1
|
Liu S, Jia B, Wang Y, Zhao Y, Liu L, Fan F, Qin Y, Liu J, Jiang Y, Liu H, Zhao H, Li H, Zhou W, Wu H, Zhang D, Qu X, Qin M. Topological Synthesis of 2D High-Entropy Multimetallic (Oxy)hydroxide for Enhanced Lattice Oxygen Oxidation Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409530. [PMID: 39344144 DOI: 10.1002/adma.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Owing to sluggish reaction kinetics and high potential, oxygen evolution reaction (OER) electrocatalysts face a trade-off between activity and stability. Herein, an innovative topological strategy is presented for preparing 2D multimetallic (oxy)hydroxide, including ternary CoFeZn, quaternary CoFeMnZn, and high-entropy CoFeMnCuZn. The key to the synthesis lies in using Ca-rich brownmillerite oxide as a precursor, which possesses inherent structural flexibility enabling tailored elemental adjustments and topologically transforms from a point-shared structure of metal-oxygen octahedrons into an edge-shared structure under alkaline conditions. The presence of Zn in the catalysts causes a shift in the center of the O2p band toward the Fermi level, resulting in more Co4+ species, which drive holes into oxygen ligands to promote intramolecular oxygen coupling. The triggered lattice oxidation mechanism is identified by detecting peroxo-like (O2 2-) negative species using tetramethylammonium chemical probe, along with 18O isotope labeling experiments. As a result, the catalyst demonstrates an overpotential of 267 mV at 10 mA cm-2, ranking it among the top-performing non-Ni-based catalysts. Importantly, the catalysts also show high Fe-leaching resistance during OER compared to conventional NiFe and CoFe hydroxides/(oxy)hydroxides. The assembled zinc-air battery enables stable operation for over 225 h at a low charging voltage of 1.93 V.
Collapse
Affiliation(s)
- Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528000, China
| | - Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Materials Science and Engineering, National University, Singapore, 117575, Singapore
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengsong Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yirui Jiang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongru Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hong Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxiang Zhou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Deyin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
2
|
Liu Y, Wang Y, Fornasiero P, Tian G, Strasser P, Yang XY. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Angew Chem Int Ed Engl 2024:e202412087. [PMID: 39205621 DOI: 10.1002/anie.202412087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Direct electrochemical seawater splitting is a renewable, scalable, and potentially economic approach for green hydrogen production in environments where ultra-pure water is not readily available. However, issues related to low durability caused by complex ions in seawater pose great challenges for its industrialization. In this review, a mechanistic analysis of durability issues of electrolytic seawater splitting is discussed. We critically analyze the development of seawater electrolysis and identify the durability challenges at both the anode and cathode. Particular emphasis is given to elucidating rational strategies for designing electrocatalysts/electrodes/interfaces with long lifetimes in realistic seawater including inducing passivating anion layers, preferential OH-adsorption, employing anti-corrosion materials, fabricating protective layers, immobilizing Cl- on the surface of electrocatalysts, tailoring Cl- adsorption sites, inhibition of OH- binding to Mg2+ and Ca2+, inhibition of Mg and Ca hydroxide precipitation adherence, and co-electrosynthesis of nano-sized Mg hydroxides. Synthesis methods of electrocatalysts/electrodes and innovations in electrolyzer are also discussed. Furthermore, the prospects for developing seawater splitting technologies for clean hydrogen generation are summarized. We found that researchers have rethought the role of Cl- ions, as well as more attention to cathodic reaction and electrolyzers, which is conducive to accelerate the commercialization of seawater electrolysis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Wang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste and ICCOM-CNR and INSTM Trieste Research Units, 34127, Trieste, Italy
| | - Ge Tian
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Peter Strasser
- Technical University Berlin, Department of Chemistry, 10623, Berlin, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
3
|
Wyss V, Dinu IA, Marot L, Palivan CG, Delley MF. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Catal Sci Technol 2024; 14:4550-4565. [PMID: 39139589 PMCID: PMC11318377 DOI: 10.1039/d4cy00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
New discoveries in catalysis by earth-abundant materials can be guided by leveraging knowledge across two sub-disciplines of heterogeneous catalysis: electrocatalysis and thermocatalysis. Cobalt sulfide has been reported to be a highly active electrocatalyst for the oxygen evolution reaction (OER). Under these oxidative conditions, cobalt sulfide forms oxidized surfaces that outperform directly prepared cobalt oxide in OER catalysis. We postulated that the catalytic activity of oxidized cobalt sulfide for OER could reflect a more general ability to catalyze O-transfer reactions. Herein, we show that cobalt sulfide (CoS x ) indeed catalyzes the epoxidation of cyclooctene, a thermal O-transfer reaction. Similarly to OER, the surface-oxidized CoS x formed under reaction conditions outperformed the directly prepared cobalt oxide, hydroxide, and oxyhydroxide for epoxidation catalysis. Another notable phenomenological parallel to OER was revealed by the electron paramagnetic resonance (EPR) analysis of all spent Co-based catalysts that showed significant structural changes and the formation of paramagnetic Co(ii) and Co(iv) species. Mechanistic investigations suggest that a higher density of Co(ii) and/or an easier formation of high-valent Co species in the case of surface-oxidized cobalt sulfide is responsible for its high activity as an epoxidation catalyst. Our results provide important insight into the surface chemistry of Co-based catalysts and show the potential of oxidized CoS x as an earth-abundant catalyst for O-transfer reactivity beyond OER. This work highlights the utility of bridging electrocatalysis and thermocatalysis for the development of more sustainable chemical processes.
Collapse
Affiliation(s)
- Vanessa Wyss
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | | | - Laurent Marot
- Department of Physics, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
4
|
Doughty T, Zingl A, Wünschek M, Pichler CM, Watkins MB, Roy S. Structural Reconstruction of a Cobalt- and Ferrocene-Based Metal-Organic Framework during the Electrochemical Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40814-40824. [PMID: 39041926 PMCID: PMC11310903 DOI: 10.1021/acsami.4c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Metal-organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER) due to their unique modular structures that present a hybrid between molecular and heterogeneous catalysts, featuring well-defined active sites. However, many fundamental questions remain open regarding the electrochemical stability of MOFs, structural reconstruction of coordination sites, and the role of in situ-formed species. Here, we report the structural transformation of a surface-grown MOF containing cobalt nodes and 1,1'-ferrocenedicarboxylic acid linkers (denoted as CoFc-MOF) during the OER in alkaline electrolyte. Ex situ and in situ investigations of CoFc-MOF film suggest that the MOF acts as a precatalyst and undergoes a two-step restructuring process under operating conditions to generate a metal oxyhydroxide phase. The MOF-derived metal oxyhydroxide catalyst, supported on nickel foam electrodes, displays high activity toward the OER with an overpotential of 190 mV at a current density of 10 mA cm-2. While this study demonstrates the necessity of investigating structural evolution of MOFs during electrocatalysis, it also shows the potential of using MOFs as precursors in catalyst design.
