1
|
Markovitsi D. On the Use of the Intrinsic DNA Fluorescence for Monitoring Its Damage: A Contribution from Fundamental Studies. ACS OMEGA 2024; 9:26826-26837. [PMID: 38947837 PMCID: PMC11209687 DOI: 10.1021/acsomega.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
The assessment of DNA damage by means of appropriate fluorescent probes is widely spread. In the specific case of UV-induced damage, it has been suggested to use the emission of dimeric photoproducts as an internal indicator for the efficacy of spermicidal lamps. However, in the light of fundamental studies on the UV-induced processes, outlined in this review, this is not straightforward. It is by now well established that, in addition to photodimers formed via an electronic excited state, photoionization also takes place with comparable or higher quantum yields, depending on the irradiation wavelength. Among the multitude of final lesions, some have been fully characterized, but others remain unknown; some of them may emit, while others go undetected upon monitoring fluorescence, the result being strongly dependent on both the irradiation and the excitation wavelength. In contrast, the fluorescence of undamaged nucleobases associated with emission from ππ* states, localized or excitonic, appearing at wavelengths shorter than 330 nm is worthy of being explored to this end. Despite its low quantum yield, it is readily detected nowadays. Its intensity decreases due to the disappearance of the reacting nucleobases and the loss of exciton coherence provoked by the presence of lesions, independently of their type. Thus, it could potentially provide valuable information about the DNA damage induced, not only by UV radiation but also by other sanitizing or therapeutic agents.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Université Paris-Saclay, CNRS,
Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
2
|
Mir OI, Gupta UK, Bhat GA, Pandith AA, Mir FA. Vibrational, Optical, Electrochemical, and Electrical Analysis of Normal and Cancer DNA. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2023; 12:127006. [DOI: 10.1149/2162-8777/ad1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In the current article, we did characterizations like Fourier Transform Infrared (FT-IR) Spectroscopy, UV-Visible (UV–vis) spectroscopy, Photoluminescence (PL) spectroscopy, Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Current-Voltage (I-V) characteristics, dielectric spectroscopy, and transient time spectroscopy on normal and cancerous (esophagus) DNA samples. FT-IR confirms the associated functional groups of DNA. Also a significant change in these groups with mutations is observed. From the analysis of UV data, the various optical parameters like optical band gap, disorder energy were estimated and discussed. PL data demonstrate the various emissions and are described as per the existing structure of the molecule. From the CV plots, the energy levels, like highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were also calculated. The EIS data interpretations show well developed changes in various parameters related with nature of the present molecules. Also from I-V characteristics, visible variations were observed and discussed. From the dielectric spectroscopy, a drastic change in the data were seen and described. Dynamic measurements like transient time demonstrates a vital impact on charge storage and hence on the rise and fall time of the molecules. The various calculated parameters related with these methods show changes with normal and mutated DNA. These observed properties shown by these techniques could be explored for further confirmation of the diagnostic of the disease.
Collapse
|
3
|
Xie Y, Butler M. Multi-attribute analysis of adeno-associated virus by size exclusion chromatography with fluorescence and triple-wavelength UV detection. Anal Biochem 2023; 680:115311. [PMID: 37666384 DOI: 10.1016/j.ab.2023.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Adeno-associated virus (AAV) is the leading platform for in vivo gene therapy to treat numerous genetic diseases. Comprehensive analysis of the AAV particles is essential to ensure desired safety and efficacy. An array of techniques is required to evaluate their critical quality attributes. However, many of these techniques are expensive, time-consuming, labour-intensive, and varying in accuracy. Size exclusion chromatography coupled with fluorescence and triple-wavelength ultraviolet detection (SEC-FLD-TWUV) and incorporating an aromatic amino acid of tryptophan as an internal standard offers a simple, rapid, and reliable approach for simultaneous multi-attribute analysis of AAVs. In the current study, we demonstrate its capability for AAV characterization and quantification, that includes capsid concentration, empty to full capsid ratio, vector genome concentration, and the presence of aggregates or fragments. All were performed in 20-min chromatographic runs with minimal sample handling. Data analysis involves the assessment of intrinsic fluorescence and UV absorbance of samples at three wavelengths that can be utilised to determine the content of the capsid protein and genome copy number. The separation efficiency using SEC columns with different pore sizes, and elution buffers of varying compositions, ionic strength, and pH values was also evaluated. This SEC-FLD-TWUV method may serve as a powerful yet cost-effective tool for responsive quality evaluation of AAVs. This may enhance performance, robustness, and safety of bioprocessing for AAV vectors to be used in gene therapy.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
4
|
Jerman I, Ogrizek L, Periček Krapež V, Jan L. Physicochemical Study of the Molecular Signal Transfer of Ultra-High Diluted Antibodies to Interferon-Gamma. Int J Mol Sci 2023; 24:11961. [PMID: 37569336 PMCID: PMC10418998 DOI: 10.3390/ijms241511961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Physicochemical investigations of (UHD) solutions subjected to certain physical factors (like shaking) are becoming more frequent and increasingly yielding convincing results. A much less studied phenomenon is the transfer of molecular information (UHD signals) from one fluid to another without an intermediate liquid phase. The purpose of this study was to investigate the possibility of such a UHD signal transfer from UHD solutions into the receiver fluid, especially when the molecular source used in solutions was a biologically active molecule of antibodies to interferon-gamma. We used physicochemical measurements and UV spectroscopy for this purpose. The results of this large pilot study confirm the possibility of such a transfer and a rough similarity to the original UHD signal donors, the weaker signal detection relative to the original donor fluids, and that exposure time improves the effect.
Collapse
Affiliation(s)
- Igor Jerman
- BION Institute, Stegne 21, 1000 Ljubljana, Slovenia; (L.O.); (V.P.K.); (L.J.)
