1
|
Borišek J, Aupič J, Magistrato A. Third Metal Ion Dictates the Catalytic Activity of the Two-Metal-Ion Pre-Ribosomal RNA-Processing Machinery. Angew Chem Int Ed Engl 2024; 63:e202405819. [PMID: 38994644 DOI: 10.1002/anie.202405819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Nucleic acid processing enzymes use a two-Mg2+-ion motif to promote the formation and cleavage of phosphodiester bonds. Yet, recent evidence demonstrates the presence of spatially conserved second-shell cations surrounding the catalytic architecture of proteinaceous and RNA-dependent enzymes. The RNase mitochondrial RNA processing (MRP) complex, which cleaves the ribosomal RNA (rRNA) precursor at the A3 cleavage site to yield mature 5'-end of 5.8S rRNA, hosts in the catalytic core one atypically-located Mg2+ ion, in addition to the ions forming the canonical catalytic motif. Here, we employ biased quantum classical molecular dynamics simulations of RNase MRP to discover that the third Mg2+ ion inhibits the catalytic process. Instead, its displacement in favour of a second-shell monovalent K+ ion propels phosphodiester bond cleavage by enabling the formation of a specific hydrogen bonding network that mediates the essential proton transfer step. This study points to a direct involvement of a transient K+ ion in the catalytic cleavage of the phosphodiester bond and implicates cation trafficking as a general mechanism in nucleic acid processing enzymes and ribozymes.
Collapse
Affiliation(s)
- Jure Borišek
- Theory department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Jana Aupič
- Computational biology and medicine, CNR-Istituto Officina dei Materiali (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- Computational biology and medicine, CNR-Istituto Officina dei Materiali (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| |
Collapse
|
2
|
D’Atri V, Lardeux H, Goyon A, Imiołek M, Fekete S, Lauber M, Zhang K, Guillarme D. Optimizing Messenger RNA Analysis Using Ultra-Wide Pore Size Exclusion Chromatography Columns. Int J Mol Sci 2024; 25:6254. [PMID: 38892442 PMCID: PMC11172508 DOI: 10.3390/ijms25116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Biopharmaceutical products, in particular messenger ribonucleic acid (mRNA), have the potential to dramatically improve the quality of life for patients suffering from respiratory and infectious diseases, rare genetic disorders, and cancer. However, the quality and safety of such products are particularly critical for patients and require close scrutiny. Key product-related impurities, such as fragments and aggregates, among others, can significantly reduce the efficacy of mRNA therapies. In the present work, the possibilities offered by size exclusion chromatography (SEC) for the characterization of mRNA samples were explored using state-of-the-art ultra-wide pore columns with average pore diameters of 1000 and 2500 Å. Our investigation shows that a column with 1000 Å pores proved to be optimal for the analysis of mRNA products, whatever the size between 500 and 5000 nucleotides (nt). We also studied the influence of mobile phase composition and found that the addition of 10 mM magnesium chloride (MgCl2) can be beneficial in improving the resolution and recovery of large size variants for some mRNA samples. We demonstrate that caution should be exercised when increasing column length or decreasing the flow rate. While these adjustments slightly improve resolution, they also lead to an apparent increase in the amount of low-molecular-weight species (LMWS) and monomer peak tailing, which can be attributed to the prolonged residence time inside the column. Finally, our optimal SEC method has been successfully applied to a wide range of mRNA products, ranging from 1000 to 4500 nt in length, as well as mRNA from different suppliers and stressed/unstressed samples.
Collapse
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland; (V.D.); (H.L.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Honorine Lardeux
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland; (V.D.); (H.L.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (A.G.); (K.Z.)
| | - Mateusz Imiołek
- Waters Corporation, 1211 Geneva, Switzerland; (M.I.); (S.F.)
| | - Szabolcs Fekete
- Waters Corporation, 1211 Geneva, Switzerland; (M.I.); (S.F.)
| | | | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (A.G.); (K.Z.)
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland; (V.D.); (H.L.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Shi R, Cooper AJ, Tanaka H. Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions. Nat Commun 2023; 14:4616. [PMID: 37550299 PMCID: PMC10406952 DOI: 10.1038/s41467-023-40278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Ions exhibit highly ion-specific complex behaviours when solvated in water, which remains a mystery despite the fundamental importance of ion solvation in nature, science, and technology. Here we explain these ion-specific properties by the ion-induced hierarchical dipolar, translational, and bond-orientational orderings of ion hydration shell under the competition between ion-water electrostatic interactions and inter-water hydrogen bonding. We first characterise this competition by a new length λHB(q), explaining the ion-specific effects on solution dynamics. Then, by continuously tuning ion size and charge, we find that the bond-orientational order of the ion hydration shell highly develops for specific ion size and charge combinations. This ordering drastically stabilises the hydration shell; its degree changes the water residence time around ions by 11 orders of magnitude for main-group ions. These findings are fundamental to ionic processes in aqueous solutions, providing a physical principle for electrolyte design and application.
Collapse
Affiliation(s)
- Rui Shi
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Anthony J Cooper
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Physics, University of California, Santa Barbara, CA, 93106-9530, USA
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
4
|
Kitagawa Y, Liao Z, Morikawa K, Oda M. Metal-binding and folding thermodynamics of Escherichia coli ribonuclease HI related to its catalytic function. Biophys Chem 2023; 295:106961. [PMID: 36736006 DOI: 10.1016/j.bpc.2023.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Escherichia coli ribonuclease HI (RNH) hydrolyzes the RNA strands of RNA/DNA hybrids in the presence of Mg2+ at the highest level, relative to other metal ions. The Mg2+ binding affinity was 8.39 × 103 M-1, which was lower than those of other metal ions. The low-affinity binder can express the maximum catalytic activity of RNH. The stability of RNH increased with increasing metal ion concentration, except for Zn2+. The thermodynamic origin for enhancing the stability of RNH with Mg2+ was more favorable entropy compared to those with other metal ions, indicating that Mg2+ binding changes the RNH structure while maintaining flexibility. Upon H124A mutation, the metal ion binding affinities decreased for Mn2+ and Zn2+ to a relatively large extent. The present thermodynamic analyses provide information on the structural dynamics of RNH with metal ion exchangeable binding, which can reasonably explain the metal-ion-dependent catalytic activity.
