1
|
Morin DM, Ansaribaranghar N, Nicot B, Green D, Balcom BJ. Selective enhancement of 1H signal from water and oil in porous media at low field with Overhauser DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107793. [PMID: 39481195 DOI: 10.1016/j.jmr.2024.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
In porous media MR studies, discriminating between oil and water presents a challenge because MR lifetimes are often similar and spectra overlap. Low saturations might suggest an experimental strategy of increasing the static field for increased sensitivity, but susceptibility effects are exacerbated at higher field. Overhauser dynamic nuclear polarization, effective at low static field, was employed with water and oil-soluble nitroxide to selectively enhance water and oil signals. We employ a home-built 2 MHz ceramic magnet to achieve selective enhancement of water and oil, in bulk, and in a rock core. For imaging, we employ a 705 kHz ceramic magnet with a 4 gauss/cm constant gradient configuration to image the hyperpolarized signal. A rock core flooding experiment was undertaken to highlight the advantages of Overhauser enhancement. A simple phase cycling technique may be employed to cancel the thermally polarized 1H signal to isolate the enhanced signal of interest.
Collapse
Affiliation(s)
- Devin M Morin
- UNB MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Naser Ansaribaranghar
- UNB MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | | | - Derrick Green
- Green Imaging Technologies, Fredericton, New Brunswick E3A 8V2, Canada
| | - Bruce J Balcom
- UNB MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
2
|
Grazia Concilio M, Frydman L. Steady state effects introduced by local relaxation modes on J-driven DNP-enhanced NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107542. [PMID: 37672989 DOI: 10.1016/j.jmr.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
One of solution-state Nuclear Magnetic Resonance (NMR)'s main weaknesses, is its relative insensitivity. J-driven Dynamic Nuclear Polarization (JDNP) was recently proposed for enhancing solution-state NMR's sensitivity, by bypassing the limitations faced by conventional Overhauser DNP (ODNP), at the high magnetic fields where most analytical research is performed. By relying on biradicals with inter-electron exchange couplings Jex on the order of the electron Larmor frequency ωE, JDNP was predicted to introduce a transient enhancement in NMR's nuclear polarization at high magnetic fields, and for a wide range of rotational correlation times of medium-sized molecules in conventional solvents. This communication revisits the JDNP proposal, including additional effects and conditions that were not considered in the original treatment. These include relaxation mechanisms arising from local vibrational modes that often dominate electron relaxation in organic radicals, as well as the possibility of using biradicals with Jex of the order of the nuclear Larmor frequency ωN as potential polarizing agents. The presence of these new relaxation effects lead to variations in the JDNP polarization mechanism originally proposed, and indicate that triplet-to-singlet cross-relaxation processes may lead to a nuclear polarization enhancement that persists even at steady states. The physics and potential limitations of the ensuing theoretical derivations, are briefly discussed.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Concilio MG, Frydman L. Microwave-free J-driven dynamic nuclear polarization: A proposal for enhancing the sensitivity of solution-state NMR. Phys Rev E 2023; 107:035303. [PMID: 37073023 DOI: 10.1103/physreve.107.035303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling J_{ex}. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Milani J, Saenz F, Roussel C, Ansermet JP. Heterogeneous Overhauser-DNP on 1 H dominated by scalar coupling in aqueous solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:180-183. [PMID: 36269065 DOI: 10.1002/mrc.5321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The Overhauser Dynamic Nuclear Polarization (O-DNP) of 1 H nuclei usually involves a dipolar coupling with the polarizing agent, whereas scalar coupling via hyperfine interactions are more common with 13 C nuclei. Here, we show a scalar-coupling dominated 1 H O-DNP, using polyaniline as a heterogeneous polarizing agent in an aqueous solution.
Collapse
Affiliation(s)
- Jonas Milani
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Felipe Saenz
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Christophe Roussel
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Section of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
5
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
6
|
Okuno Y, Schwieters CD, Yang Z, Clore GM. Theory and Applications of Nitroxide-based Paramagnetic Cosolutes for Probing Intermolecular and Electrostatic Interactions on Protein Surfaces. J Am Chem Soc 2022; 144:21371-21388. [DOI: 10.1021/jacs.2c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Charles D. Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Zhilin Yang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
7
|
Kircher R, Mross S, Hasse H, Münnemann K. Functionalized Controlled Porous Glasses for Producing Radical-Free Hyperpolarized Liquids by Overhauser DNP. Molecules 2022; 27:molecules27196402. [PMID: 36234939 PMCID: PMC9572983 DOI: 10.3390/molecules27196402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
Overhauser dynamic nuclear polarization (ODNP) can be used as a tool for NMR signal enhancement and happens on very short time scales. Therefore, ODNP is well suited for the measurement of fast-flowing samples, even in compact magnets, which is beneficial for the real-time monitoring of chemical reactions or processes. ODNP requires the presence of unpaired electrons in the sample, which is usually accomplished by the addition of stable radicals. However, radicals affect the nuclear relaxation times and can hamper the NMR detection. This is circumvented by immobilizing radicals in a packed bed allowing for the measurement of radical-free samples when using ex situ DNP techniques (DNP build-up and NMR detection happen at different places) and flow-induced separation of the hyperpolarized liquid from the radicals. Therefore, the synthesis of robust and chemically inert immobilized radical matrices is mandatory. In the present work, this is accomplished by immobilizing the radical glycidyloxy-tetramethylpiperidinyloxyl with a polyethyleneimine (PEI) linker on the surface of controlled porous glasses (CPG). Both the porosity of the CPGs and also the size of the PEI-linker were varied, resulting in a set of distinct radical matrices for continuous-flow ODNP. The study shows that CPGs with PEI-linkers provide robust, inert and efficient ODNP matrices.