| | | | | | | |
Collapse
|
5
|
Gustavsson T, Markovitsi D. The Ubiquity of High-Energy Nanosecond Fluorescence in DNA Duplexes. J Phys Chem Lett 2023; 14:2141-2147. [PMID: 36802626 DOI: 10.1021/acs.jpclett.2c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During the past few years, several studies reported that a significant part of the intrinsic fluorescence of DNA duplexes decays with surprisingly long lifetimes (1-3 ns) at wavelengths shorter than the ππ* emission of their monomeric constituents. This high-energy nanosecond emission (HENE), hardly discernible in the steady-state fluorescence spectra of most duplexes, was investigated by time-correlated single-photon counting. The ubiquity of HENE contrasts with the paradigm that the longest-lived excited states correspond to low-energy excimers/exciplexes. Interestingly, the latter were found to decay faster than the HENE. So far, the excited states responsible for HENE remain elusive. In order to foster future studies for their characterization, this Perspective presents a critical summary of the experimental observations and the first theoretical approaches. Moreover, some new directions for further work are outlined. Finally, the obvious need for computations of the fluorescence anisotropy considering the dynamic conformational landscape of duplexes is stressed.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
6
|
Ahmadi Oskooei F, Mehrzad J, Asoodeh A, Motavalizadehkakhky A. Olive oil-based quercetin nanoemulsion (QuNE)'s interactions with human serum proteins (HSA and HTF) and its anticancer activity. J Biomol Struct Dyn 2023; 41:778-791. [PMID: 34919017 DOI: 10.1080/07391102.2021.2012514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current study produced Quercetin nanoemulsions (QuNEs) for the purpose of improving Quercetin solubility in an aqueous polar condition and to analyze QuNE-protein formation (QuNE-human serum albumin (HSA) and QuNE-holo-transferrin (HTF)).QuNE was produced by utilizing an ultrasound-based emulsification method and was characterized by DLS, TEM, and SEM. Its interaction with HSA and HTF proteins was studied by analyzing the results of FRET and RLS spectroscopy, Stern-Volmer plotting, the Van't Hoff equation, CD spectroscopy, and molecular docking methods. Finally, QuNE's cytotoxic impact, cell death type induction, and antioxidant properties were evaluated by applying an MTT assay on a human hepatocyte cancer cell (HepG2), measuring Cas-3 gene expression, and conducting a DPPH antioxidant test, respectively. Compared to the non-entrapped Quercetin, Quercetin-entrapped nano-emulsions formed stable complexes with HSA and HTF by improving hydrophilic-hydrophobic interactions. The binding constant (BC), ΔH0, and ΔS0 indices for both the QuNE-HSA and QuNE-HTF complexes were measured at (4.92 × 105 and 11.99 × 104 M-1), (170.96 and -131.19 KJ.mol-1), and (-464.86 and 342.83J.mol-1K-1), respectively.QuNE lowered the HepG2 viability by up-regulating Cas-3 gene expression and thus inducing apoptosis. Moreover, a notable antioxidant impact on the QuNE was detected. Due to its ability in delivering Quercetin to HSA and HTF proteins and stabilizing their protein complexes, QuNE can be used as a suitable primary transporting agent whose formation of stable bio-accessible QuNE-HSA and -HTF protein complexes creates a safe and natural secondary delivery system, which has potential to be used as an efficient anticancer compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Farnaz Ahmadi Oskooei
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.,Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
7
|
Authentication of Covid-19 Vaccines Using Synchronous Fluorescence Spectroscopy. J Fluoresc 2023; 33:1165-1174. [PMID: 36609659 PMCID: PMC9825072 DOI: 10.1007/s10895-022-03136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
The present study demonstrates the potential of synchronous fluorescence spectroscopy and multivariate data analysis for authentication of COVID-19 vaccines from various manufacturers. Synchronous scanning fluorescence spectra were recorded for DNA-based and mRNA-based vaccines obtained through the NHS Central Liverpool Primary Care Network. Fluorescence spectra of DNA and DNA-based vaccines as well as RNA and RNA-based vaccines were identical to one another. The application of principal component analysis (PCA), PCA-Gaussian Mixture Models (PCA-GMM)) and Self-Organising Maps (SOM) methods to the fluorescence spectra of vaccines is discussed. The PCA is applied to extract the characteristic variables of fluorescence spectra by analysing the major attributes. The results indicated that the first three principal components (PCs) can account for 99.5% of the total variance in the data. The PC scores plot showed two distinct clusters corresponding to the DNA-based vaccines and mRNA-based vaccines respectively. PCA-GMM clustering complemented the PCA clusters by further classifying the mRNA-based vaccines and the GMM clusters revealed three mRNA-based vaccines that were not clustered with the other vaccines. SOM complemented both PCA and PCA-GMM and proved effective with multivariate data without the need for dimensions reduction. The findings showed that fluorescence spectroscopy combined with machine learning algorithms (PCA, PCA-GMM and SOM) is a useful technique for vaccination verification and has the benefits of simplicity, speed and reliability.
Collapse
|
8
|
Lopez A, Liu J. Probing metal-dependent G-quadruplexes using the intrinsic fluorescence of DNA. Chem Commun (Camb) 2022; 58:10225-10228. [PMID: 36001027 DOI: 10.1039/d2cc03967b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
K+ enhanced the intrinsic fluorescence of a series of G-quadruplex DNAs, while Pb2+ quenched the fluorescence. The metals showed interesting quadruplex binding kinetics with various DNA sequences.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
9
|
Fotouhi B, Faramarzi V, Ahmadi V. DNA sequencing by Förster resonant energy transfer. OPTICS EXPRESS 2022; 30:21854-21865. [PMID: 36224897 DOI: 10.1364/oe.454459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/16/2023]
Abstract
We propose a new DNA sequencing concept based on nonradiative Förster resonant energy transfer (FRET) from a donor quantum dot (QD) to an acceptor molecule. The FRET mechanism combined with the nanopore-based DNA translocation is suggested as a novel concept for sequencing DNA molecules. A recently-developed hybrid quantum/classical method is employed, which uses time-dependent density functional theory and quasistatic finite difference time domain calculations. Due to the significant absorbance of DNA bases for photon energies higher than 4 eV, biocompatibility, and stability, we use Zinc-Oxide (ZnO) QD as a donor in the FRET mechanism. The most sensitivity for the proposed method to DNA is achieved for the Hoechst fluorescent-dye acceptor and 1 nm ZnO-QD. Results show that the insertion of each type of DNA nucleobases between the donor and acceptor changes the frequency of the emitted light from the acceptor molecule between 0.25 to 1.6 eV. The noise analysis shows that the method can determine any unknown DNA nucleobases if the signal-to-noise ratio is larger than 5 dB. The proposed concept and excellent results shed light on a new promising class of DNA sequencers.
Collapse
|
10
|
Chan RCT, Ma C, Wong AKW, Chan CTL, Chow JCL, Kwok WM. Dual Time-Scale Proton Transfer and High-Energy, Long-Lived Excitons Unveiled by Broadband Ultrafast Time-Resolved Fluorescence in Adenine-Uracil RNA Duplexes. J Phys Chem Lett 2022; 13:302-311. [PMID: 34978832 DOI: 10.1021/acs.jpclett.1c03553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In contrast to the immense amount of research on electronically excited DNA, surprisingly little has been done about the excited states of RNA. Herein, we demonstrate an ultrafast broadband time-resolved fluorescence and fluorescence anisotropy study to probe directly the intrinsic fluorescence and overall dynamics of the fluorescence from a homopolymeric adenine·uracil RNA duplex adopting the A-form structure. The results unveiled complex deactivation through distinctive multichannels mediated by states of varied energy, a character of charge transfer, and a lifetime from sub-picosecond to nanoseconds. In particular, we observed an unprecedented kinetic isotopic effect and participation of unusual proton transfer from states in two discrete energies and time domains. We also identified a high-energy nanosecond emission that we attributed to its fluorescence anisotropy to long-lived weakly emissive excitons not reported in DNA. These distinguishing features originate from the stacking, pairing, and local hydration environment specific to the A-form conformation of the adenine·uracil double helix.