Collapse
Affiliation(s)
- Yumi Kitagawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Zengwei Liao
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kosuke Morikawa
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|
5
|
Kaur R, Aboelnga MM, Nikkel DJ, Wetmore SD. The metal dependence of single-metal mediated phosphodiester bond cleavage: a QM/MM study of a multifaceted human enzyme. Phys Chem Chem Phys 2022; 24:29130-29140. [PMID: 36444615 DOI: 10.1039/d2cp04338f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleases catalyze the cleavage of phosphodiester bonds in nucleic acids using a range of metal cofactors. Although it is well accepted that many nucleases rely on two metal ions, the one-metal mediated pathway is debated. Furthermore, one-metal mediated nucleases maintain activity in the presence of many different metals, but the underlying reasons for this broad metal specificity are unknown. The human apurinic/apyrimidinic endonuclease (APE1), which plays a key role in DNA repair, transcription regulation, and gene expression, is a prototypical example of a one-metal dependent nuclease. Although Mg2+ is the native metal cofactor, APE1 remains catalytically active in the presence of several metals, with the rate decreasing as Mg2+ > Mn2+ > Ni2+ > Zn2+, while Ca2+ completely abolished the activity. The present work uses quantum mechanics-molecular mechanics techniques to map APE1-facilitated phosphodiester bond hydrolysis in the presence of these metals. The structural differences in stationary points along the reaction pathway shed light on the interplay between several factors that allow APE1 to remain catalytically active for various metals, with the trend in the barrier heights correlating with the experimentally reported APE1 catalytic activity. In contrast, Ca2+ significantly changes the metal coordination and active site geometry, and thus completely inhibits catalysis. Our work thereby provides support for the controversial single-metal mediated phosphodiester bond cleavage and clarifies uncertainties regarding the role of the metal and metal identity in this important reaction. This information is key for future medicinal and biotechnological applications including disease diagnosis and treatment, and protein engineering.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
6
|
Pang J, Guo Q, Lu Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front Microbiol 2022; 13:1034811. [PMID: 36478866 PMCID: PMC9719913 DOI: 10.3389/fmicb.2022.1034811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2023] Open
Abstract
Ribonucleoside monophosphates are inevitably misincorporated into the DNA genome inside cells, and they need to be excised to avoid chromosome instability. Ribonucleases H (RNases H) are enzymes that specifically hydrolyze the RNA strand of RNA/DNA hybrids or the RNA moiety from DNA containing a stretch of RNA, they therefore are required for DNA integrity. Extensive studies have drawn a mostly clear picture of the mechanisms of RNase H catalysis, but some questions are still lacking definitive answers. This review summarizes three alternative models of RNase H catalysis. The two-metal model is prevalent, but a three-metal model suggests the involvement of a third cation in catalysis. Apparently, the mechanisms underlying metal-dependent hydrolyzation are more complicated than initially thought. We also discuss the metal choices of RNases H and analyze how chemically similar cations function differently. Substrate and cleavage-site specificities vary among RNases H, and this is explicated in detail. An intriguing phenomenon is that organisms have diverse RNase H combinations, which may provide important hints to how rnh genes were transferred during evolution. Whether RNase H is essential for cellular growth, a key question in the study of in vivo functions, is also discussed. This article may aid in understanding the mechanisms underlying RNase H and in developing potentially promising applications of it.
Collapse
Affiliation(s)
| | | | - Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
7
|
Kshirsagar PG, Seshacharyulu P, Muniyan S, Rachagani S, Smith LM, Thompson C, Shah A, Mallya K, Kumar S, Jain M, Batra SK. DNA-gold nanoprobe-based integrated biosensing technology for non-invasive liquid biopsy of serum miRNA: A new frontier in prostate cancer diagnosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102566. [PMID: 35569810 PMCID: PMC9942096 DOI: 10.1016/j.nano.2022.102566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
The low specificity of prostate-specific antigen contributes to overdiagnosis and ov ertreatment of prostate cancer (PCa) patients. Hence, there is an urgent need for inclusive diagnostic platforms that could improve the diagnostic accuracy of PCa. Dysregulated miRNAs are closely associated with the progression and recurrence and have emerged as promising diagnostic and prognostic biomarkers for PCa. Nevertheless, simple, rapid, and ultrasensitive quantification of serum miRNAs is highly challenging. This study designed, synthesized, and demonstrated the practicability of DNA-linked gold nanoprobes (DNA-AuNPs) for the single-step quantification of miR-21/miR-141/miR-375. In preclinical study, the assay differented PCa Pten conditional knockout (PtencKO) mice compared to their age-matched Pten wild-type (PtenWT) control mice. In human sera, receiver operating characteristic (ROC) curve-based correlation analyses revealed clear discrimination between PCa patients from normal healthy controls using training and validation sets. Overall, we established integrated nano-biosensing technology for the PCR-free, non-invasive liquid biopsies of multiple miRNAs for PCa diagnosis.
Collapse
Affiliation(s)
- Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Satyanarayan Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lynette M. Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Corresponding authors: Surinder K. Batra, Ph.D., , Phone: 402-559-5455; Maneesh Jain, Ph.D., , Phone: 402-559-7667
| |
Collapse
|
8
|
Zheng YY, Wu Y, Begley TJ, Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem Biol 2021; 2:990-1003. [PMID: 34458821 PMCID: PMC8341892 DOI: 10.1039/d1cb00038a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification location and cellular function, but the various sulfur modifications share common biosynthetic strategies across RNA species, cell types and domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobases with an emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating sulfur modifications is to aid the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapies. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- Department of Biological Science, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
9
|
Sheet SK, Rabha M, Sen B, Patra SK, Aguan K, Khatua S. Ruthenium(II) Complex-Based G-quadruplex DNA Selective Luminescent 'Light-up' Probe for RNase H Activity Detection. Chembiochem 2021; 22:2880-2887. [PMID: 34314094 DOI: 10.1002/cbic.202100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Indexed: 12/14/2022]
Abstract
A bis-heteroleptic ruthenium(II) complex, 1[PF6 ]2 of benzothiazole amide substituted 2,2'-bipyridine ligand (bmbbipy) has been synthesized for the selective detection of G-quadruplex (GQ) DNA and luminescence-assay-based RNase H activity monitoring. Compound 1[PF6 ]2 exhibited aggregation-caused quenching (ACQ) in water. Aggregate formation was supported by DLS, UV-vis, and 1 H NMR spectroscopy results, and the morphology of aggregated particles was witnessed by SEM and TEM. 1[PF6 ]2 acted as an efficient GQ DNA-selective luminescent light-up probe over single-stranded and double-stranded DNA. The competency of 1[PF6 ]2 for selective GQ structure detection was established by PL and CD spectroscopy. For 1[PF6 ]2 , the PL light-up is exclusively due to the rigidification of the benzothiazole amide side arm in the presence of GQ-DNA. The interaction between the probe and GQ-DNA was analyzed by molecular docking analysis. The GQ structure detection capability of 1[PF6 ]2 was further applied in the luminescent 'off-on' RNase H activity detection. The assay utilized an RNA:DNA hybrid, obtained from 22AG2-RNA and 22AG2-DNA sequences. RNase H solely hydrolyzed the RNA of the RNA:DNA duplex and released G-rich 22AG2-DNA, which was detected via the PL enhancement of 1[PF6 ]2 . The selectivity of RNase H activity detection over various other restriction enzymes was also demonstrated.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| |
