am Chem Soc 2011; 133:3173-83. [PMID: 21323335 DOI: 10.1021/ja110795m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
First-order rate constants, determined by (1)H NMR, are reported for deuterium exchange between solvent D(2)O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde, and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with (1)H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants k(DO) for deprotonation of α-imino carbon by DO(-). The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log k(OL) and pK(a) was made in estimating the following pK(a)'s for deprotonation of α-imino carbon: pK(a) = 22, glycine-acetone iminium ion; pK(a) = 27, glycine-benzaldehyde imine; pK(a) ≈ 23, glycine-benzaldehyde iminium ion; and, pK(a) = 25, glycine-salicylaldehyde iminium ion. The much lower pK(a) of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013-3021] for carbon deprotonation of the adduct between 5'-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α-pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O(-) ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analogue. The extraordinary activity of DPL in catalysis of deprotonation of α-amino carbon results from the summation of these three smaller effects.
Collapse
Affiliation(s)
- Juan Crugeiras
- Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
31
|
The PLP cofactor: lessons from studies on model reactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1419-25. [PMID: 21182991 DOI: 10.1016/j.bbapap.2010.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/26/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022]
Abstract
Experimental probes of the acidity of weak carbon acids have been developed and used to determine the carbon acid pK(a)s of glycine, glycine derivatives and iminium ion adducts of glycine to the carbonyl group, including 5'-deoxypyridoxal (DPL). The high reactivity of the DPL-stabilized glycyl carbanion towards nucleophilic addition to both DPL and the glycine-DPL iminium ion favors the formation of Claisen condensation products at enzyme active sites. The formation of the iminium ion between glycine and DPL is accompanied by a 12-unit decrease in the pK(a) of 29 for glycine. The complicated effects of formation of glycine iminium ions to DPL and other aromatic and aliphatic aldehydes and ketones on carbon acid pK(a) are discussed. These data provide insight into the contribution of the individual pyridine ring substituents to the catalytic efficiency of DPL. It is suggested that the 5'-phosphodianion group of PLP may play an important role in enzymatic catalysis of carbon deprotonation by providing up to 12 kcal/mol of binding energy that is utilized to stabilize the transition state for the enzymatic reaction. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
|
32
|
Cope SM, Tailor D, Nagorski RW. Determination of the pKa of Cyclobutanone: Brønsted Correlation of the General Base-Catalyzed Enolization in Aqueous Solution and the Effect of Ring Strain. J Org Chem 2010; 76:380-90. [DOI: 10.1021/jo101369w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven M. Cope
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Dishant Tailor
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Richard W. Nagorski
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
33
|
Ho J, Easton CJ, Coote ML. The distal effect of electron-withdrawing groups and hydrogen bonding on the stability of peptide enolates. J Am Chem Soc 2010; 132:5515-21. [PMID: 20337444 DOI: 10.1021/ja100996z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Relative gas-phase carbon acidities have been computed for a series of acetamides, diketopiperazines, and linear dipeptides. The results show that N-electron-withdrawing substituents, protonation, and hydrogen bonding at amide nitrogen in these systems increase the acidity of both a C-H proton adjacent to the amide carbonyl and that of one proximal to the amide nitrogen. There is a good correlation between the magnitudes of the increases at the two positions, but the extent of the increase for the distal C-H adjacent to the carbonyl is greater than that for the proximal C-H, in most cases by a factor of about two. The effects on the stability of the distal enolate are shown to result from predominantly inductive affects. The size of these effects is such that protonation and hydrogen bonding at nitrogen increase the acidity of the distal C-H to almost the same extent as seen for the analogous interactions at the carbonyl oxygen. The effect is also seen in solution, where the computed aqueous pK(a) values are greater for the C-H adjacent to the amide carbonyl, by up to 13 units, and where preliminary experimental studies have shown that N-acetylation of an amide increases the rate of hydrogen-deuterium exchange via formation of the corresponding distal enolate by more than 3 orders of magnitude above the rates of exchange via the proximal enolate, of the nonacetylated amide and of diisopropylketone. The results also indicate that hydrogen bonding to amide nitrogen could be as important as bonding to oxygen in enzyme-catalyzed cleavage of alpha-C-H bonds.