Collapse
Affiliation(s)
- Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, 518071, Shenzhen, Guangdong, P. R. China
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, 518071, Shenzhen, Guangdong, P. R. China
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Chris Tsz-Leung Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Joshua Chiu-Lok Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
11
|
Głowacz K, Skorupska S, Grabowska-Jadach I, Ciosek-Skibińska P. Excitation–emission matrix fluorescence spectroscopy for cell viability testing in UV-treated cell culture. RSC Adv 2022; 12:7652-7660. [PMID: 35424724 PMCID: PMC8982211 DOI: 10.1039/d1ra09021f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Monitoring of cells viability is essential in a number of biomedical applications, including cell-based sensors, cell-based microsystems, and cell-based assays. The use of spectroscopic techniques for such purposes is especially advantageous since they are non-invasive, label-free, and non-destructive. However, such an approach must include chemometric analysis of the data to assess the information on cells viability. In the presented article we demonstrate, that excitation–emission matrix (EEM) fluorescence spectroscopy can be applied for reliable determination of cells viability due to the high correlation of EEM fluorescence data with the MTT test data. A375 cells (malignant melanoma) were exposed to UV radiation as a physical stress factor, resulting in a decrease of viability up to ca. 20%, confirmed by the standard MTT test. They were also characterized by means of EEM fluorescence spectroscopy coupled with unfolded partial least squares (UPLS) regression. Statistical evaluation revealed high accordance of the two methods of viability testing in terms of accuracy, precision, and correlation. The presented results are very promising for the development of spectroscopic soft sensors that can be applied for drug screening, biocompatibility testing, tissue engineering, and pharmacodynamic studies. Excitation-emission matrix fluorescence spectroscopy can be applied for label-free and non-destructive determination of cells viability, which is promising methodology for drug screening, biocompatibility testing, or pharmacodynamic studies.![]()
Collapse
Affiliation(s)
- Klaudia Głowacz
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sandra Skorupska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ilona Grabowska-Jadach
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Ciosek-Skibińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
12
|
Joshi PRH, Bernier A, Chahal PS, Kamen A. Development and Validation of an Anion Exchange High-Performance Liquid Chromatography Method for Analysis of Empty Capsids and Capsids Encapsidating Genetic Material in a Purified Preparation of Recombinant Adeno-Associated Virus Serotype 5. Hum Gene Ther 2021; 32:1390-1402. [PMID: 33860673 PMCID: PMC10112873 DOI: 10.1089/hum.2020.317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of various manufacturing platforms and analytical technologies has substantially contributed to successfully translating the recombinant adeno-associated viral vector from the laboratory to the clinic. The active deployment of these analytical technologies for process and product characterization has helped define critical quality attributes and improve the quality of the clinical grade material. In this article, we report an anion exchange high-performance liquid chromatography (AEX-HPLC) method for relative and as well as absolute quantification of empty capsids (EC) and capsids encapsidating genetic material (CG) in purified preparations of adeno-associated virus (AAV) using serotype 5 as a model. The selection of optimal chromatographic buffer composition and step-gradient elution protocol offered baseline separation of EC and CG in the form of two peaks, as validated with the respective reference standards. The native amino acid fluorescence-based detection offered excellent linearity with a correlation coefficient of 0.9983 over two-log dilutions of the sample. The limit of detection and limit of quantification values associated with the total AAV5 capsid assay are 3.1E + 09 and 9.5E + 09, respectively. AEX-HPLC showed method comparability with the analytical ultracentrifugation (AUC) method for determination of relative proportions of EC and CG, supporting the reported HPLC method as an easy-to-access alternative to AUC with operational simplicity. Moreover, rapid and easy adaptation of this method to AAV8 material also demonstrated the robustness of the proposed approach.
Collapse
Affiliation(s)
- Pranav R H Joshi
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, Canada
| | - Alice Bernier
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, Canada
| | - Parminder S Chahal
- Human Health Therapeutics, National Research Council of Canada, Montreal, Canada
| | - Amine Kamen
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Abstract
The intrinsic fluorescence of nucleic acids is extremely weak compared to that of the fluorescent labels used to probe their structural and functional behavior. Thus, for technical reasons, the investigation of the intrinsic DNA fluorescence was limited for a long time. But with the improvement in spectroscopic techniques, the situation started to change around the turn of the century. During the past two decades, various factors modulating the static and dynamic properties of the DNA fluorescence have been determined; it was shown that, under certain conditions, quantum yields may be up 100 times higher than what was known so far. The ensemble of these studies opened up new paths for the development of label-free DNA fluorescence for biochemical applications. In parallel, these studies have shed new light on the primary processes leading to photoreactions that damage DNA when it absorbs UV radiation.We have been studying a variety of DNA systems, ranging from the monomeric nucleobases to double-stranded and four-stranded structures using fluorescence spectroscopy. The specificity of our work resides in the quantitative association of the steady-state fluorescence spectra with time-resolved data recorded from the femtosecond to the nanosecond timescales, made possible by the development of specific methodologies.Among others, our fluorescence studies provide information on the energy and the polarization of electronic transitions. These are valuable indicators for the evolution of electronic excitations in complex systems, where the electronic coupling between chromophores plays a key role. Highlighting collective effects that originate from electronic interactions in DNA multimers is the objective of the present Account.In contrast to the monomeric chromophores, whose fluorescence decays within a few picoseconds, that of DNA multimers persists on the nanosecond timescale. Even if long-lived states represent only a small fraction of electronic excitations, they may be crucial to the DNA photoreactivity because the probability to reach reactive conformations increases over time, owing to the incessant structural dynamics of nucleic acids.Our femtosecond studies have revealed that an ultrafast excitation energy transfer takes place among the nucleobases within duplexes and G-quadruplexes. Such an ultrafast process is possible when collective states are populated directly upon photon absorption. At much longer times, we discovered an unexpected long-lived high-energy emission stemming from what was coined "HELM excitons". These collective states, whose emission increases with the duplex size, could be responsible for the delayed fluorescence of ππ* states observed for genomic DNA.Most studies dealing with excited-state relaxation in DNA were carried out with excitation in the absorption band peaking at around 260 nm. We went beyond this and also performed the first time-resolved study with excitation in the UVA spectral range, where a very weak absorption tail is present. The resulting fluorescence decays are much slower and the fluorescence quantum yields are much higher than for UVC excitation. We showed that the base pairing of DNA strands enhances the UVA fluorescence and, in parallel, increases the photoreactivity because it modifies the nature of the involved collective excited states.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Gagnon P, Goricar B, Mencin N, Zvanut T, Peljhan S, Leskovec M, Strancar A. Multiple-Monitor HPLC Assays for Rapid Process Development, In-Process Monitoring, and Validation of AAV Production and Purification. Pharmaceutics 2021; 13:113. [PMID: 33477351 PMCID: PMC7830902 DOI: 10.3390/pharmaceutics13010113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
HPLC is established as a fast convenient analytical technology for characterizing the content of empty and full capsids in purified samples containing adeno-associated virus (AAV). UV-based monitoring unfortunately over-estimates the proportion of full capsids and offers little value for characterizing unpurified samples. The present study combines dual-wavelength UV monitoring with intrinsic fluorescence, extrinsic fluorescence, and light-scattering to extend the utility of HPLC for supporting development of therapeutic AAV-based drugs. Applications with anion exchange (AEC), cation exchange (CEC), and size exclusion chromatography (SEC) are presented. Intrinsic fluorescence increases sensitivity of AAV detection over UV and enables more objective estimation of empty and full capsid ratios by comparison of their respective peak areas. Light scattering enables identification of AAV capsids in complex samples, plus semiquantitative estimation of empty and full capsid ratios from relative peak areas of empty and full capsids. Extrinsic Picogreen fluorescence enables semiquantitative tracking of DNA with all HPLC methods at all stages of purification. It does not detect encapsidated DNA but reveals DNA associated principally with the exteriors of empty capsids. It also enables monitoring of host DNA contamination across chromatograms. These enhancements support many opportunities to improve characterization of raw materials and process intermediates, to accelerate process development, provide rapid in-process monitoring, and support process validation.