Collapse
|
10
|
Manigrasso J, De Vivo M, Palermo G. Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis. ACS Catal 2021; 11:8786-8797. [PMID: 35145762 DOI: 10.1021/acscatal.1c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent in crystallo reaction intermediates have detailed how nucleic acid hydrolysis occurs in the RNA ribonuclease H1 (RNase H1), a fundamental metalloenzyme involved in maintaining the human genome. At odds with the previous characterization, these in crystallo structures unexpectedly captured multiple metal ions (K+ and Mg2+) transiently bound in the vicinity of the two-metal-ion active site. Using multi-microsecond all-atom molecular dynamics and free-energy simulations, we investigated the functional implications of the dynamic exchange of multiple K+ and Mg2+ ions at the RNase H1 reaction center. We found that such ions are timely positioned at non-overlapping locations near the active site, at different stages of catalysis, being crucial for both reactants' alignment and leaving group departure. We also found that this cation trafficking is tightly regulated by variations of the solution's ionic strength and is aided by two conserved second-shell residues, E188 and K196, suggesting a mechanism for the cations' recruitment during catalysis. These results indicate that controlled trafficking of multi-cation dynamics, opportunely prompted by second-shell residues, is functionally essential to the complex enzymatic machinery of the RNase H1. These findings revise the current knowledge on the RNase H1 catalysis and open new catalytic possibilities for other similar metalloenzymes including, but not limited to, CRISPR-Cas9, group II intron ribozyme and the human spliceosome.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy.,Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States.,Department of Chemistry, University of California Riverside, Riverside, CA 52512, United States
| |
Collapse
|
11
|
Oda M. Structural basis for Ca 2+-dependent catalysis of a cutinase-like enzyme and its engineering: application to enzymatic PET depolymerization. Biophys Physicobiol 2021; 18:168-176. [PMID: 34386313 PMCID: PMC8326265 DOI: 10.2142/biophysico.bppb-v18.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
A cutinase-like enzyme from Saccharomonospora viridis AHK190, Cut190, can depolymerize polyethylene terephthalate (PET). As high activity at approximately 70°C is required for PET depolymerization, structure-based protein engineering of Cut190 was carried out. Crystal structure information of the Cut190 mutants was used for protein engineering and for evaluating the molecular basis of activity and thermal stability. A variety of biophysical methods were employed to unveil the mechanisms underlying the unique features of Cut190, which included the regulation of its activity and thermal stability by Ca2+. Ca2+ association and dissociation can change the enzyme conformation to regulate catalytic activity. Weak metal-ion binding would be required for the naïve conformational change of Cut190, while maintaining its fluctuation, to “switch” the enzyme on and off. The activity of Cut190 is regulated by the weak Ca2+ binding to the specific site, Site 1, while thermal stability is mainly regulated by binding to another Site 2, where a disulfide bond could be introduced to increase the stability. Recent results on the structure-activity relationship of engineered Cut190 are reviewed, including the application for PET depolymerization by enzymes.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
12
|
Dürr SL, Bohuszewicz O, Berta D, Suardiaz R, Jambrina PG, Peter C, Shao Y, Rosta E. The Role of Conserved Residues in the DEDDh Motif: the Proton-Transfer Mechanism of HIV-1 RNase H. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon L. Dürr
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Olga Bohuszewicz
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
| | - Dénes Berta
- Department of Physics and Astronomy, University College London; London WC1E 6BT, U.K
| | - Reynier Suardiaz
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
| | | | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Edina Rosta
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
- Department of Physics and Astronomy, University College London; London WC1E 6BT, U.K
| |
Collapse
|
13
|
Tang H, Yuan H, Du W, Li G, Xue D, Huang Q. Active-Site Models of Streptococcus pyogenes Cas9 in DNA Cleavage State. Front Mol Biosci 2021; 8:653262. [PMID: 33987202 PMCID: PMC8112549 DOI: 10.3389/fmolb.2021.653262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR-Cas9 is a powerful tool for target genome editing in living cells. Significant advances have been made to understand how this system cleaves target DNA. HNH is a nuclease domain, which shares structural similarity with the HNH endonuclease characterzied by a beta-beta-alpha-metal fold. Therefore, based on one- and two-metal-ion mechanisms, homology modeling and molecular dynamics (MD) simulation are suitable tools for building an atomic model of Cas9 in the DNA cleavage state. Here, by modeling and MD, we presented an atomic model of SpCas9-sgRNA-DNA complex with the cleavage state. This model shows that the HNH and RuvC conformations resemble their DNA cleavage state where the active-sites in the complex coordinate with DNA, Mg2+ ions, and water. Among them, residues D10, E762, H983, and D986 locate at the first shell of the RuvC active-site and interact with the ions directly, residues H982 or/and H985 are general (Lewis) bases, and the coordinated water is located at the positions for nucleophilic attack of the scissile phosphate. Meanwhile, this catalytic model led us to engineer a new SpCas9 variant (SpCas9-H982A + H983D) with reduced off-target effects. Thus, our study provided new mechanistic insights into the CRISPR-Cas9 system in the DNA cleavage state and offered useful guidance for engineering new CRISPR-Cas9 editing systems with improved specificity.
Collapse
Affiliation(s)
- Honghai Tang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Ministry of Education Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Ministry of Education Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenhao Du
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Ministry of Education Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gan Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Ministry of Education Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongmei Xue
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Ministry of Education Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Ministry of Education Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Vidossich P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M. Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pietro Vidossich
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luis Eduardo Castañeda Moreno
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
| | - Cristiano Mota
- ESRF The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Daniele de Sanctis
- ESRF The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Gian Pietro Miscione
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
15
|
Guo X, Zhu Y, Bai L, Yang D. The Protection Role of Magnesium Ions on Coupled Transcription and Translation in Lyophilized Cell-Free System. ACS Synth Biol 2020; 9:856-863. [PMID: 32216368 DOI: 10.1021/acssynbio.9b00508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-free protein synthesis (CFPS) is a promising platform for protein engineering and synthetic biology. The storage of a CFPS system usually involves lyophilization, during which preventing the conformational damage of involved enzymes is critical to the activity. Herein, we report the protection role of magnesium ions on coupled transcription and translation in a lyophilized cell-free system. Mg2+ prevents the inactivation of the CFPS system from direct colyophilization of enzymes and substrates (nucleotides, and amino acids), and furthermore activates the CFPS system. We propose two-metal-ion regulation of Mg2+: Mg2+ (I) acts as an allosteric role for enzymes to prevent the conformational damage of enzymes from direct binding with substrates during lyophilization which locks up inactive enzyme-substrate complex; Mg2+ (II) consequently binds to enzymes to activate the CFPS system. Our work provides important implications for maximizing protein yields by using a cell-free system in protein engineering and understanding the functions of Mg2+ in biological systems.