Collapse
|
8
|
Rao Y, Venkatesh A, Moutzouri P, Emsley L. 1H Hyperpolarization of Solutions by Overhauser Dynamic Nuclear Polarization with 13C- 1H Polarization Transfer. J Phys Chem Lett 2022; 13:7749-7755. [PMID: 35969266 PMCID: PMC9421900 DOI: 10.1021/acs.jpclett.2c01956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Dynamic nuclear polarization (DNP) is a method that can significantly increase the sensitivity of nuclear magnetic resonance. The only effective DNP mechanism for in situ hyperpolarization in solution is Overhauser DNP, which is inefficient for 1H at high magnetic fields. Here we demonstrate the possibility of generating significant 1H hyperpolarization in solution at room temperature. To counter the poor direct 1H Overhauser DNP, we implement steady-state 13C Overhauser DNP in solutions and then transfer the 13C hyperpolarization to 1H via a reverse insensitive nuclei enhanced by polarization transfer scheme. We demonstrate this approach using a 400 MHz gyrotron-equipped 3.2 mm magic angle spinning DNP system to obtain 1H DNP enhancement factors of 48, 8, and 6 for chloroform, tetrachloroethane, and phenylacetylene, respectively, at room temperature.
Collapse
|
9
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Cheney DJ, Wedge CJ. Sample volume effects in optical overhauser dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107170. [PMID: 35240365 DOI: 10.1016/j.jmr.2022.107170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The optical dynamic nuclear polarization (DNP) method has been proposed as an alternative to microwave pumping as a hyperpolarization method for solution-state NMR studies. Using continuous laser illumination to photogenerate triplet states in the presence of a persistent radical produces chemically-induced dynamic electron polarization (CIDEP) via the radical-triplet pair mechanism (RTPM), with cross-relaxation transferring this to nuclear hyperpolarization via an Overhauser mechanism. Numerical simulations have previously indicated that reducing the sample volume while maintaining a constant optical density can significantly increase the NMR signal enhancement, due to the larger steady-state concentration of triplets obtained. Here we provide the first experimental confirmation of these effects, producing a nearly five-fold increase in the optical DNP enhancement factor just by reducing the sample volume with optimal dye and radical concentrations adjusted for each optical path length. The results are supported with an in depth analysis of volume effects in the numerical model, with which they are in good qualitative agreement. These important observations will impact on the future development of the technique, with particular significance for attempts to apply DNP methods to increase sensitivity for volume-limited biological samples.
Collapse
Affiliation(s)
- Daniel J Cheney
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Christopher J Wedge
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom.
| |
Collapse
|
11
|
Concilio MG, Kuprov I, Frydman L. J-Driven dynamic nuclear polarization for sensitizing high field solution state NMR. Phys Chem Chem Phys 2022; 24:2118-2125. [PMID: 35024715 DOI: 10.1039/d1cp04186j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. .,National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
12
|
Saenz F, Tamski M, Milani J, Roussel C, Frauenrath H, Ansermet JP. Blatter-type radicals as polarizing agents for electrochemical overhauser dynamic nuclear polarization. Chem Commun (Camb) 2021; 58:689-692. [PMID: 34919627 DOI: 10.1039/d1cc05350g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overhauser dynamic nuclear polarization (O-DNP) refers to a microwave-assisted process where an unpaired electron's (e.g. a radical) spin polarization is transferred to surrounding nuclei in solution, thus increasing the nuclear magnetic resonance (NMR) signal intensity of a given substance by several orders of magnitude. The presence of the unpaired electrons, which induces relaxation of the resulting hyperpolarized state when the radiation is halted, can be avoided by electrochemically removing the radicals on demand. We report the use of Blatter-type (benzo[e][1,2,4]triazinyl) radicals as polarizing agents, potentially opening the way to highly tunable radicals for electrochemical DNP.
Collapse
Affiliation(s)
- Felipe Saenz
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Mika Tamski
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Jonas Milani
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Christophe Roussel
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland. .,Section of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Holger Frauenrath
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
13
|
Parigi G, Ravera E, Fragai M, Luchinat C. Unveiling protein dynamics in solution with field-cycling NMR relaxometry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:85-98. [PMID: 34479712 DOI: 10.1016/j.pnmrs.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Field-cycling NMR relaxometry is a well-established technique that can give information on molecular structure and dynamics of biological systems. It provides the nuclear relaxation rates as a function of the applied magnetic field, starting from fields as low as ~ 10-4 T up to about 1-3 T. The profiles so collected, called nuclear magnetic relaxation dispersion (NMRD) profiles, can be extended to include the relaxation rates at the largest fields achievable with high resolution NMR spectrometers. By exploiting this wide range of frequencies, the NMRD profiles can provide information on motions occurring on time scales from 10-6 to 10-9 s. 1H NMRD measurements have proved very useful also for the characterization of paramagnetic proteins, because they can help characterise a number of parameters including the number, distance and residence time of water molecules coordinated to the paramagnetic center, the reorientation correlation times and the electron spin relaxation time, and the electronic structure at the metal site.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
15
|
Levien M, Reinhard M, Hiller M, Tkach I, Bennati M, Orlando T. Spin density localization and accessibility of organic radicals affect liquid-state DNP efficiency. Phys Chem Chem Phys 2021; 23:4480-4485. [PMID: 33599637 DOI: 10.1039/d0cp05796g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a large variation in liquid DNP performance of up to a factor of about five in coupling factor among organic radicals commonly used as polarizing agents. A comparative study of 1H and 13C DNP in model systems shows the impact of the spin density distribution and accessibility of the radical site by the target molecule.