Collapse
Affiliation(s)
- Thomas Doughty
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| | - Andrea Zingl
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Maximilian Wünschek
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Christian M. Pichler
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
- Centre
of Electrochemical and Surface Technology, Viktor Kaplan Straße 2, Wiener Neustadt 2700, Austria
| | - Matthew B. Watkins
- School
of Mathematics and Physics, University of
Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Souvik Roy
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| |
Collapse
|
5
|
Zheng J, Meng D, Guo J, Liu X, Zhou L, Wang Z. Defect Engineering for Enhanced Electrocatalytic Oxygen Reaction on Transition Metal Oxides: The Role of Metal Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405129. [PMID: 38670162 DOI: 10.1002/adma.202405129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Metal defect engineering is a highly effective strategy for addressing the prevalent high overpotential issues associated with transition metal oxides functioning as dual-function commercial oxygen reduction reaction/oxygen evolution reaction catalysts for increasing their activity and stability. However, the high formation energy of metal defects poses a challenge to the development of strategies to precisely control the selectivity during metal defect formation. Here, density functional theory calculations are used to demonstrate that altering the pathway of metal defect formation releases metal atoms as metal chlorides, which effectively reduces the formation energy of defects. The metal defects on the monometallic metal oxide surface (Mn, Fe, Co, and Ni) are selectively produced using chlorine plasma. The characterization and density functional theory calculations reveal that catalytic activity is enhanced owing to electronic delocalization induced by metal defects, which reduces the theoretical overpotential. Notably, ab initio molecular dynamics calculations, ex situ XPS, and in situ ATR-SEIRAS suggest that metal defects effectively improve the adsorption of reactive species on active sites and enhance the efficiency of product desorption, thereby boosting catalytic performance.
Collapse
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaobin Liu
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Zhou
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Malik DD, Ryu W, Kim Y, Singh G, Kim JH, Sankaralingam M, Lee YM, Seo MS, Sundararajan M, Ocampo D, Roemelt M, Park K, Kim SH, Baik MH, Shearer J, Ray K, Fukuzumi S, Nam W. Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates. J Am Chem Soc 2024; 146:13817-13835. [PMID: 38716885 PMCID: PMC11216523 DOI: 10.1021/jacs.3c14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wooyeol Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Gurjot Singh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
8
|
Wei Y, Hu Y, Da P, Weng Z, Xi P, Yan CH. Triggered lattice-oxygen oxidation with active-site generation and self-termination of surface reconstruction during water oxidation. Proc Natl Acad Sci U S A 2023; 120:e2312224120. [PMID: 38051768 PMCID: PMC10723130 DOI: 10.1073/pnas.2312224120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 12/07/2023] Open
Abstract
To master the activation law and mechanism of surface lattice oxygen for the oxygen evolution reaction (OER) is critical for the development of efficient water electrolysis. Herein, we propose a strategy for triggering lattice-oxygen oxidation and enabling non-concerted proton-electron transfers during OER conditions by substituting Al in La0.3Sr0.7CoO3-δ. According to our experimental data and density functional theory calculations, the substitution of Al can have a dual effect of promoting surface reconstruction into active Co oxyhydroxides and activating deprotonation on the reconstructed oxyhydroxide, inducing negatively charged oxygen as an active site. This leads to a significant improvement in the OER activity. Additionally, Al dopants facilitate the preoxidation of active cobalt metal, which introduces great structural flexibility due to elevated O 2p levels. As OER progresses, the accumulation of oxygen vacancies and lattice-oxygen oxidation on the catalyst surface leads to the termination of Al3+ leaching, thereby preventing further reconstruction. We have demonstrated a promising approach to achieving tunable electrochemical reconstruction by optimizing the electronic structure and gained a fundamental understanding of the activation mechanism of surface oxygen sites.
Collapse
Affiliation(s)
- Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University-The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| |
Collapse
|
9
|
Mondal S, Riyaz M, Bagchi D, Dutta N, Singh AK, Vinod CP, Peter SC. Distortion-Induced Interfacial Charge Transfer at Single Cobalt Atom Secured on Ordered Intermetallic Surface Enhances Pure Oxygen Production. ACS NANO 2023; 17:23169-23180. [PMID: 37955244 DOI: 10.1021/acsnano.3c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
In this work, atomic cobalt (Co) incorporation into the Pd2Ge intermetallic lattice facilitates operando generation of a thin layer of CoO over Co-substituted Pd2Ge, with Co in the CoO surface layer functioning as single metal sites. Hence the catalyst has been titled Co1-CoO-Pd2Ge. High-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy confirm the existence of CoO, with some of the Co bonded to Ge by substitution of Pd sites in the Pd2Ge lattice. The role of the CoO layer in the oxygen evolution reaction (OER) has been verified by its selective removal using argon sputtering and conducting the OER on the etched catalyst. In situ X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopy demonstrate that CoO gets transformed to CoOOH (Co3+) in operando condition with faster charge transfer through Pd atoms in the core Pd2Ge lattice. In situ Raman spectroscopy depicts the emergence of a CoOOH phase on applying potential and shows that the phase is stable with increasing potential and time without getting converted to CoO2. Density functional theory calculations indicate that the Pd2Ge lattice induces distortion in the CoO phase and generates unpaired spins in a nonmagnetic CoOOH system resulting in an increase in the OER activity and durability. The existence of spin density even after electrocatalysis is verified from electron paramagnetic resonance spectroscopy. We have thus successfully synthesized intermetallic supported CoO during synthesis and rigorously verified the role played by an intermetallic Pd2Ge core in enhancing charge transfer, generating spin density, improving electrochemical durability, and imparting mechanical stability to a thin CoOOH overlayer. Differential electrochemical mass spectrometry has been explored to visualize the instantaneous generation of oxygen gas during the onset of the reaction.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Nilutpal Dutta
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 410008, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
10
|
Cardenas-Morcoso D, Bansal D, Heiderscheid M, Audinot JN, Guillot J, Boscher ND. A Polymer-Derived Co(Fe)O x Oxygen Evolution Catalyst Benefiting from the Oxidative Dehydrogenative Coupling of Cobalt Porphyrins. ACS Catal 2023; 13:15182-15193. [PMID: 38026816 PMCID: PMC10660665 DOI: 10.1021/acscatal.3c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Thin films of cobalt porphyrin conjugated polymers bearing different substituents are prepared by oxidative chemical vapor deposition (oCVD) and investigated as heterogeneous electrocatalysts for the oxygen evolution reaction (OER). Interestingly, the electrocatalytic activity originates from polymer-derived, highly transparent Co(Fe)Ox species formed under operational alkaline conditions. Structural, compositional, electrical, and electrochemical characterizations reveal that the newly formed active catalyst greatly benefited from both the polymeric conformation of the porphyrin-based thin film and the inclusion of the iron-based species originating from the oCVD reaction. High-resolution mass spectrometry analyses combined with density functional theory (DFT) calculations showed that a close relationship exists between the porphyrin substituent, the extension of the π-conjugated system cobalt porphyrin conjugated polymer, and the dynamics of the polymer conversion leading to catalytically active Co(Fe)Ox species. This work evidences the precatalytic role of cobalt porphyrin conjugated polymers and uncovers the benefit of extended π-conjugation of the molecular matrix and iron inclusion on the formation and performance of the true active catalyst.