Collapse
Affiliation(s)
- Pete Gagnon
- BIA Separations, Sartorius Company, Mirce 21, 5270 Ajdovscina, Slovenia; (B.G.); (N.M.); (T.Z.); (S.P.); (M.L.); (A.S.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Time-resolved cathodoluminescence of DNA triggered by picosecond electron bunches. Sci Rep 2020; 10:5071. [PMID: 32193504 PMCID: PMC7081262 DOI: 10.1038/s41598-020-61711-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/01/2020] [Indexed: 11/30/2022] Open
Abstract
Despite the tremendous importance of so-called ionizing radiations (X-rays, accelerated electrons and ions) in cancer treatment, most studies on their effects have focused on the ionization process itself, and neglect the excitation events the radiations can induce. Here, we show that the excited states of DNA exposed to accelerated electrons can be studied in the picosecond time domain using a recently developed cathodoluminescence system with high temporal resolution. Our study uses a table-top ultrafast, UV laser-triggered electron gun delivering picosecond electron bunches of keV energy. This scheme makes it possible to directly compare time-resolved cathodoluminescence with photoluminescence measurements. This comparison revealed qualitative differences, as well as quantitative similarities between excited states of DNA upon exposure to electrons or photons.
Collapse
|
16
|
Wohlgemuth M, Mitrić R. Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping. Phys Chem Chem Phys 2020; 22:16536-16551. [DOI: 10.1039/d0cp02255a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Revealing the extended excited state lifetime due to excitation energy transport in DNA by multi-chromophoric field-induced surface-hopping (McFISH).
Collapse
Affiliation(s)
- Matthias Wohlgemuth
- Institut für Physikalische und Theoretische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
17
|
Jaiswal VK, Segarra-Martí J, Marazzi M, Zvereva E, Assfeld X, Monari A, Garavelli M, Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys Chem Chem Phys 2020; 22:15496-15508. [DOI: 10.1039/d0cp01823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TD-DFT characterization of the high-energy singlet excited state manifold of the canonical DNA/RNA nucleobasesin vacuumis assessed against RASPT2 reference computations for reliable simulations of linear and non-linear electronic spectra.
Collapse
Affiliation(s)
- Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Marco Marazzi
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Elena Zvereva
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Xavier Assfeld
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| |
Collapse
|
18
|
Vinayagam S, Rajaiah P, Mukerjee A, Natarajan C. Nucleic acid detection strategy using gold nanoprobe of two diverse origin. IET Nanobiotechnol 2019; 13:928-932. [PMID: 31811761 PMCID: PMC8676495 DOI: 10.1049/iet-nbt.2018.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/23/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022] Open
Abstract
In recent years, nanoparticles especially with gold and silver nanoparticles based point of care diagnostic methods is being developed for the lethal diseases like dengue. This study focused to work on the dengue virus detection in a simplest method using gold nanoparticles probe (AuNPs) with thiol tagged single strand DNA (ss-DNA). A sensitive, fluorescence-based detection strategy was designed to examine and quantified the hybridisation process and also elucidated the behaviour of AuNPs before and after interaction of biomolecule. The detection process was focused on aggregation of gold nanoprobe in the presence of complementary strand (target region). Hence the percentage of aggregation was measured and as a result, the limit of detection was found to be 10-6 dilutions. Current detection method was highly sensitive, easy to perform and the reaction timing is rapid between 5 and 10 min, and it can be observed through naked eye.
Collapse
Affiliation(s)
- Saranya Vinayagam
- Centre for Nanobiotechnology, VIT, Vellore - 632014, Tamil Nadu, India
| | - Paramasivan Rajaiah
- Vector Control Research Centre, Indian Council of Medical Research, Madurai - 625002, Tamil Nadu, India
| | - Amitava Mukerjee
- Centre for Nanobiotechnology, VIT, Vellore - 632014, Tamil Nadu, India
| | | |
Collapse
|
19
|
Faramarzi V, Ahmadi V, Fotouhi B, Abasifard M. A potential sensing mechanism for DNA nucleobases by optical properties of GO and MoS 2 Nanopores. Sci Rep 2019; 9:6230. [PMID: 30996229 PMCID: PMC6470134 DOI: 10.1038/s41598-019-41165-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
We propose a new DNA sensing mechanism based on optical properties of graphene oxide (GO) and molybdenum disulphide (MoS2) nanopores. In this method, GO and MoS2 is utilized as quantum dot (QD) nanopore and DNA molecule translocate through the nanopore. A recently-developed hybrid quantum/classical method (HQCM) is employed which uses time-dependent density functional theory and quasi-static finite difference time domain approach. Due to good biocompatibility, stability and excitation wavelength dependent emission behavior of GO and MoS2 we use them as nanopore materials. The absorption and emission peaks wavelengths of GO and MoS2 nanopores are investigated in the presence of DNA nucleobases. The maximum sensitivity of the proposed method to DNA is achieved for the 2-nm GO nanopore. Results show that insertion of DNA nucleobases in the nanopore shifts the wavelength of the emitted light from GO or MoS2 nanopore up to 130 nm. The maximum value of the relative shift between two different nucleobases is achieved by the shift between cytosine (C) and thymine (T) nucleobases, ~111 nm for 2-nm GO nanopore. Results show that the proposed mechanism has a superior capability to be used in future DNA sequencers.
Collapse
Affiliation(s)
- Vahid Faramarzi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| | - Vahid Ahmadi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran.
| | - Bashir Fotouhi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| | - Mostafa Abasifard
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| |
Collapse
|
20
|
Abstract
Using as a model the single adenine strand (dA)20, we study the ultrafast evolution of electronic excitations in DNA with a time resolution of 30 fs. Our transient absorption spectra in the UV and visible spectral domains show that internal conversion among photogenerated exciton states occurs within 100 fs. Subsequently, the ππ* states acquire progressively charge-transfer character before being completely trapped, within 3 ps, by fully developed charge-transfer states corresponding to transfer of an electron from one adenine moiety to another (A+A-).