Collapse
Affiliation(s)
- Junming Ho
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
34
|
Danger G, Plasson R, Pascal R. An experimental investigation of the evolution of chirality in a potential dynamic peptide system: N-terminal epimerization and degradation into diketopiperazine. ASTROBIOLOGY 2010; 10:651-662. [PMID: 20735255 DOI: 10.1089/ast.2009.0450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The APED model (activation-polymerization-epimerization-depolymerization) is a unique example of a chemical system that allows symmetry breaking through a dynamic process involving indirect network autocatalysis. In its simplest version, the autocatalytic behavior of this model partly relies on the reproduction of local chiral centers in dipeptides through an epimerization process, with a thermodynamic preference for homochiral chains. We studied the reactivity of di- and tripeptides, containing a N-terminal phenylglycine (Phg) residue, as model compounds for the experimental determination of the kinetic and thermodynamic parameters related to the N-terminal epimerization process. Although the N-terminal residue is prone to spontaneous epimerization, catalysis was required for the epimerization to reach the equilibrium state in reasonable time. Unexpectedly, the observed equilibrium diastereoisomeric excesses have shown a general tendency for more stable heterochiral peptides, especially strong in the case of dipeptides. In parallel to this process, a stereoselective peptide cleavage through diketopiperazine formation was observed. Contrary to the N-terminal epimerization of peptides, the diketopiperazine formation did not need any catalyst, and heterochiral peptides were shown to be dynamically unstabilized, as they were cleaved faster than homochiral peptides. The validity of the extrapolation of these results to other residues and longer peptide chains is discussed, and some directions for future developments of the theoretical model are given.
Collapse
Affiliation(s)
- Grégoire Danger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier 1, Université de Montpellier 2, Montpellier, France.
| | | | | |
Collapse
|
35
|
Felten AE, Zhu G, Aron ZD. Simplifying Pyridoxal: Practical Methods for Amino Acid Dynamic Kinetic Resolution. Org Lett 2010; 12:1916-9. [DOI: 10.1021/ol100319b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Albert E. Felten
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102
| | - Gangguo Zhu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102
| | - Zachary D. Aron
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102
| |
Collapse
|
36
|
The role of pre-association in Brønsted acid-catalyzed decarboxylation and related processes. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0065-3160(08)44007-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Crugeiras J, Rios A, Riveiros E, Richard JP. Substituent effects on the thermodynamic stability of imines formed from glycine and aromatic aldehydes: implications for the catalytic activity of pyridoxal-5'-phosphate. J Am Chem Soc 2009; 131:15815-24. [PMID: 19807092 PMCID: PMC2788968 DOI: 10.1021/ja906230n] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Equilibrium constants for addition of glycine to substituted benzaldehydes to form the corresponding imines and pK(a)'s for ionization of the iminium ions were determined by (1)H NMR analysis in D(2)O. The introduction of a phenoxide anion substituent into the aromatic ring of benzaldehyde leads to a substantial increase in the pK(a) of the iminium ion from 6.3 to 10.2 for p-hydroxybenzaldehyde and to 12.1 for salicylaldehyde. An analysis of the differential effect of ortho- versus para-substitution shows that the iminium ion to salicylaldehyde is stabilized by an intramolecular hydrogen bond in aqueous solution, with an estimated energy ca. 3 kcal/mol larger than can be accounted for by a simple electrostatic interaction. A comparison of the o-O(-) substituent effect on the acidity of the iminium ions of glycine to benzaldehyde and 4-pyridine-carboxaldehyde provides evidence for the existence of an internal hydrogen bond of similar strength in pyridoxal 5'-phosphate (PLP) iminium ions in water. The effects of other ring substituents on the stability of PLP iminium ions are discussed.