Collapse
Affiliation(s)
- Drialys Cardenas-Morcoso
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Deepak Bansal
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Max Heiderscheid
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Jean-Nicolas Audinot
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Jérôme Guillot
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Nicolas D. Boscher
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| |
Collapse
|
11
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Depenbrock F, Limpke T, Bill E, SantaLucia DJ, van Gastel M, Walleck S, Oldengott J, Stammler A, Bögge H, Glaser T. Reactivities and Electronic Structures of μ-1,2-Peroxo and μ-1,2-Superoxo Co IIICo III Complexes: Electrophilic Reactivity and O 2 Release Induced by Oxidation. Inorg Chem 2023; 62:17913-17930. [PMID: 37838986 DOI: 10.1021/acs.inorgchem.3c02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Peroxo complexes are key intermediates in water oxidation catalysis (WOC). Cobalt plays an important role in WOC, either as oxides CoOx or as {CoIII(μ-1,2-peroxo)CoIII} complexes, which are the oldest peroxo complexes known. The oxidation of {CoIII(μ-1,2-peroxo)CoIII} complexes had usually been described to form {CoIII(μ-1,2-superoxo)CoIII} complexes; however, recently the formation of {CoIV(μ-1,2-peroxo)CoIII} species were suggested. Using a bis(tetradentate) dinucleating ligand, we present here the synthesis and characterization of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} and {CoIII(μ-OH)2CoIII} complexes. Oxidation of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} at -40 °C in CH3CN provides the stable {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} species and activates electrophilic reactivity. Moreover, {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} catalyzes water oxidation, not molecularly but rather via CoOx films. While {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} can be reversibly deprotonated with DBU at -40 °C in CH3CN, {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} undergoes irreversible conversions upon reaction with bases to a new intermediate that is also the decay product of {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} in aqueous solution at pH > 2. Based on a combination of experimental methods, the new intermediate is proposed to have a {CoII(μ-OH)CoIII} core formed by the release of O2 from {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} confirmed by a 100% yield of O2 upon photocatalytic oxidation of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII}. This release of O2 by oxidation of a peroxo intermediate corresponds to the last step in molecular WOC.
Collapse
Affiliation(s)
- Felix Depenbrock
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Daniel J SantaLucia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| |
Collapse
|
13
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
14
|
Amer MS, Arunachalam P, Ghanem MA, Al-Mayouf AM, Weller MT. Photoelectrochemical Performance of Strontium Titanium Oxynitride Photo-Activated with Cobalt Phosphate Nanoparticles for Oxidation of Alkaline Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:920. [PMID: 36903798 PMCID: PMC10005293 DOI: 10.3390/nano13050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Photoelectrochemical (PEC) solar water splitting is favourable for transforming solar energy into sustainable hydrogen fuel using semiconductor electrodes. Perovskite-type oxynitrides are attractive photocatalysts for this application due to their visible light absorption features and stability. Herein, strontium titanium oxynitride (STON) containing anion vacancies of SrTi(O,N)3-δ was prepared via solid phase synthesis and assembled as a photoelectrode by electrophoretic deposition, and their morphological and optical properties and PEC performance for alkaline water oxidation are investigated. Further, cobalt-phosphate (CoPi)-based co-catalyst was photo-deposited over the surface of the STON electrode to boost the PEC efficiency. A photocurrent density of ~138 μA/cm at 1.25 V versus RHE was achieved for CoPi/STON electrodes in presence of a sulfite hole scavenger which is approximately a four-fold enhancement compared to the pristine electrode. The observed PEC enrichment is mainly due to the improved kinetics of oxygen evolution because of the CoPi co-catalyst and the reduced surface recombination of the photogenerated carriers. Moreover, the CoPi modification over perovskite-type oxynitrides provides a new dimension for developing efficient and highly stable photoanodes in solar-assisted water-splitting reactions.
Collapse
Affiliation(s)
- Mabrook S. Amer
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- K.A.CAR Energy Research and Innovation Center at Riyadh, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prabhakarn Arunachalam
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Ghanem
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Mayouf
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- K.A.CAR Energy Research and Innovation Center at Riyadh, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mark T. Weller
- Chemistry Department, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
15
|
Wu Q, Liang J, Xiao M, Long C, Li L, Zeng Z, Mavrič A, Zheng X, Zhu J, Liang HW, Liu H, Valant M, Wang W, Lv Z, Li J, Cui C. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat Commun 2023; 14:997. [PMID: 36813796 PMCID: PMC9947139 DOI: 10.1038/s41467-023-36718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak "non-bonding" interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO2 interaction that substantially elevates the population of Co4+ sites for improved water oxidation. We find that phenanthroline only coordinates with Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electrolytes, which can be deposited as amorphous CoOxHy film containing non-bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ deposited catalyst demonstrates a low overpotential of 216 mV at 10 mA cm-2 and sustainable activity over 1600 h with Faradaic efficiency above 97%. Density functional theory calculations reveal that the presence of phenanthroline can stabilize CoO2 through the non-covalent interaction and generate polaron-like electronic states at the Co-Co center.