Collapse
Affiliation(s)
- Xiaocui Guo
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yi Zhu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Lihui Bai
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
16
|
Donati E, Genna V, De Vivo M. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases. J Am Chem Soc 2020; 142:2823-2834. [PMID: 31939291 PMCID: PMC7993637 DOI: 10.1021/jacs.9b10656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Enzymes of the 5′ structure-specific
nuclease family are crucial for DNA repair, replication, and recombination.
One such enzyme is the human exonuclease 1 (hExo1) metalloenzyme,
which cleaves DNA strands, acting primarily as a processive 5′-3′
exonuclease and secondarily as a 5′-flap endonuclease. Recently,
in crystallo reaction intermediates have elucidated how hExo1 exerts
hydrolysis of DNA phosphodiester bonds. These hExo1 structures show
a third metal ion intermittently bound close to the two-metal-ion
active site, to which recessed ends or 5′-flap substrates bind.
Evidence of this third ion has been observed in several nucleic-acid-processing
metalloenzymes. However, there is still debate over what triggers
the (un)binding of this transient third ion during catalysis and whether
this ion has a catalytic function. Using extended molecular dynamics
and enhanced sampling free-energy simulations, we observed that the
carboxyl side chain of Glu89 (located along the arch motif in hExo1)
flips frequently from the reactant state to the product state. The
conformational flipping of Glu89 allows one metal ion to be recruited
from the bulk and promptly positioned near the catalytic center. This
is in line with the structural evidence. Additionally, our simulations
show that the third metal ion assists the departure, through the mobile
arch, of the nucleotide monophosphate product from the catalytic site.
Structural comparisons of nuclease enzymes suggest that this Glu(Asp)-mediated
mechanism for third ion recruitment and nucleic acid hydrolysis may
be shared by other 5′ structure-specific nucleases.
Collapse
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Vito Genna
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
17
|
Genna V, Marcia M, De Vivo M. A Transient and Flexible Cation-π Interaction Promotes Hydrolysis of Nucleic Acids in DNA and RNA Nucleases. J Am Chem Soc 2019; 141:10770-10776. [PMID: 31251587 DOI: 10.1021/jacs.9b03663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal-dependent DNA and RNA nucleases are enzymes that cleave nucleic acids with great efficiency and precision. These enzyme-mediated hydrolytic reactions are fundamental for the replication, repair, and storage of genetic information within the cell. Here, extensive classical and quantum-based free-energy molecular simulations show that a cation-π interaction is transiently formed in situ at the metal core of Bacteriophage-λ Exonuclease (Exo-λ), during catalysis. This noncovalent interaction (Lys131-Tyr154) triggers nucleophile activation for nucleotide excision. Then, our simulations also show the oscillatory dynamics and swinging of the newly formed cation-π dyad, whose conformational change may favor proton release from the cationic Lys131 to the bulk solution, thus restoring the precatalytic protonation state in Exo-λ. Altogether, we report on the novel mechanistic character of cation-π interactions for catalysis. Structural and bioinformatic analyses support that flexible orientation and transient formation of mobile cation-π interactions may represent a common catalytic strategy to promote nucleic acid hydrolysis in DNA and RNA nucleases.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genoa , Italy
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble , 71 Avenue des Martyrs , Grenoble 38042 , France
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genoa , Italy
| |
Collapse
|
18
|
Aboelnga MM, Wetmore SD. Unveiling a Single-Metal-Mediated Phosphodiester Bond Cleavage Mechanism for Nucleic Acids: A Multiscale Computational Investigation of a Human DNA Repair Enzyme. J Am Chem Soc 2019; 141:8646-8656. [PMID: 31046259 DOI: 10.1021/jacs.9b03986] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed M. Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
19
|
Remsing RC, Klein ML. Exponential Scaling of Water Exchange Rates with Ion Interaction Strength from the Perspective of Dynamic Facilitation Theory. J Phys Chem A 2019; 123:1077-1084. [PMID: 30609371 DOI: 10.1021/acs.jpca.8b09667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Richard C. Remsing
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
20
|
Two symmetric arginine residues play distinct roles in Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A 2018; 116:845-853. [PMID: 30591565 DOI: 10.1073/pnas.1817041116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterium Thermus thermophilus Argonaute (Ago; TtAgo) is a prokaryotic Ago (pAgo) that acts as the host defense against the uptake and propagation of foreign DNA by catalyzing the DNA cleavage reaction. The TtAgo active site consists of a plugged-in glutamate finger with two arginine residues (R545 and R486) located symmetrically around it. An interesting challenge is to understand how they can collaboratively facilitate enzymatic catalysis. In Kluyveromyces polysporus Ago, a eukaryotic Ago, the evolutionarily symmetrical residues are arginine and histidine, both of which function to stabilize the plugged-in catalytic tetrad conformation. Surprisingly, our simulation results indicated that, in TtAgo, only R545 is involved in the cleavage reaction by serving as a critical structural anchor to stabilize the catalytic tetrad Asp-Glu-Asp-Asp that is completed by the insertion of the glutamate finger, whereas R486 is not involved in target cleavage. The TtAgo-mediated target DNA cleavage occurs in a substrate-assisted mechanism, in which the pro-Rp (Rp, a tetrahedral phosphorus center with "R-type" chirality) oxygen of scissile phosphate acts as a general base to activate the nucleophilic water. Our unexpected theoretical findings on distinct roles played by R545 and R486 in TtAgo catalysis have been validated by single-point site-mutagenesis experiments, wherein the target cleavage is abolished for all mutants of R545. In sharp contrast, the cleavage activity is maintained for all mutants of R486. Our work provides mechanistic insights on the catalytic specificity of Ago proteins and could facilitate the design of new gene-editing tools in the long term.