Collapse
Affiliation(s)
- Marcel Levien
- ESR Spectroscopy Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttigen, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Nishimura K, Kouno H, Kawashima Y, Orihashi K, Fujiwara S, Tateishi K, Uesaka T, Kimizuka N, Yanai N. Materials chemistry of triplet dynamic nuclear polarization. Chem Commun (Camb) 2020; 56:7217-7232. [PMID: 32495753 DOI: 10.1039/d0cc02258f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic nuclear polarization with photo-excited triplet electrons (triplet-DNP) has the potential to enhance the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at a moderate temperature. While many efforts have been devoted to achieving a large nuclear polarization based on triplet-DNP, the application of triplet-DNP has been limited to nuclear physics experiments. The recent introduction of materials chemistry into the field of triplet-DNP has achieved air-stable and water-soluble polarizing agents as well as the hyperpolarization of nanomaterials with a large surface area such as nanoporous metal-organic frameworks (MOFs) and nanocrystal dispersion in water. This Feature Article overviews the recently-emerged materials chemistry of triplet-DNP that paves new paths towards unprecedented biological and medical applications.
Collapse
Affiliation(s)
- Koki Nishimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hironori Kouno
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yusuke Kawashima
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kana Orihashi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Saiya Fujiwara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G. Single-Chip Dynamic Nuclear Polarization Microsystem. Anal Chem 2020; 92:9782-9789. [PMID: 32530638 PMCID: PMC9559634 DOI: 10.1021/acs.analchem.0c01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Integration
of the sensitivity-relevant electronics of nuclear
magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers
on a single chip is a promising approach to improve the limit of detection,
especially for samples in the nanoliter and subnanoliter range. Here,
we demonstrate the cointegration on a single silicon chip of the front-end
electronics of NMR and ESR detectors. The excitation/detection planar
spiral microcoils of the NMR and ESR detectors are concentric and
interrogate the same sample volume. This combination of sensors allows
one to perform dynamic nuclear polarization (DNP) experiments using
a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR
experiments on liquid samples having a volume of about 1 nL performed
at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are
achieved on TEMPOL/H2O solutions at room temperature. The
use of state-of-the-art submicrometer integrated circuit technologies
should allow the future extension of the single-chip DNP microsystem
approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding
to the strongest static magnetic fields currently available. Particularly
interesting is the possibility to create arrays of such sensors for
parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter
samples.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Grisi
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alessandro V. Matheoud
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Gualco
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Boero
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Pinon AC, Capozzi A, Ardenkjær-Larsen JH. Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun Chem 2020; 3:57. [PMID: 36703471 PMCID: PMC9814647 DOI: 10.1038/s42004-020-0301-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, hyperpolarization of water protons via dissolution Dynamic Nuclear Polarization (dDNP) has attracted increasing interest in the magnetic resonance community. Hyperpolarized water may provide an alternative to Gd-based contrast agents for angiographic and perfusion Magnetic Resonance Imaging (MRI) examinations, and it may report on chemical and biochemical reactions and proton exchange while perfoming Nuclear Magnetic Resonance (NMR) investigations. However, hyperpolarizing water protons is challenging. The main reason is the presence of radicals, required to create the hyperpolarized nuclear spin state. Indeed, the radicals will also be the main source of relaxation during the dissolution and transfer to the NMR or MRI system. In this work, we report water magnetizations otherwise requiring a field of 10,000 T at room temperature on a sample of pure water, by employing dDNP via UV-generated, labile radicals. We demonstrate the potential of our methodology by acquiring a 15N spectrum from natural abundance urea with a single scan, after spontaneous magnetization transfer from water protons to nitrogen nuclei.
Collapse
Affiliation(s)
- Arthur C. Pinon
- grid.5170.30000 0001 2181 8870Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Andrea Capozzi
- grid.5170.30000 0001 2181 8870Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- grid.5170.30000 0001 2181 8870Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
19
|
Levien M, Hiller M, Tkach I, Bennati M, Orlando T. Nitroxide Derivatives for Dynamic Nuclear Polarization in Liquids: The Role of Rotational Diffusion. J Phys Chem Lett 2020; 11:1629-1635. [PMID: 32003568 PMCID: PMC7307959 DOI: 10.1021/acs.jpclett.0c00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 06/07/2023]
Abstract
Polarization transfer efficiency in liquid-state dynamic nuclear polarization (DNP) depends on the interaction between polarizing agents (PAs) and target nuclei modulated by molecular motions. We show how translational and rotational diffusion differently affect the DNP efficiency. These contributions were disentangled by measuring 1H-DNP enhancements of toluene and chloroform doped with nitroxide derivatives at 0.34 T as a function of either the temperature or the size of the PA. The results were employed to analyze 13C-DNP data at higher fields, where the polarization transfer is also driven by the Fermi contact interaction. In this case, bulky nitroxide PAs perform better than the small TEMPONE radical due to structural fluctuations of the ring conformation. These findings will help in designing PAs with features specifically optimized for liquid-state DNP at various magnetic fields.
Collapse
Affiliation(s)
- M. Levien
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - M. Hiller
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - I. Tkach
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - M. Bennati
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - T. Orlando
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
20
|
Cheney DJ, Wedge CJ. Optically-generated Overhauser dynamic nuclear polarization: A numerical analysis. J Chem Phys 2020; 152:034202. [DOI: 10.1063/1.5133408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel J. Cheney
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Christopher J. Wedge
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| |
Collapse
|
21
|
Dey A, Banerjee A. Unusual Overhauser Dynamic Nuclear Polarization Behavior of Fluorinated Alcohols at Room Temperature. J Phys Chem B 2019; 123:10463-10469. [PMID: 31714083 DOI: 10.1021/acs.jpcb.9b08144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of fluorinated alcohols is a matter of considerable interest in view of wide-ranging biomolecular applications. The microheterogeneity of fluorinated alcohols in the liquid state, in particular, has been a matter of debate and discussion in recent years using experimental and theoretical methods, including neutron or X-ray diffraction, as well as density functional theory (DFT) and molecular dynamics (MD) simulations. Here, we show that 1H and 19F Overhauser dynamic nuclear polarization (ODNP) buildup curves in solution state at room temperature show unusual behavior that could offer a novel approach to investigate the structural heterogeneity and dynamics of such homogeneous liquids with improved sensitivity. A detailed analysis of multiexponential ODNP buildup curves as a function of microwave irradiation time is shown to evidence microheterogeneity in such systems. Experimental ODNP buildup rates are interpreted using simple motional models that yield the motional correlation times of the relevant species in solution. It may be emphasized that this information is not available from standard approaches of high-resolution nuclear magnetic resonance (NMR) spectroscopy. While the present study focuses on fluorinated alcohols, it is to be anticipated that this approach would be valuable in the study of molecular assemblies in the solution state, including peptides, surfactant systems, etc.