Collapse
Affiliation(s)
- Qianbao Wu
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Junwu Liang
- grid.440772.20000 0004 1799 411XOptoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, Guangxi 537000 China
| | - Mengjun Xiao
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang Long
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Lei Li
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Andraž Mavrič
- grid.438882.d0000 0001 0212 6916Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Xia Zheng
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jing Zhu
- grid.59053.3a0000000121679639Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Hongfei Liu
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Matjaz Valant
- grid.438882.d0000 0001 0212 6916Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Wei Wang
- grid.54549.390000 0004 0369 4060School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zhengxing Lv
- grid.458506.a0000 0004 0497 0637Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiong Li
- grid.458506.a0000 0004 0497 0637Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
16
|
Kang W, Wei R, Yin H, Li D, Chen Z, Huang Q, Zhang P, Jing H, Wang X, Li C. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co 3O 4 Catalyst for Water Oxidation. J Am Chem Soc 2023; 145:3470-3477. [PMID: 36724407 DOI: 10.1021/jacs.2c11508] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multi-redox mechanism involving multi-sites has great implications to dictate the catalytic water oxidation. Understanding the sequential dynamics of multi-steps in oxygen evolution reaction (OER) cycles on working catalysts is a highly important but challenging issue. Here, using quasi-operando transient absorption (TA) spectroscopy and a typical photosensitization strategy, we succeeded in resolving the sequential oxidation kinetics involving multi-active sites for water oxidation in OER catalytic cycle, with Co3O4 nanoparticles as model catalysts. When OER initiates from fast oxidation of surface Co2+ ions, both surface Co2+ and Co3+ ions are active sites of the multi-cobalt centers for water oxidation. In the sequential kinetics (Co2+ → Co3+ → Co4+), the key characteristic is fast oxidation and slow consumption for all the cobalt species. Due to this characteristic, the Co4+ intermediate distribution plays a determining role in OER activity and results in the slow overall OER kinetics. These insights shed light on the kinetic understanding of water oxidation on heterogeneous catalysts with multi-sites.
Collapse
Affiliation(s)
- Wanchao Kang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Pengfei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Huanwang Jing
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Su R, Li N, Liu Z, Song X, Liu W, Gao B, Zhou W, Yue Q, Li Q. Revealing the Generation of High-Valent Cobalt Species and Chlorine Dioxide in the Co 3O 4-Activated Chlorite Process: Insight into the Proton Enhancement Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1882-1893. [PMID: 36607701 DOI: 10.1021/acs.est.2c04903] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Co3O4-activated chlorite (Co3O4/chlorite) process was developed to enable the simultaneous generation of high-valent cobalt species [Co(IV)] and ClO2 for efficient oxidation of organic contaminants. The formation of Co(IV) in the Co3O4/chlorite process was demonstrated through phenylmethyl sulfoxide (PMSO) probe and 18O-isotope-labeling tests. Both experiments and theoretical calculations revealed that chlorite activation involved oxygen atom transfer (OAT) during Co(IV) formation and proton-coupled electron transfer (PCET) in the Co(IV)-mediated ClO2 generation. Protons not only promoted the generation of Co(IV) and ClO2 by lowering the energy barrier but also strengthened the resistance of the Co3O4/chlorite process to coexisting anions, which we termed a proton enhancement effect. Although both Co(IV) and ClO2 exhibited direct oxidation of contaminants, their contributions varied with pH changes. When pH increased from 3 to 5, the deprotonation of contaminants facilitated the electrophilic attack of ClO2, while as pH increased from 5 to 8, Co(IV) gradually became the main contributor to contaminant degradation owing to its higher stability than ClO2. Moreover, ClO2- was transformed into nontoxic Cl- rather than ClO3- after the reaction, thus greatly reducing possible environmental risks. This work described a Co(IV)-involved chlorite activation process for efficient removal of organic contaminants, and a proton enhancement mechanism was revealed.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Nan Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Xiaoyang Song
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, P. R. China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong250100, P. R. China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| |
Collapse
|
18
|
Peng CK, Lin YC, Chiang C, Qian Z, Huang YC, Dong CL, Li J, Chen CT, Hu Z, Chen SY, Lin YG. Zhang-Rice singlets state formed by two-step oxidation for triggering water oxidation under operando conditions. Nat Commun 2023; 14:529. [PMID: 36725864 PMCID: PMC9892518 DOI: 10.1038/s41467-023-36317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The production of ecologically compatible fuels by electrochemical water splitting is highly desirable for modern industry. The Zhang-Rice singlet is well known for the superconductivity of high-temperature superconductors cuprate, but is rarely known for an electrochemical catalyst. Herein, we observe two steps of surface reconstruction from initial catalytic inactive Cu1+ in hydrogen treated Cu2O to Cu2+ state and further to catalytic active Zhang-Rice singlet state during the oxygen evolution reaction for water splitting. The hydrogen treated Cu2O catalyst exhibits a superior catalytic activity and stability for water splitting and is an efficient rival of other 3d-transition-metal catalysts. Multiple operando spectroscopies indicate that Zhang-Rice singlet is real active species, since it appears only under oxygen evolution reaction condition. This work provides an insight in developing an electrochemical catalyst from catalytically inactive materials and improves understanding of the mechanism of a Cu-based catalyst for water oxidation.