Collapse
|
21
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
22
|
|
23
|
Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Structure 2017; 26:40-50.e2. [PMID: 29225080 PMCID: PMC5758106 DOI: 10.1016/j.str.2017.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/12/2017] [Accepted: 11/12/2017] [Indexed: 02/01/2023]
Abstract
Synthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing. Basic residues in the active site of two-metal-ion enzymes are structurally conserved These residues are also conserved in evolution Mutagenesis suggests these residues may exert an effect on DNA- and RNA processing Our work offers insights into CRISPR/Cas9, spliceosome, and DNA/RNA polymerases
Collapse
|
24
|
Xu RG, Jenkins HT, Chechik M, Blagova EV, Lopatina A, Klimuk E, Minakhin L, Severinov K, Greive SJ, Antson AA. Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism. Nucleic Acids Res 2017; 45:3580-3590. [PMID: 28100693 PMCID: PMC5389553 DOI: 10.1093/nar/gkw1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism.
Collapse
Affiliation(s)
- Rui-Gang Xu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Elena V Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Anna Lopatina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Klimuk
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Konstantin Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
25
|
Diez-Castellnou M, Martinez A, Mancin F. Phosphate Ester Hydrolysis: The Path From Mechanistic Investigation to the Realization of Artificial Enzymes. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Casalino L, Palermo G, Abdurakhmonova N, Rothlisberger U, Magistrato A. Development of Site-Specific Mg(2+)-RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. J Chem Theory Comput 2016; 13:340-352. [PMID: 28001405 DOI: 10.1021/acs.jctc.6b00905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vital contribution of Mg2+ ions to RNA biology is challenging to dissect at the experimental level. This calls for the integrative support of atomistic simulations, which at the classical level are plagued by limited accuracy. Indeed, force fields intrinsically neglect nontrivial electronic effects that Mg2+ exerts on its surrounding ligands in varying RNA coordination environments. Here, we present a combined computational study based on classical molecular dynamics (MD) and Density Functional Theory (DFT) calculations, aimed at characterizing (i) the performance of five Mg2+ force field (FF) models in RNA systems and (ii) how charge transfer and polarization affect the binding of Mg2+ ions in different coordination motifs. As a result, a total of ∼2.5 μs MD simulations (100/200 ns for each run) for two prototypical Mg2+-dependent ribozymes showed remarkable differences in terms of populations of inner-sphere coordination site types. Most importantly, complementary DFT calculations unveiled that differences in charge transfer and polarization among recurrent Mg2+-RNA coordination motifs are surprisingly small. In particular, the charge of the Mg2+ ions substantially remains constant through different coordination sites, suggesting that the common philosophy of developing site-specific Mg2+ ion parameters is not in line with the physical origin of the Mg2+-RNA MD simulations inaccuracies. Overall, this study constitutes a guideline for an adept use of current Mg2+ models and provides novel insights for the rational development of next-generation Mg2+ FFs to be employed for atomistic simulations of RNA.
Collapse
Affiliation(s)
- Lorenzo Casalino
- International School for Advanced Studies (SISSA) , Trieste, Italy
| | - Giulia Palermo
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Nodira Abdurakhmonova
- International School for Advanced Studies (SISSA) , Trieste, Italy.,Università degli Studi di Trieste , Trieste, Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o SISSA , via Bonomea 265, Trieste, Italy
| |
Collapse
|
27
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Genna V, Vidossich P, Ippoliti E, Carloni P, De Vivo M. A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. J Am Chem Soc 2016; 138:14592-14598. [PMID: 27530537 DOI: 10.1021/jacs.6b05475] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzymatic polymerization of DNA and RNA is the basis for genetic inheritance for all living organisms. It is catalyzed by the DNA/RNA polymerase (Pol) superfamily. Here, bioinformatics analysis reveals that the incoming nucleotide substrate always forms an H-bond between its 3'-OH and β-phosphate moieties upon formation of the Michaelis complex. This previously unrecognized H-bond implies a novel self-activated mechanism (SAM), which synergistically connects the in situ nucleophile formation with subsequent nucleotide addition and, importantly, nucleic acid translocation. Thus, SAM allows an elegant and efficient closed-loop sequence of chemical and physical steps for Pol catalysis. This is markedly different from previous mechanistic hypotheses. Our proposed mechanism is corroborated via ab initio QM/MM simulations on a specific Pol, the human DNA polymerase-η, an enzyme involved in repairing damaged DNA. The structural conservation of DNA and RNA Pols supports the possible extension of SAM to Pol enzymes from the three domains of life.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Pietro Vidossich
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Paolo Carloni
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| |
Collapse
|
29
|
Wu S, Zhang X, Han J. A Computational Model for Predicting RNase H Domain of Retrovirus. PLoS One 2016; 11:e0161913. [PMID: 27574780 PMCID: PMC5019361 DOI: 10.1371/journal.pone.0161913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022] Open
Abstract
RNase H (RNH) is a pivotal domain in retrovirus to cleave the DNA-RNA hybrid for continuing retroviral replication. The crucial role indicates that RNH is a promising drug target for therapeutic intervention. However, annotated RNHs in UniProtKB database have still been insufficient for a good understanding of their statistical characteristics so far. In this work, a computational RNH model was proposed to annotate new putative RNHs (np-RNHs) in the retroviruses. It basically predicts RNH domains through recognizing their start and end sites separately with SVM method. The classification accuracy rates are 100%, 99.01% and 97.52% respectively corresponding to jack-knife, 10-fold cross-validation and 5-fold cross-validation test. Subsequently, this model discovered 14,033 np-RNHs after scanning sequences without RNH annotations. All these predicted np-RNHs and annotated RNHs were employed to analyze the length, hydrophobicity and evolutionary relationship of RNH domains. They are all related to retroviral genera, which validates the classification of retroviruses to a certain degree. In the end, a software tool was designed for the application of our prediction model. The software together with datasets involved in this paper can be available for free download at https://sourceforge.net/projects/rhtool/files/?source=navbar.