Collapse
Affiliation(s)
- Rocio Borrego-Varillas
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS , Université Paris-Saclay , F-91191 Gif-sur-Yvette , France
| |
Collapse
|
21
|
Pepino AJ, Segarra-Martí J, Nenov A, Rivalta I, Improta R, Garavelli M. UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Phys Chem Chem Phys 2018; 20:6877-6890. [PMID: 29459916 DOI: 10.1039/c7cp08235e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most relevant 'dark' electronic excited states in DNA/RNA pyrimidine nucleosides are mapped in water employing hybrid MS-CASPT2/MM optimisations with explicit solvation and including the sugar. Conical intersections (CIs) between initially accessed bright 1ππ* and the lowest energy dark 1nπ* excited states, involving the lone pair localised on the oxygen and/or nitrogen atoms are characterised. They are found in the vicinities of the Franck-Condon (FC) region and are shown to facilitate non-adiabatic population transfer. The excited state population of the 1nOπ* state, localised in the carbonyl moiety on all pyrimidine nucleosides, is predicted to rapidly evolve to its minimum, displaying non-negligible potential energy barriers along its non-radiative decay, and accounting for the ps signal registered in pump-probe experiments as well as for an efficient population of the triplet state. Cytidine displays an additional 1nNπ* state localised in the N3 atom and that leads to its excited state minimum displaying large potential energy barriers in the pathway connecting to the CI with the ground state. Sugar-to-base hydrogen/proton transfer processes are assessed in solution for the first time, displaying a sizable barrier along its decay and thus being competitive with other slow decay channels in the ps and ns timescales. A unified deactivation scheme for the long-lived channels of pyrimidine nucleosides is delivered, where the 1nOπ* state is found to mediate the long-lived decay in the singlet manifold and act as the doorway for triplet population and thus accounting for the recorded phosphorescence and, more generally, for the transient/photoelectron spectral signals registered up to the ns timescale.
Collapse
Affiliation(s)
- Ana Julieta Pepino
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Haris P, Mary V, Sudarsanakumar C. Probing the interaction of the phytochemical 6-gingerol from the spice ginger with DNA. Int J Biol Macromol 2018; 113:124-131. [PMID: 29454952 DOI: 10.1016/j.ijbiomac.2018.02.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
6-Gingerol [5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) decan-3-one], the bio-active ingredient of the popular Indian spice ginger (Zingiber officinale Roscoe), is well-known for its pharmacological and physiological actions. The potent antioxidant, antiemetic, antiulcer, antimicrobial, analgesic, hypoglycemic, antihypertensive, antihyperlipidemic, immunostimulant, anti-inflammatory, cardiotonic, and cancer prevention activities of 6-Gingerol has been investigated and explored. 6-Gingerol is a good candidate for the treatment of various cancers including prostrate, pancreatic, breast, skin, gastrointestinal, pulmonary, and renal cancer. In this study we report for the first time the molecular recognition of 6-Gingerol with calf thymus DNA (ctDNA) through experimental and molecular modeling techniques confirming a minor groove binding mode of 6-Gingerol with ctDNA. Fluorescence and UV-vis spectroscopic studies confirm the complex formation of 6-gingerol with ctDNA. The energetics and thermodynamics of the interaction of 6-Gingerol with ctDNA was explored by Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC). The ctDNA helix melting upon 6-Gingerol binding was examined by melting temperature Tm analysis. Further the electrophoretic mobility shift assay confirms a possible groove binding of 6-Gingerol with ctDNA. Molecular docking and Molecular dynamics (MD) studies provide a detailed understanding on the interaction of 6-Gingerol binding in the minor groove of DNA which supports experimental results.
Collapse
Affiliation(s)
- Poovvathingal Haris
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Varughese Mary
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Chellappanpillai Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Center for High Performance Computing, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
23
|
Dong B, Almassalha LM, Soetikno BT, Chandler JE, Nguyen TQ, Urban BE, Sun C, Zhang HF, Backman V. Stochastic fluorescence switching of nucleic acids under visible light illumination. OPTICS EXPRESS 2017; 25:7929-7944. [PMID: 28380910 PMCID: PMC5810907 DOI: 10.1364/oe.25.007929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
We report detailed characterizations of stochastic fluorescence switching of unmodified nucleic acids under visible light illumination. Although the fluorescent emission from nucleic acids under the visible light illumination has long been overlooked due to their apparent low absorption cross section, our quantitative characterizations reveal the high quantum yield and high photon count in individual fluorescence emission events of nucleic acids at physiological concentrations. Owing to these characteristics, the stochastic fluorescence switching of nucleic acids could be comparable to that of some of the most potent exogenous fluorescence probes for localization-based super-resolution imaging. Therefore, utilizing the principle of single-molecule photon-localization microscopy, native nucleic acids could be ideal candidates for optical label-free super-resolution imaging.
Collapse
Affiliation(s)
- Biqin Dong
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
- Mechanical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Luay M. Almassalha
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Brian T. Soetikno
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - John E. Chandler
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - The-Quyen Nguyen
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Ben E. Urban
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Cheng Sun
- Mechanical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Hao F. Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Vadim Backman
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| |
Collapse
|
24
|
Zabadaj M, Chreptowicz K, Mierzejewska J, Ciosek P. Two-dimensional fluorescence as soft sensor in the monitoring of biotransformation performed by yeast. Biotechnol Prog 2016; 33:299-307. [PMID: 27696796 DOI: 10.1002/btpr.2381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/27/2016] [Indexed: 11/06/2022]
Abstract
Soft sensors are powerful tools for bioprocess monitoring due to their ability to perform online, noninvasive measurement, and possibility of detection of multiple components in cultivation media, which in turn can provide tools for the quantification of more than one metabolite/substrate/product in real time. In this work, soft sensor based on excitation-emission fluorescence is for the first time applied for the monitoring of biotransformation production of 2-phenylethanol (2-PE) by yeast strains. Main process parameters-such as optical density, glucose, and 2-PE concentrations-were determined with high accuracy and precision by fluorescence fingerprinting coupled with partial least squares regression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:299-307, 2017.
Collapse
Affiliation(s)
- Marcin Zabadaj
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Karolina Chreptowicz
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Jolanta Mierzejewska
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Patrycja Ciosek
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
25
|
Skowron DJ, Zhang Y, Beckstead AA, Remington JM, Strawn M, Kohler B. Subnanosecond Emission Dynamics of AT DNA Oligonucleotides. Chemphyschem 2016; 17:3558-3569. [PMID: 27582073 DOI: 10.1002/cphc.201600566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/30/2016] [Indexed: 01/16/2023]
Abstract
UV radiation creates excited electronic states in DNA that can decay to mutagenic photoproducts. When excited states return to the electronic ground state, photochemical injury is avoided. Understanding of the available relaxation pathways has advanced rapidly during the past decade, but there has been persistent uncertainty, and even controversy, over how to compare results from transient absorption and time-resolved emission experiments. Here, emission from single- and double-stranded AT DNA compounds excited at 265 nm was studied in aqueous solution using the time-correlated single photon counting technique. There is quantitative agreement between the emission lifetimes ranging from 50 to 200 ps and ones measured in transient absorption experiments, demonstrating that both techniques probe the same excited states. The results indicate that excitations with lifetimes of more than a few picoseconds are weakly emissive excimer and charge transfer states. Only a minute fraction of excitations persist beyond 1 ns in AT DNA strands at room temperature.
Collapse
Affiliation(s)
- David J Skowron
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| | - Ashley A Beckstead
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| | - Jacob M Remington
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| | - Madison Strawn
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| |
Collapse
|
26
|
Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci U S A 2016; 113:9716-21. [PMID: 27535934 DOI: 10.1073/pnas.1602202113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging.