Collapse
Affiliation(s)
- Chun-Kuo Peng
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
| | - Yu-Chang Lin
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan ,grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Chao‐Lung Chiang
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Zhengxin Qian
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Yu-Cheng Huang
- grid.264580.d0000 0004 1937 1055Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
| | - Chung-Li Dong
- grid.264580.d0000 0004 1937 1055Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
| | - Jian‐Feng Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Chien-Te Chen
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Zhiwei Hu
- grid.419507.e0000 0004 0491 351XMax-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden, 01187 Germany
| | - San-Yuan Chen
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
| | - Yan-Gu Lin
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| |
Collapse
|
19
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
20
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Du K, Zhang L, Shan J, Guo J, Mao J, Yang CC, Wang CH, Hu Z, Ling T. Interface engineering breaks both stability and activity limits of RuO 2 for sustainable water oxidation. Nat Commun 2022; 13:5448. [PMID: 36114207 PMCID: PMC9481627 DOI: 10.1038/s41467-022-33150-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Designing catalytic materials with enhanced stability and activity is crucial for sustainable electrochemical energy technologies. RuO2 is the most active material for oxygen evolution reaction (OER) in electrolysers aiming at producing 'green' hydrogen, however it encounters critical electrochemical oxidation and dissolution issues during reaction. It remains a grand challenge to achieve stable and active RuO2 electrocatalyst as the current strategies usually enhance one of the two properties at the expense of the other. Here, we report breaking the stability and activity limits of RuO2 in neutral and alkaline environments by constructing a RuO2/CoOx interface. We demonstrate that RuO2 can be greatly stabilized on the CoOx substrate to exceed the Pourbaix stability limit of bulk RuO2. This is realized by the preferential oxidation of CoOx during OER and the electron gain of RuO2 through the interface. Besides, a highly active Ru/Co dual-atom site can be generated around the RuO2/CoOx interface to synergistically adsorb the oxygen intermediates, leading to a favourable reaction path. The as-designed RuO2/CoOx catalyst provides an avenue to achieve stable and active materials for sustainable electrochemical energy technologies.
Collapse
Affiliation(s)
- Kun Du
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifu Zhang
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Jieqiong Shan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jiaxin Guo
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chueh-Cheng Yang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC.
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin, 300071, China.
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
22
|
Bag J, Pal K. The access of {NiIV(OH)2} intermediate in Ni(II) mediated oxygen atom transfer to coordinated Phosphine: Combined experimental and computational studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Araki Y, Tsunekawa S, Sakai A, Harada K, Nagatsuka R, Suzuki‐Sakamaki M, Amemiya K, Wang K, Kawai T, Yoshida M. Development of a Hemispherical Cavity Cobalt Electrocatalyst for Water Oxidation Based on a Polystyrene Colloidal Template Electrodeposition Method. ChemistrySelect 2022. [DOI: 10.1002/slct.202200600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusaku Araki
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Shun Tsunekawa
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Arisu Sakai
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Kazuki Harada
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Ryosuke Nagatsuka
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | | | - Kenta Amemiya
- Institute of Materials Structure Science High Energy Accelerator Research Organization Oho Tsukuba Ibaraki 305-0801 Japan
| | - Ke‐Hsuan Wang
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
- Blue Energy Center for SGE Technology (BEST) Yamaguchi University
| |
Collapse
|
24
|
Zheng J, Peng X, Xu Z, Gong J, Wang Z. Cationic Defect Engineering in Spinel NiCo 2O 4 for Enhanced Electrocatalytic Oxygen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangfeng Peng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhao Xu
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Niu F, Zhou Q, Han Y, Liu R, Zhao Z, Zhang Z, Hu K. Rapid Hole Extraction Based on Cascade Band Alignment Boosts Photoelectrochemical Water Oxidation Efficiency. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fushuang Niu
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Quan Zhou
- School of Advanced Study, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Yiming Han
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Rong Liu
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Zijian Zhao
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Zhenghao Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ke Hu
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
26
|
Yao N, Wang G, Jia H, Yin J, Cong H, Chen S, Luo W. Intermolecular Energy Gap-Induced Formation of High-Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angew Chem Int Ed Engl 2022; 61:e202117178. [PMID: 35037704 DOI: 10.1002/anie.202117178] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Transition metal-based electrocatalysts will undergo surface reconstruction to form active oxyhydroxide-based hybrids, which are regarded as the "true-catalysts" for the oxygen evolution reaction (OER). Much effort has been devoted to understanding the surface reconstruction, but little on identifying the origin of the enhanced performance derived from the substrate effect. Herein, we report the electrochemical synthesis of amorphous CoOOH layers on the surface of various cobalt sulfides (CoSα ), and identify that the reduced intermolecular energy gap (Δinter ) between the valence band maximum (VBM) of CoOOH and the conduction band minimum (CBM) of CoSα can accelerate the formation of OER-active high-valent Co4+ species. The combination of electrochemical and in situ spectroscopic approaches, including cyclic voltammetry (CV), operando electron paramagnetic resonance (EPR) and Raman, reveals that Co species in the CoOOH/Co9 S8 are more readily oxidized to CoO2 /Co9 S8 than in CoOOH and other CoOOH/CoSα . This work provides a new design principle for transition metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Na Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, 430072, Wuhan, P. R. China.,Suzhou Institute of Wuhan University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
27
|
Chen S, Li Y, Wang Z, Jin Y, Liu R, Li X. Poly(ionic liquid)s hollow spheres nanoreactor for enhanced cyclohexane catalytic oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Lin Y, Yu L, Tang L, Song F, Schlögl R, Heumann S. In Situ Identification and Time-Resolved Observation of the Interfacial State and Reactive Intermediates on a Cobalt Oxide Nanocatalyst for the Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yangming Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Linhui Yu
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ling Tang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Feihong Song
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Saskia Heumann
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Budiyanto E, Tüysüz H. Cobalt Oxide Nanowires with Controllable Diameter and Crystal Structures for the Oxygen Evolution Reaction. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
30
|
Abstract
Electrochemical and photoelectrochemical water splitting offers a scalable approach to producing hydrogen from renewable sources for sustainable energy storage. Depending on the applications, oxygen evolution catalysts (OECs) may perform water splitting under a variety of conditions. However, low stability and/or activity present challenges to the design of OECs, prompting the design of self-healing OECs composed of earth-abundant first-row transition metal oxides. The concept of self-healing catalysis offers a new tool to be employed in the design of stable and functionally active OECs under operating conditions ranging from acidic to basic solutions and from a variety of water sources. Large scale sustainable energy storage by water splitting benefits from performing the oxygen evolution reaction under a variety of conditions. Here, the authors discuss self-healing catalysis as a new tool in the design of stable and functionally active catalysts in acidic to basic solutions, and a variety of water sources