Collapse
Affiliation(s)
- Sijia Wu
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xinman Zhang
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jiuqiang Han
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
30
|
Genna V, Gaspari R, Dal Peraro M, De Vivo M. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η. Nucleic Acids Res 2016; 44:2827-36. [PMID: 26935581 PMCID: PMC4824119 DOI: 10.1093/nar/gkw128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Roberto Gaspari
- CONCEPT Lab., Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy IAS-5 / INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße 52428 Jülich, Germany
| |
Collapse
|
31
|
Sgrignani J, Magistrato A. QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00178] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB), Via Vincenzo Vela, 6500 Bellinzona, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
32
|
Palermo G, Cavalli A, Klein ML, Alfonso-Prieto M, Dal Peraro M, De Vivo M. Catalytic metal ions and enzymatic processing of DNA and RNA. Acc Chem Res 2015; 48:220-8. [PMID: 25590654 DOI: 10.1021/ar500314j] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONSPECTUS: Two-metal-ion-dependent nucleases cleave the phosphodiester bonds of nucleic acids via the two-metal-ion (2M) mechanism. Several high-resolution X-ray structures portraying the two-metal-aided catalytic site, together with mutagenesis and kinetics studies, have demonstrated a functional role of the ions for catalysis in numerous metallonucleases. Overall, the experimental data confirm the general mechanistic hypothesis for 2M-aided phosphoryl transfer originally reported by Steitz and Steitz ( Proc. Natl. Acad. Sci. U.S.A. 1993 , 90 ( 14 ), 6498 - 6502 ). This seminal paper proposed that one metal ion favors the formation of the nucleophile, while the nearby second metal ion facilitates leaving group departure during RNA hydrolysis. Both metals were suggested to stabilize the enzymatic transition state. Nevertheless, static X-ray structures alone cannot exhaustively unravel how the two ions execute their functional role along the enzymatic reaction during processing of DNA or RNA strands when moving from reactants to products, passing through metastable intermediates and high-energy transition states. In this Account, we discuss the role of multiscale molecular simulations in further disclosing mechanistic insights of 2M-aided catalysis for two prototypical enzymatic targets for drug discovery, namely, ribonuclease H (RNase H) and type II topoisomerase (topoII). In both examples, first-principles molecular simulations, integrated with structural data, emphasize a cooperative motion of the bimetal motif during catalysis. The coordinated motion of both ions is crucial for maintaining a flexible metal-centered structural architecture exquisitely tailored to accommodate the DNA or RNA sugar-phosphate backbone during phosphodiester bond cleavage. Furthermore, our analysis of RNase H and the N-terminal domain (PAN) of influenza polymerase shows that classical molecular dynamics simulations coupled with enhanced sampling techniques have contributed to describe the modulatory effect of metal ion concentration and metal uptake on the 2M mechanism and efficiency. These aspects all point to the emerging and intriguing role of additional adjacent ions potentially involved in the modulation of phosphoryl transfer reactions and enzymatic turnover in 2M-catalysis, as recently observed experimentally in polymerase η and homing endonuclease I-DmoI. These computational results, integrated with experimental findings, describe and reinforce the nascent concept of a functional and cooperative dynamics of the catalytic metal ions during the 2M-dependent enzymatic processing of DNA and RNA. Encouraged by the insights provided by computational approaches, we foresee further experiments that will feature the functional and joint dynamics of the catalytic metal ions for nucleic acid processing. This could impact the de novo design of artificial metallonucleases and the rational design of potent metal-chelating inhibitors of pharmaceutically relevant enzymes.
Collapse
Affiliation(s)
- Giulia Palermo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Michael L. Klein
- Institute
for Computational Molecular Science, Temple University, SERC Building, 1925 North 12th Street, Philadelphia Pennsylvania 19122, United States
| | - Mercedes Alfonso-Prieto
- Institute
for Computational Molecular Science, Temple University, SERC Building, 1925 North 12th Street, Philadelphia Pennsylvania 19122, United States
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics - SIB, 1015 Lausanne, Switzerland
| | - Marco De Vivo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
33
|
Okamura TA, Furuya R, Onitsuka K. Synthesis and structures of soluble magnesium and zinc carboxylates containing intramolecular NH⋯O hydrogen bonds in nonpolar solvents. Dalton Trans 2015; 44:7512-23. [DOI: 10.1039/c5dt00053j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium and zinc carboxylates containing intramolecular NH⋯O hydrogen bonds showed a fast trans–cis isomerization in nonpolar solvents and were converted into anionic tris(carboxylate)s by the addition of an equimolar ligand.
Collapse
Affiliation(s)
- Taka-aki Okamura
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka, Osaka 560-0043
- Japan
| | - Ryosuke Furuya
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka, Osaka 560-0043
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka, Osaka 560-0043
- Japan
| |
Collapse
|
34
|
Okamura TA, Furuya R, Onitsuka K. Regulation of the Hydrolytic Activity of Mg2+-Dependent Phosphatase Models by Intramolecular NH···O Hydrogen Bonds. J Am Chem Soc 2014; 136:14639-41. [DOI: 10.1021/ja509006x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taka-aki Okamura
- Department of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryosuke Furuya
- Department of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Rosta E, Yang W, Hummer G. Calcium inhibition of ribonuclease H1 two-metal ion catalysis. J Am Chem Soc 2014; 136:3137-44. [PMID: 24499076 PMCID: PMC3985467 DOI: 10.1021/ja411408x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 01/05/2023]
Abstract
Most phosphate-processing enzymes require Mg(2+) as a cofactor to catalyze nucleotide cleavage and transfer reactions. Ca(2+) ions inhibit many of these enzymatic activities, despite Ca(2+) and Mg(2+) having comparable binding affinities and overall biological abundances. Here we study the molecular details of the calcium inhibition mechanism for phosphodiester cleavage, an essential reaction in the metabolism of nucleic acids and nucleotides, by comparing Ca(2+)- and Mg(2+) catalyzed reactions. We study the functional roles of the specific metal ion sites A and B in enabling the catalytic cleavage of an RNA/DNA hybrid substrate by B. halodurans ribonuclease (RNase) H1 using hybrid quantum-mechanics/molecular mechanics (QM/MM) free energy calculations. We find that Ca(2+) substitution of either of the two active-site Mg(2+) ions substantially increases the height of the reaction barrier and thereby abolishes the catalytic activity. Remarkably, Ca(2+) at the A site is inactive also in Mg(2+)-optimized active-site structures along the reaction path, whereas Mg(2+) substitution recovers activity in Ca(2+)-optimized structures. Geometric changes resulting from Ca(2+) substitution at metal ion site A may thus be a secondary factor in the loss of catalytic activity. By contrast, at metal ion site B geometry plays a more important role, with only a partial recovery of activity after Mg(2+) substitution in Ca(2+)-optimized structures. Ca(2+)-substitution also leads to a change in mechanism, with deprotonation of the water nucleophile requiring a closer approach to the scissile phosphate, which in turn increases the barrier. As a result, Ca(2+) is less efficient in activating the water. As a likely cause for the different reactivities of Mg(2+) and Ca(2+) ions in site A, we identify differences in charge transfer to the ions and the associated decrease in the pKa of the oxygen nucleophile attacking the phosphate group.