Collapse
|
27
|
Bentivegna CS, DeFelice CR, Murphy WR. Excitation-emission matrix scan analysis of raw fish oil from coastal New Jersey menhaden collected before and after Hurricane Sandy. MARINE POLLUTION BULLETIN 2016; 107:442-452. [PMID: 26849916 DOI: 10.1016/j.marpolbul.2016.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/17/2015] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The impact of Hurricane Sandy (October 29, 2012) on PAH exposure was investigated in adult Atlantic menhaden (Brevoortia tyrannus) collected along the NJ coast. Collections were made in August, September and/or October of 2011, 2012 and 2013. PAHs were monitored in raw fish oil using excitation-emission matrix (EEM) spectroscopy. Results showed that raw fish oils had relatively high levels of high molecular weight, PAH-like compounds (173 to 24,421ng/mL) compared to values reported for bile in other species. EEM profiles resembled that of crude oil and excluded matrix interference by some common biological molecules that also fluoresce. Concentrations and EEM profiles varied by collection; however, collection ship, month, year and fish size did not account for the data. Replicates showed that fish from the same catch had similar PAH exposure. Overall, Hurricane Sandy did not alter body burdens of PAHs in raw fish oil of menhaden.
Collapse
Affiliation(s)
- Carolyn S Bentivegna
- Department of Biological Science, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States.
| | - Chelsea R DeFelice
- Department of Biological Science, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States.
| | - Wyatt R Murphy
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States.
| |
Collapse
|
28
|
Sherlock ME, Rumble CA, Kwok CK, Breffke J, Maroncelli M, Bevilacqua PC. Steady-State and Time-Resolved Studies into the Origin of the Intrinsic Fluorescence of G-Quadruplexes. J Phys Chem B 2016; 120:5146-58. [PMID: 27267433 DOI: 10.1021/acs.jpcb.6b03790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretches of guanines in DNA and RNA can fold into guanine quadruplex structures (GQSs). These structures protect telomeres in DNA and regulate gene expression in RNA. GQSs have an intrinsic fluorescence that is sensitive to different parameters, including loop sequence and length. However, the dependence of GQS fluorescence on solution and sequence parameters and the origin of this fluorescence are poorly understood. Herein we examine effects of dangling nucleotides and cosolute conditions on GQS fluorescence using both steady-state and time-resolved fluorescence spectroscopy. The quantum yield of dGGGTGGGTGGGTGGG, termed "dG3T", is found to be modest at ∼2 × 10(-3). Nevertheless, dG3T and its variants are significantly brighter than the common nucleic acid fluorophore 2-aminopurine (2AP) largely due to their sizable extinction coefficients. Dangling 5'-end nucleotides generally reduce emission and blue-shift the resultant spectrum, whereas dangling 3'-end nucleotides slightly enhance fluorescence, particularly on the red side of the emission band. Time-resolved fluorescence decays are broadly distributed in time and require three exponential components for accurate fits. Time-resolved emission spectra suggest the presence of two emitting populations centered at ∼330 and ∼390 nm, with the redder component being a well-defined long-lived (∼1 ns) entity. Insights into GQS fluorescence obtained here should be useful in designing brighter intrinsic RNA and DNA quadruplexes for use in label-free biotechnological applications.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher A Rumble
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Chun Kit Kwok
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jens Breffke
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Carstea EM, Bridgeman J, Baker A, Reynolds DM. Fluorescence spectroscopy for wastewater monitoring: A review. WATER RESEARCH 2016; 95:205-19. [PMID: 26999254 DOI: 10.1016/j.watres.2016.03.021] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 05/18/2023]
Abstract
Wastewater quality is usually assessed using physical, chemical and microbiological tests, which are not suitable for online monitoring, provide unreliable results, or use hazardous chemicals. Hence, there is an urgent need to find a rapid and effective method for the evaluation of water quality in natural and engineered systems and for providing an early warning of pollution events. Fluorescence spectroscopy has been shown to be a valuable technique to characterize and monitor wastewater in surface waters for tracking sources of pollution, and in treatment works for process control and optimization. This paper reviews the current progress in applying fluorescence to assess wastewater quality. Studies have shown that, in general, wastewater presents higher fluorescence intensity compared to natural waters for the components associated with peak T (living and dead cellular material and their exudates) and peak C (microbially reprocessed organic matter). Furthermore, peak T fluorescence is significantly reduced after the biological treatment process and peak C is almost completely removed after the chlorination and reverse osmosis stages. Thus, simple fluorometers with appropriate wavelength selectivity, particularly for peaks T and C could be used for online monitoring in wastewater treatment works. This review also shows that care should be taken in any attempt to identify wastewater pollution sources due to potential overlapping fluorophores. Correlations between fluorescence intensity and water quality parameters such as biochemical oxygen demand (BOD) and total organic carbon (TOC) have been developed and dilution of samples, typically up to ×10, has been shown to be useful to limit inner filter effect. It has been concluded that the following research gaps need to be filled: lack of studies on the on-line application of fluorescence spectroscopy in wastewater treatment works and lack of data processing tools suitable for rapid correction and extraction of data contained in fluorescence excitation-emission matrices (EEMs) for real-time studies.
Collapse
Affiliation(s)
- Elfrida M Carstea
- School of Civil Engineering, University of Birmingham, B15 2TT, UK; National Institute of R&D for Optoelectronics, Atomistilor 409, 077125, Magurele, Romania.
| | - John Bridgeman
- School of Civil Engineering, University of Birmingham, B15 2TT, UK.
| | - Andy Baker
- Connected Waters Initiative Research Centre, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Darren M Reynolds
- Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
30
|
Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Tolomelli A, Mukamel S, Garavelli M. Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1867-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Vayá I, Brazard J, Huix-Rotllant M, Thazhathveetil AK, Lewis FD, Gustavsson T, Burghardt I, Improta R, Markovitsi D. High-Energy Long-Lived Mixed Frenkel-Charge-Transfer Excitons: From Double Stranded (AT)n to Natural DNA. Chemistry 2016; 22:4904-14. [PMID: 26928984 DOI: 10.1002/chem.201504007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/07/2023]
Abstract
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV-induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine-thymine double-stranded structures (AT)n . Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time-dependent (TD)-DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine-to-thymine charge-transfer states. Emission from such high-energy long-lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π-π* states (≥0.1). An increase in the size of the system quenches π-π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π-π* and charge-transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n : high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π-π* states, giving rise to delayed fluorescence.
Collapse
Affiliation(s)
- Ignacio Vayá
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Johanna Brazard
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Miquel Huix-Rotllant
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.,Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | | | - Frederick D Lewis
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA.
| | - Thomas Gustavsson
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Irene Burghardt
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via mezzocannone 16, 80136, Napoli, Italy.