Collapse
|
31
|
Zhao Y, Dongfang N, Triana CA, Huang C, Erni R, Wan W, Li J, Stoian D, Pan L, Zhang P, Lan J, Iannuzzi M, Patzke GR. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. ENERGY & ENVIRONMENTAL SCIENCE 2022; 15:727-739. [PMID: 35308298 PMCID: PMC8848331 DOI: 10.1039/d1ee02249k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The rational design of efficient electrocatalysts for industrial water splitting is essential to generate sustainable hydrogen fuel. However, a comprehensive understanding of the complex catalytic mechanisms under harsh reaction conditions remains a major challenge. We apply a self-templated strategy to introduce hierarchically nanostructured "all-surface" Fe-doped cobalt phosphide nanoboxes (Co@CoFe-P NBs) as alternative electrocatalysts for industrial-scale applications. Operando Raman spectroscopy and X-ray absorption spectroscopy (XAS) experiments were carried out to track the dynamics of their structural reconstruction and the real catalytically active intermediates during water splitting. Our operando analyses reveal that partial Fe substitution in cobalt phosphides promotes a structural reconstruction into P-Co-O-Fe-P configurations with low-valence metal centers (M0/M+) during the hydrogen evolution reaction (HER). Results from density functional theory (DFT) demonstrate that these in situ reconstructed configurations significantly enhance the HER performance by lowering the energy barrier for water dissociation and by facilitating the adsorption/desorption of HER intermediates (H*). The competitive activity in the oxygen evolution reaction (OER) arises from the transformation of the reconstructed P-Co-O-Fe-P configurations into oxygen-bridged, high-valence CoIV-O-FeIV moieties as true active intermediates. In sharp contrast, the formation of such CoIII/IV-O-FeIII/IV moieties in Co-FeOOH is hindered under the same conditions, which outlines the key advantages of phosphide-based electrocatalysts. Ex situ studies of the as-synthesized reference cobalt sulfides (Co-S), Fe doped cobalt selenides (Co@CoFe-Se), and Fe doped cobalt tellurides (Co@CoFe-Te) further corroborate the observed structural transformations. These insights are vital to systematically exploit the intrinsic catalytic mechanisms of non-oxide, low-cost, and robust overall water splitting electrocatalysts for future energy conversion and storage.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Nanchen Dongfang
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Chong Huang
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wenchao Wan
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Jingguo Li
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility 38000 Grenoble France
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Ping Zhang
- School of Electrical and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University Tianjin 300072 China
| | - Jinggang Lan
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
32
|
Tsuneda T, Ten-No SL. Water-oxidation mechanism of cobalt phosphate co-catalyst in artificial photosynthesis: a theoretical study. Phys Chem Chem Phys 2022; 24:4674-4682. [PMID: 35134101 DOI: 10.1039/d1cp05816a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The initial water-oxidation reaction mechanism of the hydrated cobalt phosphate (CoPi) co-catalyst, which is consistent with conventional experimental findings, is investigated for O-O bond and OOH formation in this study. Theoretical calculations of hydrated CoPi cluster models, which are validated by vibrational spectrum calculations, elucidate the roles of phosphate as a source of oxygen and deliverer of protons, both of which result in the spontaneous formation of an O-O bond after the release of two electrons and two protons. The calculations also show that OOH formation proceeds subsequently depending on the spin electronic states of the hydrated CoPi surface, and O2 formation then spontaneously progresses after the release of two electrons and two protons. By theoretically tracing these processes, the initial water-oxidation reaction mechanism of the hydrated CoPi co-catalyst is proposed.
Collapse
Affiliation(s)
- Takao Tsuneda
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan. .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seiichiro L Ten-No
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
33
|
Fang Y, Hou Y, Fu X, Wang X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem Rev 2022; 122:4204-4256. [PMID: 35025505 DOI: 10.1021/acs.chemrev.1c00686] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.
Collapse
Affiliation(s)
- Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
34
|
Amtawong J, Nguyen AI, Tilley TD. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. J Am Chem Soc 2022; 144:1475-1492. [DOI: 10.1021/jacs.1c11445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- Department of Chemistry, University of Illinois, Chicago, Chicago, Illinois 60607, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Yao N, Wang G, Jia H, Yin J, Cong H, Chen S, Luo W. Intermolecular Energy Gap‐Induced Formation of High‐Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Na Yao
- Wuhan University Chemistry CHINA
| | | | | | | | | | | | - Wei Luo
- wuhan university college of chemistry and molecular sciecnes luojia road 430072 Wuhan CHINA
| |
Collapse
|
36
|
Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63948-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Jiang N, Zhu Z, Xue W, Xia BY, You B. Emerging Electrocatalysts for Water Oxidation under Near-Neutral CO 2 Reduction Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105852. [PMID: 34658063 DOI: 10.1002/adma.202105852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR), which produces valuable fuels and chemicals under near-neutral conditions, offers a renewable approach to alleviate the global energy crisis as well as the increasing concerns on climate change. However, to implement this strategy, one of the major challenges, the sluggish kinetics of the paired oxygen evolution reaction (OER) at anode, needs to be surmounted. It is therefore highly desirable to explore high-performance and cost-effective OER electrocatalysts suitable for CO2 RR conditions, which is very different from those widely investigated under acidic or alkaline conditions. In this review, the ongoing development of OER electrocatalysts under near pH-neutral CO2 -saturated (bi)carbonate solutions are highlighted and the future opportunities are discussed. It is started with a brief introduction on OER paired with CO2 RR, the relevant theoretical tools such as density functional theory (DFT) and particularly machine learning (ML), and the operando characterization techniques. Then, there are some detailed discussions of recent progress on the rational design of OER electrocatalysts under CO2 RR conditions ranging from noble-metal oxides to nonprecious metal phosphides, carbonates, (hydro)oxides, and so on. Finally, a perspective for developing OER electrocatalysts integrated with CO2 electroreduction is proposed.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zhiwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Wenjie Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| |
Collapse
|
38
|
Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B. Liquid-Phase Cyclohexene Oxidation with O 2 over Spray-Flame-Synthesized La 1-x Sr x CoO 3 Perovskite Nanoparticles. Chemistry 2021; 27:16912-16923. [PMID: 34590747 PMCID: PMC9293428 DOI: 10.1002/chem.202103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/24/2022]
Abstract
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray‐flame synthesis and applied in the liquid‐phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state‐of‐the‐art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first‐order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex‐2‐ene‐1‐hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.