Collapse
Affiliation(s)
- Arnab Dey
- MRI-MRS Centre and Department of Chemistry , Indian Institute of Technology-Madras , Chennai 600036 , Tamil Nadu , India
| | - Abhishek Banerjee
- MRI-MRS Centre and Department of Chemistry , Indian Institute of Technology-Madras , Chennai 600036 , Tamil Nadu , India
| |
Collapse
|
22
|
Gizatullin B, Mattea C, Stapf S. Hyperpolarization by DNP and Molecular Dynamics: Eliminating the Radical Contribution in NMR Relaxation Studies. J Phys Chem B 2019; 123:9963-9970. [PMID: 31642676 DOI: 10.1021/acs.jpcb.9b03246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fast field cycling NMR relaxation dispersion represents a versatile method to elucidate the distribution of timescales of molecular motion for systems as diverse as polymers, proteins, and complex fluids. While electronic field switching accesses magnetic field strengths between about 1 T and Earth field, the method remains fundamentally insensitive and unspecific due to the low signal intensity at low fields and the inherently large field inhomogeneity that prohibits spectral resolution for most nuclei. These conditions limit the accessible concentrations and the detection of insensitive X-nuclei. Dynamic nuclear polarization (DNP) has been demonstrated to significantly enhance sensitivity, favoring low-field applications due to the increase in enhancement factors under these conditions. However, the required presence of radicals adds a significant and often dominating relaxivity to the system of nuclei, which has mostly precluded relaxation studies under DNP because of the need to separate several competing relaxation mechanisms. In this study, we present proof that the intrinsic relaxation dispersion of a substance can be completely recovered from experiments with different concentrations of radicals, irrespective of the nature of the DNP effect. This approach not only enhances detection sensitivity by at least one order of magnitude but also provides information about selective radical/molecule interaction that allows the separation of contributions from different molecular moieties from their differential enhancement and relaxation time.
Collapse
Affiliation(s)
- Bulat Gizatullin
- FG Technische Physik II/Polymerphysik , Technische Universität Ilmenau , D-98684 Ilmenau , Germany
| | - Carlos Mattea
- FG Technische Physik II/Polymerphysik , Technische Universität Ilmenau , D-98684 Ilmenau , Germany
| | - Siegfried Stapf
- FG Technische Physik II/Polymerphysik , Technische Universität Ilmenau , D-98684 Ilmenau , Germany
| |
Collapse
|
23
|
Franck JM, Han S. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained. Methods Enzymol 2018; 615:131-175. [PMID: 30638529 DOI: 10.1016/bs.mie.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As ODNP relies on the pairwise cross-relaxation between the electron spin of a spin probe and a proton nuclear spin of water, it captures the dynamics of single-particle diffusion of an ensemble of water molecules moving near the spin probe. ODNP principally utilizes the same physics as other nuclear magnetic resonance (NMR) relaxometry (i.e., relaxation measurement) techniques. However, in ODNP, electron paramagnetic resonance (EPR) excites the electron spins probes and their high net polarization acts as a signal amplifier. Furthermore, it renders ODNP parameters highly sensitive to water moving at rates commensurate with the EPR frequency of the spin probe (typically 10GHz). Also, ODNP selectively enhances the NMR signal contributions of water moving within close proximity to the spin label. As a result, ODNP can capture ps-ns movements of hydration waters with high sensitivity and locality, even in samples with protein concentrations as dilute as 10 µM. To date, the utility of the ODNP technique has been demonstrated for two major applications: the characterization of the spatial variation in the properties of the hydration layer of proteins or other surfaces displaying topological diversity, and the identification of structural properties emerging from highly disordered proteins and protein domains. The former has been shown to correlate well with the properties of hydration water predicted by MD simulations and has been shown capable of evaluating the hydrophilicity or hydrophobicity of a surface. The latter has been demonstrated for studies of an interhelical loop of proteorhodopsin, the partial structure of α-synuclein embedded at the lipid membrane surface, incipient structures adopted by tau proteins en route to fibrils, and the structure and hydration profile of a transmembrane peptide. This chapter focuses on offering a mechanistic understanding of the ODNP measurement and the molecular dynamics encoded in the ODNP parameters. In particular, it clarifies how the electron-nuclear dipolar coupling encodes information about the molecular dynamics in the nuclear spin self-relaxation and, more importantly, the electron-nuclear spin cross-relaxation rates. The clarification of the molecular dynamics underlying ODNP should assist in establishing a connection to theory and computer simulation that will offer far richer interpretations of ODNP results in future studies.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, United States.
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States; Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
24
|
Parigi G, Ravera E, Bennati M, Luchinat C. Understanding Overhauser Dynamic Nuclear Polarisation through NMR relaxometry. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1527409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Marina Bennati
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Chemistry, Georg-Augusta-University, Göttingen, Germany
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Yoon D, Dimitriadis AI, Soundararajan M, Caspers C, Genoud J, Alberti S, de Rijk E, Ansermet JP. High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples. Anal Chem 2018; 90:5620-5626. [PMID: 29620353 DOI: 10.1021/acs.analchem.7b04700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.