Collapse
Affiliation(s)
- Juan Crugeiras
- Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782
| | - Ana Rios
- Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782
| | - Enrique Riveiros
- Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782
| | - John P. Richard
- Santiago de Compostela, Spain and Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| |
Collapse
|
38
|
Tsang WY, Richard JP. Structure-reactivity effects on primary deuterium isotope effects on protonation of ring-substituted alpha-methoxystyrenes. J Am Chem Soc 2009; 131:13952-62. [PMID: 19788330 PMCID: PMC2825562 DOI: 10.1021/ja905080e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary product isotope effects (PIEs) on L(+) and carboxylic acid catalyzed protonation of ring-substituted alpha-methoxystyrenes (X-1) to form oxocarbenium ions X-2(+) in 50/50 (v/v) HOH/DOD were calculated from the yields of the alpha-CH(3) and alpha-CH(2)D labeled ketone products, determined by (1)H NMR. A plot of PIE against reaction driving force shows a maximum PIE of 8.7 for protonation of 4-MeO-1 by Cl(2)CHCOOH (DeltaG(o) = 1.0 kcal/mol). The PIE decreases to 8.1 for protonation of 4-MeO-1 by L(3)O(+) (DeltaG(o) = -2.8 kcal/mol) and to 5.1 for protonation of 3,5-di-NO(2)-1 by MeOCH(2)COOH (DeltaG(o) = 13.1 kcal/mol). The PIE maximum is around DeltaG(o) = 0. Arrhenius-type plots of PIEs on protonation of 4-MeO-1 and 3,5-di-NO(2)-1 by L(3)O(+) and on protonation of X-1 by MeOCH(2)COOH in 50/50 (v/v) HOH/DOD give similar slopes and intercepts. These were used to calculate values of [(E(a))(H) - (E(a))(D)] = -1.2 kcal/mol and (A(H)/A(D)) = 1.0 for the difference in activation energy for reactions of A-H and A-D and for the limiting PIE at infinite temperature, respectively. These parameters are consistent with reaction of the hydron over an energy barrier. There is no evidence for quantum mechanical tunneling of the hydron through the barrier. These PIEs suggest that the transferred hydron at the transition state lies roughly equidistant between the acid donor and base acceptor and contrast with the recently published Brønsted parameters [Richard, J. P.; Williams, K. B. J. Am. Chem. Soc. 2007, 129, 6952-6961], which are consistent with a product-like transition state. An explanation for these seemingly contradictory results is discussed.
Collapse
Affiliation(s)
- Wing-Yin Tsang
- Contribution from the Dept. of Chemistry, University of Buffalo, SUNY, Buffalo, NY 14260-3000
| | - John P. Richard
- Contribution from the Dept. of Chemistry, University of Buffalo, SUNY, Buffalo, NY 14260-3000
| |
Collapse
|
39
|
Richard JP, Amyes TL, Crugeiras J, Rios A. Pyridoxal 5'-phosphate: electrophilic catalyst extraordinaire. Curr Opin Chem Biol 2009; 13:475-83. [PMID: 19640775 DOI: 10.1016/j.cbpa.2009.06.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/16/2009] [Indexed: 11/28/2022]
Abstract
Studies of nonenzymatic electrophilic catalysis of carbon deprotonation of glycine show that pyridoxal 5'-phosphate (PLP) strongly enhances the carbon acidity of alpha-amino acids, but that this is not the overriding mechanistic imperative for cofactor catalysis. Although the fully protonated PLP-glycine iminium ion adduct exhibits an extraordinary low alpha-imino carbon acidity (pK(a)=6), the more weakly acidic zwitterionic iminium ion adduct (pK(a)=17) is selected for use in enzymatic reactions. The similar alpha-imino carbon acidities of the iminium ion adducts of glycine with 5'-deoxypyridoxal and with phenylglyoxylate show that the cofactor pyridine nitrogen plays a relatively minor role in carbanion stabilization. The 5'-phosphodianion group of PLP likely plays an important role in catalysis by providing up to 12 kcal/mol of binding energy that may be utilized for transition state stabilization.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | | | | | | |
Collapse
|
40
|
Ho J, Coote ML. pKa Calculation of Some Biologically Important Carbon Acids - An Assessment of Contemporary Theoretical Procedures. J Chem Theory Comput 2009; 5:295-306. [DOI: 10.1021/ct800335v] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junming Ho
- ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|