Collapse
Affiliation(s)
- Julia Büker
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nikolai Kochetov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Falk
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Li H, Chen C, Yan Y, Yan T, Cheng C, Sun D, Zhang L. Utilizing the Built-in Electric Field of p-n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105067. [PMID: 34632643 DOI: 10.1002/adma.202105067] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Integrating sulfur cathodes with effective catalysts to accelerate polysulfide conversion is a suitable way for overcoming the serious shuttling and sluggish conversion of polysulfides in lithium-sulfur batteries. However, because of the sharp differences in the redox reaction kinetics and complicated phase transformation of sulfur, a single-component catalyst cannot consistently accelerate the entire redox process. Herein, hierarchical and defect-rich Co3 O4 /TiO2 p-n junctions (p-Co3 O4 /n-TiO2 -HPs) are fabricated to implement the sequential catalysis of S8(solid) → Li2 S4(liquid) → Li2 S(solid) . Co3 O4 sheets physiochemically immobilize the pristine sulfur and ensure the rapid reduction of S8 to Li2 S4 , while TiO2 dots realize the effective precipitation of Li2 S, bridged by the directional migration of polysulfides from p-type Co3 O4 to n-type TiO2 attributed to the interfacial built-in electric field. As a result, the sulfur cathode coupled with p-Co3 O4 /n-TiO2 -HPs delivers long-term cycling stability with a low capacity decay of 0.07% per cycle after 500 cycles at 10 C. This study demonstrates the synergistic effect of the built-in electric field and heterostructures in spatially enhancing the stepwise conversion of polysulfides, which provides novel insights into the interfacial architecture for rationally regulating the polysulfide redox reactions.
Collapse
Affiliation(s)
- Hongtai Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chi Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yingying Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Dan Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Roy O, Jana A, Pratihar B, Saha DS, De S. Graphene oxide wrapped Mix-valent cobalt phosphate hollow nanotubes as oxygen evolution catalyst with low overpotential. J Colloid Interface Sci 2021; 610:592-600. [PMID: 34848052 DOI: 10.1016/j.jcis.2021.11.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Development of an efficient, stable and inexpensive catalyst for oxygen evolution reaction (OER) is critical to electrochemical water splitting. In this regard, a precious-metal free electrocatalyst has been synthesized employing a hydrothermal route. The prepared graphene oxide wrapped cobalt phosphate nanotubes deposited on Ni foam electrode shows a low overpotential of 234 mV at a current density of 10 mA/cm2 for OER in 1(M) KOH, lower than a benchmarking electrocatalyst IrO2 at the same current density. The performance figures clearly defy the volcano limitations. The mixed-valency induced delocalization of charge satisfies Sabatier Principle for ideal catalysts and graphene oxide ensures improved charge transfer. Moreover, the designed electrocatalyst performs efficiently even on prolonged use under mass transfer limitation conditions.
Collapse
Affiliation(s)
- Omkar Roy
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Animesh Jana
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Bitan Pratihar
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dhriti S Saha
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
41
|
Budiyanto E, Zerebecki S, Weidenthaler C, Kox T, Kenmoe S, Spohr E, DeBeer S, Rüdiger O, Reichenberger S, Barcikowski S, Tüysüz H. Impact of Single-Pulse, Low-Intensity Laser Post-Processing on Structure and Activity of Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51962-51973. [PMID: 34323466 PMCID: PMC8587604 DOI: 10.1021/acsami.1c08034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report nanosecond, single-pulse laser post-processing (PLPP) in a liquid flat jet with precise control of the applied laser intensity to tune structure, defect sites, and the oxygen evolution reaction (OER) activity of mesostructured Co3O4. High-resolution X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) are consistent with the formation of cobalt vacancies at tetrahedral sites and an increase in the lattice parameter of Co3O4 after the laser treatment. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) further reveal increased disorder in the structure and a slight decrease in the average oxidation state of the cobalt oxide. Molecular dynamics simulation confirms the surface restructuring upon laser post-treatment on Co3O4. Importantly, the defect-induced PLPP was shown to lower the charge transfer resistance and boost the oxygen evolution activity of Co3O4. For the optimized sample, a 2-fold increment of current density at 1.7 V vs RHE is obtained and the overpotential at 10 mA/cm2 decreases remarkably from 405 to 357 mV compared to pristine Co3O4. Post-mortem characterization reveals that the material retains its activity, morphology, and phase structure after a prolonged stability test.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Swen Zerebecki
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Tim Kox
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Stephane Kenmoe
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Eckhard Spohr
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Serena DeBeer
- Max Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Olaf Rüdiger
- Max Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Sven Reichenberger
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Stephan Barcikowski
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
42
|
Wang P, Fu P, Ma J, Gao Y, Li Z, Wang H, Fan F, Shi J, Li C. Ultrathin Cobalt Oxide Interlayer Facilitated Hole Storage for Sustained Water Oxidation over Composited Tantalum Nitride Photoanodes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengpeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Jiangping Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zheng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Hong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Jingying Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
43
|
Yi X, Song L, Ouyang S, Wang N, Chen H, Wang J, Lv J, Ye J. Cost-Efficient Photovoltaic-Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron-Molybdenum Oxides for Potential Large-Scale Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102222. [PMID: 34411433 DOI: 10.1002/smll.202102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Unassisted photovoltaic (PV) water splitting to hydrogen system is of great potential for future environmental-friendly fuel production from renewable solar energy. However, industrialization simultaneously requires higher efficiency, sustained stability and a lower cost for the system. In this work, the ultrathin cobalt/iron-molybdenum oxides nanosheet on nickel foam (NF) is prepared for efficient HER and OER, respectively, delivering a relatively low voltage of 1.45 V at 10 mA cm-2 in two-electrodes configuration. Water electrolysis at low voltage driven by electrocatalysts is critical for realizing energy conversion. Integrated with a commercial monocrystalline silicon cell, the H2 area specific activity of 0.47 L m-2 h-1 is achieved with a solar-to-hydrogen efficiency of 15.1% under solar simulator illumination (100 mW cm-2 ) and no performance degradation appeares over 160 h. Such a solar conversion technology demonstrates the potential for long-term and cost-efficient H2 production in large-scale industrialization and provides an exploration for new-type of energy-conversion system.