Collapse
Affiliation(s)
- Dongyoung Yoon
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Alexandros I Dimitriadis
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,SWISSto12 SA, 1015 , Lausanne , Switzerland
| | - Murari Soundararajan
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Christian Caspers
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Jeremy Genoud
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Swiss Plasma Center , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Stefano Alberti
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Swiss Plasma Center , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Emile de Rijk
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,SWISSto12 SA, 1015 , Lausanne , Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
26
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
27
|
One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature. Nat Chem 2017. [DOI: 10.1038/nchem.2723] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Lipsø KW, Bowen S, Rybalko O, Ardenkjær-Larsen JH. Large dose hyperpolarized water with dissolution-DNP at high magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 274:65-72. [PMID: 27889650 DOI: 10.1016/j.jmr.2016.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 05/25/2023]
Abstract
We demonstrate a method for the preparation of hyperpolarized water by dissolution Dynamic Nuclear Polarization at high magnetic field. Protons were polarized at 6.7T and 1.1K to >70% with frequency modulated microwave irradiation at 188GHz. 97.2±0.7% of the radical was extracted from the sample in the dissolution in a two-phase system. 16±1mL of 5.0M 1H in D2O with a polarization of 13.0±0.9% in the liquid state was obtained, corresponding to an enhancement factor of 4000±300 compared to the thermal equilibrium at 9.4T and 293K. A longitudinal relaxation time constant of 16±1s was measured. The sample was polarized and dissolved in a fluid path compatible with clinical polarizers. The volume of hyperpolarized water produced by this method enables angiography and perfusion measurements in large animals, as well as NMR experiments for studies of e.g. proton exchange and polarization transfer to other nuclei.
Collapse
Affiliation(s)
- Kasper Wigh Lipsø
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sean Bowen
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oleksandr Rybalko
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; GE Healthcare, Brøndby, Denmark.
| |
Collapse
|
29
|
Neudert O, Mattea C, Stapf S. A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 271:7-14. [PMID: 27526396 DOI: 10.1016/j.jmr.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
A new probehead was developed enabling Dynamic Nuclear Polarization (DNP)-enhanced Fast-Field-Cycling relaxometry at 340mT polarization field strength. It is based on a dielectric cavity resonator operating in the TM110 mode at 9.5GHz, which is suitable for both transverse and axial magnet geometries with a bore access of at least 20mm. The probehead includes a planar radio frequency coil for NMR detection and is compatible with standard 3mm NMR tubes. The resonator was assessed in terms of the microwave conversion factor and microwave-induced sample heating effects. Due to the compact size of the cavity, appreciable microwave magnetic field strengths were observed even with only moderate quality factors. Exemplary DNP experiments at 9.5GHz and 2.0GHz microwave frequency are compared for three different viscous samples, demonstrating the advantage of DNP at 9.5GHz for such systems. This new probehead enables new applications of DNP-enhanced Fast-Field-Cycling relaxometry of viscous and solid systems.
Collapse
Affiliation(s)
- Oliver Neudert
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Carlos Mattea
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany
| | - Siegfried Stapf
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany
| |
Collapse
|
30
|
Huang KY, Kingsley CN, Sheil R, Cheng CY, Bierma JC, Roskamp KW, Khago D, Martin RW, Han S. Stability of Protein-Specific Hydration Shell on Crowding. J Am Chem Soc 2016; 138:5392-402. [PMID: 27052457 PMCID: PMC7849722 DOI: 10.1021/jacs.6b01989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that the effect of protein crowding is critically dependent on the stability of the protein's hydration shell, which can dramatically vary between different proteins. In the human eye lens, γS-crystallin (γS-WT) forms a densely packed transparent hydrogel with a high refractive index, making it an ideal system for studying the effects of protein crowding. A single point mutation generates the cataract-related variant γS-G18V, dramatically altering the optical properties of the eye lens. This system offers an opportunity to explore fundamental questions regarding the effect of protein crowding, using γS-WT and γS-G18V: (i) how do the diffusion dynamics of hydration water change as a function of protein crowding?; and (ii) upon hydrogel formation of γS-WT, has a dynamic transition occurred generating a single population of hydration water, or do populations of bulk and hydration water coexist? Using localized spin probes, we separately probe the local translational diffusivity of both surface hydration and interstitial water of γS-WT and γS-G18V in solution. Surprisingly, we find that under the influence of hydrogel formation at highly crowded γS-WT concentrations up to 500 mg/mL, the protein hydration shell remains remarkably dynamic, slowing by less than a factor of 2, if at all, compared to that in dilute protein solutions of ∼5 mg/mL. Upon self-crowding, the population of this robust surface hydration water increases, while a significant bulk-like water population coexists even at ∼500 mg/mL protein concentrations. In contrast, surface water of γS-G18V irreversibly dehydrates with moderate concentration increases or subtle alterations to the solution conditions, demonstrating that the effect of protein crowding is highly dependent on the stability of the protein-specific hydration shell. The core function of γS-crystallin in the eye lens may be precisely its capacity to preserve a robust hydration shell, whose stability is abolished by a single G18V mutation.
Collapse
Affiliation(s)
- Kuo-Ying Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | | | - Ryan Sheil
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Jan C. Bierma
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Domarin Khago
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
31
|
Ravera E, Luchinat C, Parigi G. Basic facts and perspectives of Overhauser DNP NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:78-87. [PMID: 26920833 DOI: 10.1016/j.jmr.2015.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 05/03/2023]
Abstract
After the first surprisingly large (1)H DNP enhancements of the water signal in aqueous solutions of nitroxide radicals observed at high magnetic fields, Overhauser DNP is gaining increasing attention for a number of applications now flourishing, showing the potentialities of this mechanism in solution and solid state NMR as well as in MRI. Unexpected Overhauser DNP enhancements in insulating solids were recently measured at 100K, with a magnitude which increases with the applied magnetic field. We recapitulate here the theoretical premises of Overhauser DNP in solution and analyze the effects of the various parameters on the efficacy of the mechanism, underlining the link between the DNP enhancements and the field dependent relaxation properties. Promisingly, more effective DNP enhancements are expected by exploiting the potentialities offered by (13)C detection and the use of supercritical fluids.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy.