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Markovitsi D. UV-induced DNA Damage: The Role of Electronic Excited States. Photochem Photobiol 2015; 92:45-51. [PMID: 26436855 DOI: 10.1111/php.12533] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023]
Abstract
The knowledge of the fundamental processes induced by the direct absorption of UV radiation by DNA allows extrapolating conclusions drawn from in vitro studies to the in-vivo DNA photoreactivity. In this respect, the characterization of the DNA electronic excited states plays a key role. For a long time, the mechanisms of DNA lesion formation were discussed in terms of generic "singlet" and "triplet" excited state reactivity. However, since the beginning of the 21(st) century, both experimental and theoretical studies revealed the existence of "collective" excited states, i.e. excited states delocalized over at least two bases. Two limiting cases are distinguished: Frenkel excitons (delocalized ππ* states) and charge-transfer states in which positive and negative charges are located on different bases. The importance of collective excited states in photon absorption (in particular in the UVA spectral domain), the redistribution of the excitation energy within DNA, and the formation of dimeric pyrimidine photoproducts is discussed. The dependence of the behavior of the collective excited states on conformational motions of the nucleic acids is highlighted.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- CNRS, IRAMIS, LIDYL, Laboratoire Francis Perrin, URA 2453, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
33
|
Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal VK, Altavilla SF, Mukamel S, Garavelli M. Probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: first principles simulations. Faraday Discuss 2015; 177:345-62. [PMID: 25607949 DOI: 10.1039/c4fd00175c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The SOS//QM/MM [Rivalta et al., Int. J. Quant. Chem., 2014, 114, 85] method consists of an arsenal of computational tools allowing accurate simulation of one-dimensional (1D) and bi-dimensional (2D) electronic spectra of monomeric and dimeric systems with unprecedented details and accuracy. Prominent features like doubly excited local and excimer states, accessible in multi-photon processes, as well as charge-transfer states arise naturally through the fully quantum-mechanical description of the aggregates. In this contribution the SOS//QM/MM approach is extended to simulate time-resolved 2D spectra that can be used to characterize ultrafast excited state relaxation dynamics with atomistic details. We demonstrate how critical structures on the excited state potential energy surface, obtained through state-of-the-art quantum chemical computations, can be used as snapshots of the excited state relaxation dynamics to generate spectral fingerprints for different de-excitation channels. The approach is based on high-level multi-configurational wavefunction methods combined with non-linear response theory and incorporates the effects of the solvent/environment through hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. Specifically, the protocol makes use of the second-order Perturbation Theory (CASPT2) on top of Complete Active Space Self Consistent Field (CASSCF) strategy to compute the high-lying excited states that can be accessed in different 2D experimental setups. As an example, the photophysics of the stacked adenine-adenine dimer in a double-stranded DNA is modeled through 2D near-ultraviolet (NUV) spectroscopy.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pena EA, Ridley LM, Murphy WR, Sowa JR, Bentivegna CS. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1946-1958. [PMID: 25867932 DOI: 10.1002/etc.3015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/21/2014] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.
Collapse
Affiliation(s)
- Edwin A Pena
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Lauren M Ridley
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA
| | - Wyatt R Murphy
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA
| | - John R Sowa
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA
| | - Carolyn S Bentivegna
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
35
|
Computational modeling of photoexcitation in DNA single and double strands. Top Curr Chem (Cham) 2015; 356:89-122. [PMID: 24647841 DOI: 10.1007/128_2014_533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The photoexcitation of DNA strands triggers extremely complex photoinduced processes, which cannot be understood solely on the basis of the behavior of the nucleobase building blocks. Decisive factors in DNA oligomers and polymers include collective electronic effects, excitonic coupling, hydrogen-bonding interactions, local steric hindrance, charge transfer, and environmental and solvent effects. This chapter surveys recent theoretical and computational efforts to model real-world excited-state DNA strands using a variety of established and emerging theoretical methods. One central issue is the role of localized vs delocalized excitations and the extent to which they determine the nature and the temporal evolution of the initial photoexcitation in DNA strands.
Collapse
|
36
|
Changenet-Barret P, Hua Y, Markovitsi D. Electronic excitations in Guanine quadruplexes. Top Curr Chem (Cham) 2015; 356:183-201. [PMID: 24563011 DOI: 10.1007/128_2013_511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Guanine rich DNA strands, such as those encountered at the extremities of human chromosomes, have the ability to form four-stranded structures (G-quadruplexes) whose building blocks are guanine tetrads. G-quadruplex structures are intensively studied in respect of their biological role, as targets for anticancer therapy and, more recently, of their potential applications in the field of molecular electronics. Here we focus on their electronic excited states which are compared to those of non-interacting mono-nucleotides and those of single and double stranded structures. Particular emphasis is given to excited state relaxation processes studied by time-resolved fluorescence spectroscopy from femtosecond to nanosecond time scales. They include ultrafast energy transfer and trapping of ππ* excitations by charge transfer states. The effect of various structural parameters, such as the nature of the metal cations located in the central cavity of G-quadruplexes, the number of tetrads or the conformation of the constitutive single strands, are examined.
Collapse
|
37
|
Mata G, Luedtke NW. Fluorescent Probe for Proton-Coupled DNA Folding Revealing Slow Exchange of i-Motif and Duplex Structures. J Am Chem Soc 2015; 137:699-707. [DOI: 10.1021/ja508741u] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guillaume Mata
- Department of Chemistry, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| |
Collapse
|
38
|
Conti I, Nenov A, Höfinger S, Flavio Altavilla S, Rivalta I, Dumont E, Orlandi G, Garavelli M. Excited state evolution of DNA stacked adenines resolved at the CASPT2//CASSCF/Amber level: from the bright to the excimer state and back. Phys Chem Chem Phys 2015; 17:7291-302. [DOI: 10.1039/c4cp05546b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
La and excimer state population exchange, along the common puckering decay coordinate, explains the longest DNA lifetime component.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna, Italy
| | - Siegfried Höfinger
- Zentraler Informatikdienst
- Technische Universität Wien
- 1040 Wien, Austria
- Department of Physics
- Michigan Technological University
| | | | - Ivan Rivalta
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07, France
| | - Elise Dumont
- Laboratoire de Chimie
- Ecole Normale Supérieure de Lyon
- Lyon, France
| | - Giorgio Orlandi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna, Italy
- Laboratoire de Chimie
- Ecole Normale Supérieure de Lyon
| |
Collapse
|
39
|
Zámečníková M, Nachtigallová D. Photodynamic behavior of electronic coupling in a N-methylformamide dimer. Phys Chem Chem Phys 2015; 17:12356-64. [DOI: 10.1039/c4cp04573d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the bridging water molecules has been studied during the excited state photodynamics of a N-methylformamide dimer in complex with water molecules employing the complete active space self-consistent field (CASSCF) and CAS perturbation theory (CASPT2) methods.