Collapse
Affiliation(s)
- Edina Rosta
- Laboratory
of Chemical Physics, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Wei Yang
- Laboratory
of Molecular Biology, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gerhard Hummer
- Laboratory
of Chemical Physics, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Xiao S, Klein ML, LeBard DN, Levine BG, Liang H, MacDermaid CM, Alfonso-Prieto M. Magnesium-Dependent RNA Binding to the PA Endonuclease Domain of the Avian Influenza Polymerase. J Phys Chem B 2014; 118:873-89. [DOI: 10.1021/jp408383g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Michael L. Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - David N. LeBard
- Department of Chemistry, Yeshiva University, New York, New York 10033, United States
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Christopher M. MacDermaid
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mercedes Alfonso-Prieto
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
37
|
Ultradeep pyrosequencing and molecular modeling identify key structural features of hepatitis B virus RNase H, a putative target for antiviral intervention. J Virol 2013; 88:574-82. [PMID: 24173223 DOI: 10.1128/jvi.03000-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Last-generation nucleoside/nucleotide analogues are potent against hepatitis B virus (HBV) and have a high barrier to resistance. However, delayed responses have been observed in patients previously exposed to other drugs of the same class, long-term resistance is possible, and cure of infection cannot be achieved with these therapies, emphasizing the need for alternative therapeutic approaches. The HBV RNase H represents an interesting target because its enzyme activity is essential to the HBV life cycle. The goal of our study was to characterize the structure of the HBV RNase H by computing a 3-dimensional molecular model derived from E. coli RNase H and analyzing 2,326 sequences of all HBV genotypes available in public databases and 958,000 sequences generated by means of ultradeep pyrosequencing of sequences from a homogenous population of 73 treatment-naive patients infected with HBV genotype D. Our data revealed that (i) the putative 4th catalytic residue displays unexpected variability that could be explained by the overlap of the HBx gene and has no apparent impact on HBV replicative capacity and that (ii) the C-helix-containing basic protrusion, which is required to guide the RNA/DNA heteroduplex into the catalytic site, is highly conserved and bears unique structural properties that can be used to target HBV-specific RNase H inhibitors without cross-species activity. The model shows substantial differences from other known RNases H and paves the way for functional and structural studies as a prerequisite to the development of new inhibitors of the HBV cell cycle specifically targeting RNase H activity.
Collapse
|
38
|
Okamura TA, Nakagawa J. Contribution of Intramolecular NH···O Hydrogen Bonds to Magnesium–Carboxylate Bonds. Inorg Chem 2013; 52:10812-24. [DOI: 10.1021/ic400671v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taka-aki Okamura
- Department
of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Junko Nakagawa
- Department
of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
39
|
Tsutakawa SE, Shin DS, Mol CD, Izumi T, Arvai AS, Mantha AK, Szczesny B, Ivanov IN, Hosfield DJ, Maiti B, Pique ME, Frankel KA, Hitomi K, Cunningham RP, Mitra S, Tainer JA. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes. J Biol Chem 2013; 288:8445-8455. [PMID: 23355472 DOI: 10.1074/jbc.m112.422774] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg(2+) and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.
Collapse
Affiliation(s)
| | - David S Shin
- Scripps Research Institute, La Jolla, California 92037
| | | | - Tadahide Izumi
- University of Kentucky, Lexington, Kentucky 40536; University of Texas Medical Branch, Galveston, Texas 77555
| | | | - Anil K Mantha
- University of Texas Medical Branch, Galveston, Texas 77555
| | | | | | | | | | - Mike E Pique
- Scripps Research Institute, La Jolla, California 92037
| | | | - Kenichi Hitomi
- Lawrence Berkeley National Laboratory, Berkeley, California 94720; Scripps Research Institute, La Jolla, California 92037; Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | - Sankar Mitra
- University of Texas Medical Branch, Galveston, Texas 77555
| | - John A Tainer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720; Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
40
|
Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks. J Mol Model 2013; 19:1763-77. [DOI: 10.1007/s00894-012-1716-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
41
|
Palermo G, Stenta M, Cavalli A, Dal Peraro M, De Vivo M. Molecular Simulations Highlight the Role of Metals in Catalysis and Inhibition of Type II Topoisomerase. J Chem Theory Comput 2013; 9:857-62. [DOI: 10.1021/ct300691u] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giulia Palermo
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, 16163
Genova, Italy
| | - Marco Stenta
- Institute
of Bioengineering,
School of Life Sciences, Ecole Polytechnique Fédérale
de Lausanne - EPFL, Lausanne, CH-1015, Switzerland
| | - Andrea Cavalli
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, 16163
Genova, Italy
- Department of Pharmaceutical Sciences,
University of Bologna, via Belmeloro 6, I-40126 Bologna, Italy
| | - Matteo Dal Peraro
- Institute
of Bioengineering,
School of Life Sciences, Ecole Polytechnique Fédérale
de Lausanne - EPFL, Lausanne, CH-1015, Switzerland
| | - Marco De Vivo
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, 16163
Genova, Italy
| |
Collapse
|
42
|
Liu B, Xiang D, Long Y, Tong C. Real time monitoring of junction ribonuclease activity of RNase H using chimeric molecular beacons. Analyst 2013; 138:3238-45. [DOI: 10.1039/c3an36414c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. ACTA ACUST UNITED AC 2012; 19:937-54. [PMID: 22921062 DOI: 10.1016/j.chembiol.2012.07.011] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023]
Abstract
Oligonucleotides (ONs), and their chemically modified mimics, are now routinely used in the laboratory as a means to control the expression of fundamentally interesting or therapeutically relevant genes. ONs are also under active investigation in the clinic, with many expressing cautious optimism that at least some ON-based therapies will succeed in the coming years. In this review, we will discuss several classes of ONs used for controlling gene expression, with an emphasis on antisense ONs (AONs), small interfering RNAs (siRNAs), and microRNA-targeting ONs (anti-miRNAs). This review provides a current and detailed account of ON chemical modification strategies for the optimization of biological activity and therapeutic application, while clarifying the biological pathways, chemical properties, benefits, and limitations of oligonucleotide analogs used in nucleic acids research.