| |
Collapse
|
32
|
Prisner T, Denysenkov V, Sezer D. Liquid state DNP at high magnetic fields: Instrumentation, experimental results and atomistic modelling by molecular dynamics simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:68-77. [PMID: 26920832 DOI: 10.1016/j.jmr.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 05/14/2023]
Abstract
Dynamic nuclear polarization (DNP) at high magnetic fields has recently become one of the major research areas in magnetic resonance spectroscopy and imaging. Whereas much work has been devoted to experiments where the polarization transfer from the electron spin to the nuclear spin is performed in the solid state, only a few examples exist of experiments where the polarization transfer is performed in the liquid state. Here we describe such experiments at a magnetic field of 9.2 T, corresponding to a nuclear Larmor frequency of 400 MHz for proton spins and an excitation frequency of 263 GHz for the electron spins. The technical requirements to perform such experiments are discussed in the context of the double resonance structures that we have implemented. The experimental steps that allowed access to the enhancement factors for proton spins of several organic solvents with nitroxide radicals as polarizing agents are described. A computational scheme for calculating the coupling factors from molecular dynamics (MD) simulations is outlined and used to highlight the limitations of the classical models based on translational and rotational motion that are typically employed to quantify the observed coupling factors. The ability of MD simulations to predict enhancements for a variety of radicals and solvent molecules at any magnetic field strength should prove useful in optimizing experimental conditions for DNP in the liquid state.
Collapse
Affiliation(s)
- Thomas Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany.
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany
| | - Deniz Sezer
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
33
|
van Bentum J, van Meerten B, Sharma M, Kentgens A. Perspectives on DNP-enhanced NMR spectroscopy in solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:59-67. [PMID: 26920831 DOI: 10.1016/j.jmr.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 05/03/2023]
Abstract
More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.
Collapse
|
34
|
Peat DT, Hirsch ML, Gadian DG, Horsewill AJ, Owers-Bradley JR, Kempf JG. Low-field thermal mixing in [1-13C] pyruvic acid for brute-force hyperpolarization. Phys Chem Chem Phys 2016; 18:19173-82. [DOI: 10.1039/c6cp02853e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We detail the process of low-field thermal mixing (LFTM) between 1H and 13C nuclei in neat [1-13C] pyruvic acid at cryogenic temperatures (4–15 K).
Collapse
Affiliation(s)
- David T. Peat
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | | - David G. Gadian
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | | | | | |
Collapse
|
35
|
Dale MW, Wedge CJ. Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy. Chem Commun (Camb) 2016; 52:13221-13224. [DOI: 10.1039/c6cc06651h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using optical excitation to generate radical triplet pairs the sensitivity of solution-state NMR can be enhanced without microwave pumping.
Collapse
|
36
|
Küçük SE, Sezer D. Multiscale computational modeling of 13C DNP in liquids. Phys Chem Chem Phys 2016; 18:9353-7. [DOI: 10.1039/c6cp01028h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative prediction of 13C DNP coupling factors is achieved for acetone in water and pure chloroform.
Collapse
Affiliation(s)
- Sami Emre Küçük
- Faculty of Engineering and Natural Sciences
- Sabancı University
- 34956 Istanbul
- Turkey
| | - Deniz Sezer
- Faculty of Engineering and Natural Sciences
- Sabancı University
- 34956 Istanbul
- Turkey
| |
Collapse
|
37
|
Wang X, Isley Iii WC, Salido SI, Sun Z, Song L, Tsai KH, Cramer CJ, Dorn HC. Optimization and prediction of the electron-nuclear dipolar and scalar interaction in 1H and 13C liquid state dynamic nuclear polarization. Chem Sci 2015; 6:6482-6495. [PMID: 30090267 PMCID: PMC6054052 DOI: 10.1039/c5sc02499d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022] Open
Abstract
During the last 10-15 years, dynamic nuclear polarization (DNP) has evolved as a powerful tool for hyperpolarization of NMR and MRI nuclides. However, it is not as well appreciated that solution-state dynamic nuclear polarization is a powerful approach to study intermolecular interactions in solution. For solutions and fluids, the 1H nuclide is usually dominated by an Overhauser dipolar enhancement and can be significantly increased by decreasing the correlation time (τc) of the substrate/nitroxide interaction by utilizing supercritical fluids (SF CO2). For molecules containing the ubiquitous 13C nuclide, the Overhauser enhancement is usually a profile of both scalar and dipolar interactions. For carbon atoms without an attached hydrogen, a dipolar enhancement usually dominates as we illustrate for sp2 hybridized carbons in the fullerenes, C60 and C70. However, the scalar interaction is dependent on a Fermi contact interaction which does not have the magnetic field dependence inherent in the dipolar interaction. For a comprehensive range of molecular systems we show that molecules that exhibit weakly acidic complexation interaction(s) with nitroxides provide corresponding large scalar enhancements. For the first time, we report that sp hybridized (H-C) alkyne systems, for example, the phenylacetylene-nitroxide system exhibit very large scalar dominated enhancements. Finally, we demonstrate for a wide range of molecular systems that the Fermi contact interaction can be computationally predicted via electron-nuclear hyperfine coupling and correlated with experimental 13C DNP enhancements.