Collapse
Affiliation(s)
- Xinli Yi
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lizhu Song
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuxin Ouyang
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Huayu Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Jianbo Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jun Lv
- Electronic Information Engineering College, Sanjiang University, Nanjing, 210012, P. R. China
- School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2033, Australia
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0047, Japan
| |
Collapse
|
44
|
Zhou X, Wang C, Liu F, He C, Zhang S. Insight into the improvement mechanism of Co−Pi-modified hematite nanowire photoanodes for solar water oxidation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic tetranuclear manganese-calcium-oxo cluster in the photosynthetic reaction center, photosystem II, provides an excellent blueprint for light-driven water oxidation in nature. The water oxidation reaction has attracted intense interest due to its potential as a renewable, clean, and environmentally benign source of energy production. Inspired by the oxygen-evolving complex of photosystem II, a large of number of highly innovative synthetic bio-inspired molecular catalysts are being developed that incorporate relatively cheap and abundant metals such as Mn, Fe, Co, Ni, and Cu, as well as Ru and Ir, in their design. In this review, we briefly discuss the historic milestones that have been achieved in the development of transition metal catalysts and focus on a detailed description of recent progress in the field.
Collapse
|
46
|
Pyo E, Lee K, Park GT, Ha SY, Lee S, Kim CS, Kwon KY. Concurrent occurrence of electrochemical dissolution/deposition of cobalt-calcium phosphate composite. RSC Adv 2021; 11:28342-28346. [PMID: 35480747 PMCID: PMC9037991 DOI: 10.1039/d1ra05108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022] Open
Abstract
Amorphous cobalt-calcium phosphate composite (CCPC) films are electrochemically prepared on various electrodes by utilizing the solid phase of hydroxyapatite as a phosphate source. The CCPC film formation is surface process in which the dissolution of hydroxyapatite and the deposition of CCPC film concurrently occur on the electrode surface without the mass transfer of phosphate ions into the bulk solution. Elemental, crystallographic, and morphological analyses (EDX, ICP-AES, XPS, and XRD) indicate that the CCPC is composed of amorphous cobalt oxide with calcium and phosphate. The film exhibits durable oxygen evolution reaction (OER) catalytic properties under neutral and basic aqueous condition. Compared to using solution phase of phosphate source, our preparation method utilizing solid hydroxyapatite has advantage of preventing unnecessary chemical reaction between phosphate and other chemical species in bulk solution.
Collapse
Affiliation(s)
- Eunji Pyo
- Department of Chemistry, Gyeongsang National University and Research Institute for Green Energy Convergence Technology Jinju 52828 South Korea
| | - Keunyoung Lee
- Department of Chemistry, Gyeongsang National University and Research Institute for Green Energy Convergence Technology Jinju 52828 South Korea
| | - Gi-Tae Park
- Analysis & Certification Center, Korea Institute of Ceramic Engineering & Technology Jinju 52851 South Korea
| | - Se-Young Ha
- Analysis & Certification Center, Korea Institute of Ceramic Engineering & Technology Jinju 52851 South Korea
| | - Seonhong Lee
- Analysis & Certification Center, Korea Institute of Ceramic Engineering & Technology Jinju 52851 South Korea
| | - Chung Soo Kim
- Analysis & Certification Center, Korea Institute of Ceramic Engineering & Technology Jinju 52851 South Korea
| | - Ki-Young Kwon
- Department of Chemistry, Gyeongsang National University and Research Institute for Green Energy Convergence Technology Jinju 52828 South Korea
| |
Collapse
|
47
|
Sanchis-Gual R, Otero TF, Coronado-Puchau M, Coronado E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. NANOSCALE 2021; 13:12676-12686. [PMID: 34477618 DOI: 10.1039/d1nr02928b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prussian blue analogues (PBAs) have been proven as excellent Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) in acidic, neutral and alkaline media. Further improvements can be achieved by increasing their electrical conductivity, but scarce attention has been paid to quantify the electroactive sites of the electrocatalyst when this enhancement occurs. In this work, we have studied how the chemical design influences the specific density of electroactive sites in different Au-PBA nanostructures. Thus, we have first obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell sizes. Their catalytic activity is evaluated by studying the OER, which is compared to pristine PBAs and other Au-PBA heterostructures. By using the coulovoltammetric technique, we have demonstrated that the introduction of 5-10% of Au in weight in the core@shell leads to an increase in the electroactive mass and thus, to a higher density of active sites capable of taking part in the OER. This increase leads to a significant decrease in the onset potential (up to 100 mV) and an increase (up to 420%) in the current density recorded at an overpotential of 350 mV. However, the Tafel slope remains unchanged, suggesting that Au reduces the limiting potential of the catalyst with no variation in the reaction kinetics. These improvements are not observed in other Au-PBA nanostructures mainly due to a lower contact between both compounds and the Au oxidation. Hence, an Au core activates the PBA shell and increases the conductivity of the resulting hybrid, while the PBA shell prevents Au oxidation. The strong synergistic effect existing in the core@shell structure evidences the importance of the chemical design for preparing PBA-based nanostructures exhibiting better electrocatalytic performances and higher electrochemical stabilities.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | | | | | | |
Collapse
|
48
|
Lang C, Li J, Yang KR, Wang Y, He D, Thorne JE, Croslow S, Dong Q, Zhao Y, Prostko G, Brudvig GW, Batista VS, Waegele MM, Wang D. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard WA, Ding M. Double-Exchange-Induced in situ Conductivity in Nickel-Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2021; 60:16448-16456. [PMID: 33973312 DOI: 10.1002/anie.202101906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/25/2021] [Indexed: 11/09/2022]
Abstract
Motivated by in silico predictions that Co, Rh, and Ir dopants would lead to low overpotentials to improve OER activity of Ni-based hydroxides, we report here an experimental confirmation on the altered OER activities for a series of metals (Mo, W, Fe, Ru, Co, Rh, Ir) doped into γ-NiOOH. The in situ electrical conductivity for metal doped γ-NiOOH correlates well with the trend in enhanced OER activities. Density functional theory (DFT) calculations were used to rationalize the in situ conductivity of the key intermediate states of metal doped γ-NiOOH during OER. The simultaneous increase of OER activity with intermediate conductivity was later rationalized by their intrinsic connections to the double exchange (DE) interaction between adjacent metal ions with various d orbital occupancies, serving as an indicator for the key metal-oxo radical character, and an effective descriptor for the mechanistic evaluation and theoretical guidance in design and screening of efficient OER catalysts.
Collapse
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hyeyoung Shin
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, CA, 91125, USA.,Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Korea
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
50
|
Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard WA, Ding M. Double‐Exchange‐Induced in situ Conductivity in Nickel‐Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hyeyoung Shin
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology Pasadena CA 91125 USA
- Graduate School of Energy Science and Technology (GEST) Chungnam National University Daejeon 34134 Korea
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - William A. Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology Pasadena CA 91125 USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|