Collapse
|
40
|
Chen X, Fang W, Wang H. Slow deactivation channels in UV-photoexcited adenine DNA. Phys Chem Chem Phys 2014; 16:4210-9. [PMID: 24452764 DOI: 10.1039/c3cp55020f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular mechanism for removing the excess energy in DNA bases is responsible for the high photostability of DNA and is thus the subject of intense theoretical/computational investigation. To understand why the excited state decay of the stacked bases is significantly longer than that of the monomers, we carried out electronic structure calculations on an adenine monomer and an aqueous (dA)5 oligonucleotide employing the CASPT2//CASSCF and CASPT2//CASSCF/AMBER levels of theory. The newly-found bright excited state pair Sstack1((1)ππ*) and Sstack2((1)ππ*) of d(A)5, originated from base stacking, is of intra-base charge transfer nature and occurs in different stacked bases with charge transfer along opposite directions. Two slow deactivation channels of d(A)5 were proposed as a result of the sizable barriers along the relaxation paths starting from the FC point of the Sstack1((1)ππ*) state. The SN1P((1)nπ*) state of d(A)5 serves as an intermediate state in one relaxation channel, to which a nonadiabatic decay from the Sstack1((1)ππ*) state occurs in an energy degeneracy region. A relatively high barrier in this state is found and attributed to the steric hindrance of the DNA environment due to the large NH2 group twisting, which gives a weak and red-shifted fluorescence. Another direct relaxation channel, induced by the C2-H2 bond twisting motion, is found to go through a conical intersection between the Sstack1((1)ππ*) and the ground state. The barrier found here enables fluorescence from the Sstack1((1)ππ*) state and may explain the bright state emission observed in the fluorescence upconversion measurements. The inter-molecular SCT((1)ππ*) state may be involved in the slow relaxation process of the photoexcited adenine oligomers through efficient internal conversion to the intra-base Sstack1((1)ππ*) state.
Collapse
Affiliation(s)
- Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, China.
| | | | | |
Collapse
|
41
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|
42
|
Bucher DB, Schlueter A, Carell T, Zinth W. Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angew Chem Int Ed Engl 2014; 53:11366-9. [DOI: 10.1002/anie.201406286] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/22/2014] [Indexed: 11/11/2022]
|
43
|
Bucher DB, Schlueter A, Carell T, Zinth W. In natürlicher DNA wird der Zerfall des angeregten Zustands durch Watson-Crick-Basenpaarung bestimmt. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide. Proc Natl Acad Sci U S A 2014; 111:11612-7. [PMID: 25071180 DOI: 10.1073/pnas.1404411111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH2 cofactor containing O at the 5'-end and 2'-deoxyadenosine at the 3'-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of time- and frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2'-deoxyadenosine. The quantum yield of charge separation is 0.4 at 265 nm, but decreases to 0.1 at 295 nm. Charge recombination occurs in 60 ps before the O radical cation can lose a deuteron to water. Kinetic and thermodynamic considerations strongly suggest that all nucleobases can undergo ultrafast charge separation when π-stacked in DNA or RNA. Interbase charge transfer is proposed to be a major decay pathway for UV excited states of nucleic acids of great importance for photostability as well as photoredox activity.
Collapse
|
45
|
Zou T, Liu J, Lum CT, Ma C, Chan RCT, Lok CN, Kwok WM, Che CM. Luminescent Cyclometalated Platinum(II) Complex Forms Emissive Intercalating Adducts with Double-Stranded DNA and RNA: Differential Emissions and Anticancer Activities. Angew Chem Int Ed Engl 2014; 53:10119-23. [DOI: 10.1002/anie.201405384] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/21/2022]
|
46
|
Zou T, Liu J, Lum CT, Ma C, Chan RCT, Lok CN, Kwok WM, Che CM. Luminescent Cyclometalated Platinum(II) Complex Forms Emissive Intercalating Adducts with Double-Stranded DNA and RNA: Differential Emissions and Anticancer Activities. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Chen K, Gallaher JK, Barker AJ, Hodgkiss JM. Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra. J Phys Chem Lett 2014; 5:1732-7. [PMID: 26270375 DOI: 10.1021/jz5006362] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultrafast photoluminescence (PL) spectroscopy can cleanly resolve excited-state dynamics and coupling to the environment, however, there is a demand for new methods that combine broadband detection and low backgrounds. We present a new method, transient grating photoluminescence spectroscopy (TGPLS), that addresses this challenge by exploiting a focusing geometry where ultrafast broadband spectra are transiently diffracted away from the background PL. We show that TGPLS can resolve the complex spectral relaxation observed in conjugated polymer and oligomer solutions, with an essentially flat spectral response throughout the visible region and potentially beyond. The benefits we demonstrate using TGPLS could expand access to spectral information, particularly for other multichromophoric and heterogeneous materials where complex spectral relaxation is expected.
Collapse
Affiliation(s)
- Kai Chen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6010, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6010, New Zealand
| | - Joseph K Gallaher
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6010, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6010, New Zealand
| | - Alex J Barker
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6010, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6010, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6010, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6010, New Zealand
| |
Collapse
|
48
|
Blancafort L, Voityuk AA. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: An MS-CASPT2 study. J Chem Phys 2014; 140:095102. [DOI: 10.1063/1.4867118] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
49
|
Nielsen LM, Hoffmann SV, Nielsen SB. Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated. Photochem Photobiol Sci 2014; 12:1273-85. [PMID: 23545881 DOI: 10.1039/c3pp25438k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In biology the interplay between multiple light-absorbers gives rise to complex quantum effects such as superposition states that are of extreme importance for life, both for harvesting solar energy and likely protecting nucleic acids from radiation damage. Still the characteristics of these states and their quantum dynamics are a much debated issue. While the electronic properties of single bases are fairly well understood, the situation for strands is complicated by the fact that stacked bases electronically couple when photoexcited. These newly arising states are denoted as exciton states and are simply linear combinations of localised wavefunctions that involve N - 1 ground-state bases and one base in its excited state (cf. the Frenkel exciton model). There is disagreement over the number of bases, N, that coherently couple, i.e., the spatial extent of the exciton, and how electronic deexcitation back to the ground state occurs. The importance of dark charge-transfer states has been inferred both from time-resolved fluorescence and transient absorption experiments. These states were suggested to be responsible for long deexcitation times but it is unclear whether 'long' is tens of picoseconds or nanoseconds. In this review paper, we focus on the bright states initially populated and discuss their nature based on information obtained from systematic absorption and circular dichroism experiments on single strands of different lengths. Our results from the last five years are compared with those from other groups, and are discussed in the context of successive deexcitation schemes. Pieces to the puzzle have come from different experiments and theory but a complete description has yet to emerge. As such the story about DNA/RNA photophysical decay mechanisms resembles the tale about the blind men and the elephant where all see the beast in different, correct but incomplete ways.
Collapse
|
50
|
Plasser F, Lischka H. Electronic excitation and structural relaxation of the adenine dinucleotide in gas phase and solution. Photochem Photobiol Sci 2014; 12:1440-52. [PMID: 23737069 DOI: 10.1039/c3pp50032b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The excited states and potential surfaces of the adenine dinucleotide are analyzed in gas phase and in solution using a correlated ab initio methodology in a QM/MM framework. In agreement with previous studies, a rather flat S1 surface with a number of minima of different character is found. Specifically, our results suggest that exciplexes with remarkably short intermolecular separation down to ~2.0 Å are formed. A detailed analysis shows that due to strong orbital interactions their character differs significantly from any states present in the Franck-Condon region. The lowest S1 energy minimum is a ππ* exciplex with only a small amount of charge transfer. It possesses appreciable oscillator strength with a polarization almost perpendicular to the planes of the two adenine molecules.
Collapse
Affiliation(s)
- Felix Plasser
- Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria.
| | | |
Collapse
|