Collapse
Affiliation(s)
- X Wang
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , USA .
| | - W C Isley Iii
- Department of Chemistry and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA .
| | - S I Salido
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , USA .
| | - Z Sun
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , USA .
| | - L Song
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , USA .
| | - K H Tsai
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , USA .
| | - C J Cramer
- Department of Chemistry and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA .
| | - H C Dorn
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , USA .
| |
Collapse
|
38
|
Ardenkjaer-Larsen JH, Boebinger GS, Comment A, Duckett S, Edison AS, Engelke F, Griesinger C, Griffin RG, Hilty C, Maeda H, Parigi G, Prisner T, Ravera E, van Bentum J, Vega S, Webb A, Luchinat C, Schwalbe H, Frydman L. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:9162-85. [PMID: 26136394 PMCID: PMC4943876 DOI: 10.1002/anie.201410653] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/26/2015] [Indexed: 11/07/2022]
Abstract
In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed.
Collapse
Affiliation(s)
- Jan-Henrik Ardenkjaer-Larsen
- GE Healthcare, Broendby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre (Denmark)
| | - Gregory S Boebinger
- U.S. National High Magnetic Field Lab, Florida State University, Tallahassee, FL 32310 (USA)
| | - Arnaud Comment
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)
| | - Simon Duckett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD (UK)
| | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610 (USA)
| | | | | | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Lab, MIT, Cambridge, MA 02139-4703 (USA)
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, College Station (USA)
| | - Hidaeki Maeda
- Riken Center for Life Science Technologies, Yokohama, Kanagawa (Japan)
| | - Giacomo Parigi
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino (Italy)
| | - Thomas Prisner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Enrico Ravera
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino (Italy)
| | | | - Shimon Vega
- Chemical Physics Department, Weizmann Institute of Science, Rehovot (Israel)
| | - Andrew Webb
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center (The Netherlands)
| | - Claudio Luchinat
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino (Italy).
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany).
| | - Lucio Frydman
- Chemical Physics Department, Weizmann Institute of Science, Rehovot (Israel).
| |
Collapse
|
39
|
He Y, Feng J, Zhang Z, Wang C, Wang D, Chen F, Liu M, Liu C. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:083101. [PMID: 26329168 DOI: 10.1063/1.4927453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.
Collapse
Affiliation(s)
- Yugui He
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwen Feng
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhi Zhang
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chao Wang
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dong Wang
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Chen
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chaoyang Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
40
|
Ardenkjaer-Larsen JH, Boebinger GS, Comment A, Duckett S, Edison AS, Engelke F, Griesinger C, Griffin RG, Hilty C, Maeda H, Parigi G, Prisner T, Ravera E, van Bentum J, Vega S, Webb A, Luchinat C, Schwalbe H, Frydman L. Neue Ansätze zur Empfindlichkeitssteigerung in der biomolekularen NMR-Spektroskopie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410653] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Küçük SE, Neugebauer P, Prisner TF, Sezer D. Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO. Phys Chem Chem Phys 2015; 17:6618-28. [PMID: 25665728 DOI: 10.1039/c4cp05832a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A computational strategy for calibrating, validating and analyzing molecular dynamics (MD) simulations to predict dynamic nuclear polarization (DNP) coupling factors and relaxivities of proton spins is presented. Simulations of the polarizing agent TEMPOL in liquid acetone and DMSO are conducted at low (infinite dilution) and high (1 M) concentrations of the free radical. Because DNP coupling factors and relaxivities are sensitive to the time scales of the molecular motions, the MD simulations are calibrated to reproduce the bulk translational diffusion coefficients of the pure solvents. The simulations are then validated by comparing with experimental dielectric relaxation spectra, which report on the rotational dynamics of the molecular electric dipole moments. The analysis consists of calculating spectral density functions (SDFs) of the magnetic dipole-dipole interaction between the electron spin of TEMPOL and nuclear spins of the solvent protons. Here, MD simulations are used in combination with an analytically tractable model of molecular motion. While the former provide detailed information at relatively short spin-spin distances, the latter includes contributions at large separations, all the way to infinity. The relaxivities calculated from the SDFs of acetone and DMSO are in excellent agreement with experiments at 9.2 T. For DMSO we calculate a coupling factor in agreement with experiment while for acetone we predict a value that is larger by almost 50%, suggesting a possibility for experimental improvement.
Collapse
Affiliation(s)
- Sami Emre Küçük
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla, 34956 Istanbul, Turkey.
| | | | | | | |
Collapse
|
42
|
Enkin N, Liu G, Gimenez-Lopez MDC, Porfyrakis K, Tkach I, Bennati M. A high saturation factor in Overhauser DNP with nitroxide derivatives: the role of 14N nuclear spin relaxation. Phys Chem Chem Phys 2015; 17:11144-9. [DOI: 10.1039/c5cp00935a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Functionalization of nitroxide radicals leads to an increase of the saturation factor and of the Overhauser DNP enhancement.
Collapse
Affiliation(s)
- Nikolay Enkin
- RG EPR spectroscopy
- Max-Planck Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
| | - Guoquan Liu
- RG EPR spectroscopy
- Max-Planck Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
| | | | | | - Igor Tkach
- RG EPR spectroscopy
- Max-Planck Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
| | - Marina Bennati
- RG EPR spectroscopy
- Max-Planck Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Department of Chemistry
| |
Collapse
|
43
|
Jakdetchai O, Denysenkov V, Becker-Baldus J, Dutagaci B, Prisner TF, Glaubitz C. Dynamic nuclear polarization-enhanced NMR on aligned lipid bilayers at ambient temperature. J Am Chem Soc 2014; 136:15533-6. [PMID: 25333422 DOI: 10.1021/ja509799s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy has been shown to hold great potential for functional studies of membrane proteins at low temperatures due to its great sensitivity improvement. There are, however, numerous applications for which experiments at ambient temperature are desirable and which would also benefit from DNP signal enhancement. Here, we demonstrate as a proof of concept that a significant signal increase for lipid bilayers under room-temperature conditions can be achieved by utilizing the Overhauser effect. Experiments were carried out on aligned bilayers at 400 MHz/263 GHz using a stripline structure combined with a Fabry-Perot microwave resonator. A signal enhancement of protons of up to -10 was observed. Our results demonstrate that Overhauser DNP at high field provides efficient polarization transfer within insoluble samples, which is driven by fast local molecular fluctuations. Furthermore, our experimental setup offers an attractive option for DNP-enhanced solid-state NMR on ordered membranes and provides a general perspective toward DNP at ambient temperatures.
Collapse
Affiliation(s)
- Orawan Jakdetchai
- Institute of Biophysical Chemistry and ‡Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance Frankfurt, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Fujara F, Kruk D, Privalov AF. Solid state field-cycling NMR relaxometry: instrumental improvements and new applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:39-69. [PMID: 25444698 DOI: 10.1016/j.pnmrs.2014.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/22/2014] [Accepted: 08/25/2014] [Indexed: 05/23/2023]
Abstract
The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development of two types of electronical FC relaxometers, a mechanical FC relaxometer and a combination of FC and one-dimensional microimaging. Progress has been achieved with respect to several parameters such as the accessible field and temperature range as well as the incorporation of sample spinning. Since an appropriate analysis of FC data requires a careful consideration of relaxation theory, we include a theory section discussing the most relevant aspects of relaxation in solids which are related to residual dipolar and quadrupolar interactions. The most important limitations of relaxation theory are also discussed. With improved instrumentation and with the help of relaxation theory we get access to interesting new applications such as ionic motion in solid electrolytes, structure determination in molecular crystals, ultraslow polymer dynamics and rotational resonance phenomena.
Collapse
Affiliation(s)
- Franz Fujara
- Institut für Festkörperphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany.
| | - Danuta Kruk
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, PL-10-710 Olsztyn, Poland
| | - Alexei F Privalov
- Institut für Festkörperphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| |
Collapse
|
45
|
George C, Chandrakumar N. Chemical-Shift-Resolved19F NMR Spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-Enhanced Diagonal Suppressed Correlation Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
George C, Chandrakumar N. Chemical-Shift-Resolved19F NMR Spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-Enhanced Diagonal Suppressed Correlation Spectroscopy. Angew Chem Int Ed Engl 2014; 53:8441-4. [DOI: 10.1002/anie.201402320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/23/2014] [Indexed: 11/12/2022]
|
47
|
Kruk D, Korpała A, Taheri SM, Kozłowski A, Förster S, Rössler EA. 1H relaxation enhancement induced by nanoparticles in solutions: Influence of magnetic properties and diffusion. J Chem Phys 2014; 140:174504. [DOI: 10.1063/1.4871461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
48
|
Neudert O, Raich HP, Mattea C, Stapf S, Münnemann K. An Alderman-Grant resonator for S-Band Dynamic Nuclear Polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:79-85. [PMID: 24607825 DOI: 10.1016/j.jmr.2014.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 06/03/2023]
Abstract
An Alderman-Grant resonator with resonance at 2GHz (S-Band) was simulated, developed and constructed for Dynamic Nuclear Polarization (DNP) experiments at 73mT. The resonator fits into magnet bores with a minimum diameter of 20mm and is compatible with standard 3mm NMR tubes. The compact resonator design achieves good separation of electric and magnetic fields and therefore can be used with comparatively large sample volumes with only small sample heating effects comparable to those obtained with optimized X- and W-Band DNP setups. The saturation efficiency and sample heating effects were investigated for Overhauser DNP experiments of aqueous solutions of TEMPOL radical, showing relative saturation better than 0.9 and sample heating not exceeding a few Kelvin even at high microwave power and long irradiation time. An application is demonstrated, combining the DNP setup with a commercial fast field cycling NMR relaxometer. Using this resonator design at low microwave frequencies can provide DNP polarization for a class of low-field and time-domain NMR experiments and therefore may enable new applications that benefit from increased sensitivity.
Collapse
Affiliation(s)
- Oliver Neudert
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Hans-Peter Raich
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Carlos Mattea
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Siegfried Stapf
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| |
Collapse
|
49
|
Luchinat C, Parigi G, Ravera E. Can metal ion complexes be used as polarizing agents for solution DNP? A theoretical discussion. JOURNAL OF BIOMOLECULAR NMR 2014; 58:239-249. [PMID: 23606273 DOI: 10.1007/s10858-013-9728-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Dynamic nuclear polarization (DNP) can be used to dramatically increase the NMR signal intensities in solutions and solids. DNP is usually performed using nitroxide radicals as polarizing agents, characterized by sharp EPR lines, fast rotation, fast diffusion, and favorable distribution of the unpaired electron. These features make the nitroxide radicals ideally suited for solution DNP. Here, we report some theoretical considerations on the different behavior of some inorganic compounds with respect to nitroxide radicals. The relaxation profiles of slow relaxing paramagnetic metal aqua ions [copper(II), manganese(II), gadolinium(III) and oxovanadium(IV)] and complexes have been re-analyzed according to the standard theory for dipolar and contact relaxation, in order to estimate the coupling factor responsible for the maximum DNP enhancement that can be achieved in solution and its dependence on field, temperature and relative importance of outer-sphere versus inner-sphere relaxation.
Collapse
Affiliation(s)
- Claudio Luchinat
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy,
| | | | | |
Collapse
|
50
|
Valentine K, Mathies G, Bédard S, Nucci NV, Dodevski I, Stetz MA, Can TV, Griffin RG, Wand AJ. Reverse micelles as a platform for dynamic nuclear polarization in solution NMR of proteins. J Am Chem Soc 2014; 136:2800-7. [PMID: 24456213 PMCID: PMC3955360 DOI: 10.1021/ja4107176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Indexed: 02/06/2023]
Abstract
Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ∼-93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules.
Collapse
Affiliation(s)
- Kathleen
G. Valentine
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Guinevere Mathies
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Sabrina Bédard
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nathaniel V. Nucci
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Igor Dodevski
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Matthew A. Stetz
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Thach V. Can
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert G. Griffin
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - A. Joshua Wand
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|