Collapse
Affiliation(s)
- Glen F Deleavey
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada.
| | | |
Collapse
|
44
|
Alla NR, Nicholson AW. Evidence for a dual functional role of a conserved histidine in RNA·DNA heteroduplex cleavage by human RNase H1. FEBS J 2012; 279:4492-500. [PMID: 23078533 DOI: 10.1111/febs.12035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
Ribonuclease H1 is a conserved enzyme that cleaves the RNA strand of RNA·DNA heteroduplexes and has important functions in the nuclear and mitochondrial compartments. The therapeutic action of antisense oligodeoxynucleotides involves the recruitment of RNase H1 to cleave disease-relevant RNA targets. Recombinant human (Hs) RNase H1 was purified from a bacterial expression host, and conditions were identified that provided optimal oligonucleotide-directed RNA cleavage in vitro. Hs-RNase H1 exhibits optimal catalytic activity in pH 7.5 HEPES buffer and a salt (KCl) concentration of ~ 100-150 mm. Mg(2+) best supports Hs-RNase H1 with an optimal concentration of 10 mm, but at higher concentrations inhibits enzyme activity. Mn(2+) and Co(2+) also support catalytic activity, while Ni(2+) and Zn(2+) exhibit only modest activities as cofactors. The optimized assay was used to show that an antisense oligonucleotide, added in substoichiometric amounts to initiate RNA cleavage, supports up to 30 rounds of reaction in 30 min. Mutation to alanine of the conserved histidine at position 264 causes an ~ 100-fold decrease in k(cat) under multiple-turnover conditions, but does not alter K(m) . Under single-turnover conditions, the H264A mutant exhibits a 12-fold higher exponential time constant for substrate cleavage. The defective activity of the H264A mutant is not rescued in either assay condition by higher Mg(2+) concentrations. These data implicate the H264 side chain in phosphodiester hydrolysis as well as in product release, and are consistent with a proposed model in which the H264 side chain interacts with a divalent metal ion to support catalysis.
Collapse
Affiliation(s)
- Nageswara R Alla
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
45
|
Zheng X, Mueller GA, DeRose EF, London RE. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Nucleic Acids Res 2012; 40:10543-53. [PMID: 22941642 PMCID: PMC3488238 DOI: 10.1093/nar/gks791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/14/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) contains a C-terminal ribonuclease H (RH) domain on its p66 subunit that can be expressed as a stable, although inactive protein. Recent studies of several RH enzymes demonstrate that substrate binding plays a major role in the creation of the active site. In the absence of substrate, the C-terminal helix E of the RT RNase H domain is dynamic, characterized by severe exchange broadening of its backbone amide resonances, so that the solution characterization of this region of the protein has been limited. Nuclear magnetic resonance studies of 13C-labeled RH as a function of experimental conditions reveal that the δ1 methyl resonance of Ile556, located in a short, random coil segment following helix E, experiences a large 13C shift corresponding to a conformational change of Ile556 that results from packing of helix E against the central β-sheet. This shift provides a useful basis for monitoring the effects of various ligands on active site formation. Additionally, we report that the RNase H complexes formed with one or both divalent ions can be individually observed and characterized using diamagnetic Zn2+ as a substitute for Mg2+. Ordering of helix E results specifically from the interaction with the lower affinity binding to the A divalent ion site.
Collapse
Affiliation(s)
| | | | | | - Robert E. London
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
46
|
Verma SD, Pal N, Singh MK, Sen S. Probe Position-Dependent Counterion Dynamics in DNA: Comparison of Time-Resolved Stokes Shift of Groove-Bound to Base-Stacked Probes in the Presence of Different Monovalent Counterions. J Phys Chem Lett 2012; 3:2621-2626. [PMID: 26295881 DOI: 10.1021/jz300934x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Time-resolved fluorescence Stokes shifts (TRFSS) of 4',6-diamidino-2-phenylindole (DAPI) inside the minor groove of DNA are measured in the presence of three different monovalent counterions: sodium (Na(+)), rubidium (Rb(+)), and tetrabutylammonium (TBA(+)). Fluorescence up-conversion and time-correlated single photon counting are combined to obtain the time-resolved emission spectra (TRES) of DAPI in DNA from 100 fs to 10 ns. Time-resolved Stokes shift data suggest that groove-bound DAPI can not sense the counterion dynamics because the ions are displaced by DAPI far from the probe-site. However, when these results are compared to the earlier base-stacked coumarin data, the same ions are found to affect the nanosecond dynamics significantly. This suggests that the ions come close to the probe-site, such that they can affect the dynamics when measured by base-stacked coumarin. These results support previous molecular dynamics (MD) simulation data of groove-bound and base-stacked probes inside DNA.
Collapse
Affiliation(s)
- Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
47
|
Sgrignani J, Magistrato A. The structural role of Mg2+ ions in a class I RNA polymerase ribozyme: a molecular simulation study. J Phys Chem B 2012; 116:2259-68. [PMID: 22268599 DOI: 10.1021/jp206475d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
According to the RNA world hypothesis, self-replicating ribozymes, storing the genetic information and being able to perform catalysis, were the constituents of the first living organisms. In particular, RNA polymerase ribozymes, similar to current proteinaceous enzymatic polymerases, may have been able to promote the synthesis of RNA strands in a primitive world. Polymerase catalysis is usually assisted by Mg(2+) ions, but it is not always trivial to find out experimentally the number of Mg(2+) ions placed in the active site as well as the identity and the number of their coordination ligands. Here, we addressed this issue in an artificial class I ligase ribozyme. On the basis of a recently solved crystal structure, we constructed computational models of reactant and product states of this ribozyme, considering monometallic and bimetallic species. Our models were relaxed by force field based molecular dynamics (MD) simulations and mixed quantum-classical (QM/MM) MD. The structural and dynamical properties of these models were consistent with experimental data and were validated by a comparison with the catalytic sites of proteinaceous DNA and RNA polymerases. Consistently with enzymatic polymerases, our results suggest that class I RNA ligases most probably contain two magnesium ions in the active site and they may, therefore, catalyze the junction of two RNA strands via "a two Mg(2+) ions" mechanism.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- CNR-IOM-Democritos National Simulation Center C/o International Studies for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34165, Trieste, Italy
| | | |
Collapse
|
48
|
The increasing role of QM/MM in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 87:337-62. [PMID: 22607760 DOI: 10.1016/b978-0-12-398312-1.00011-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its first appearance in 1976, the quantum mechanics/molecular mechanics (QM/MM) approach has mostly been used to study the chemical reactions of enzymes, which are frequently the target of drug discovery programs. In principle, a detailed understanding of the enzymatic mechanism should help researchers to design a potent enzyme inhibitor or new drug. However, QM/MM has not yet had a widespread impact on structure-based drug design. This is mostly due to its high computational cost. We expect this to change with the recent and extraordinary increases in computational power, and with the availability of more efficient algorithms for QM/MM calculations. Here, we report on some representative examples of QM/MM studies, including our own research, of pharmaceutically relevant enzymes, such as ribonuclease H and fatty acid amide hydrolase (FAAH). We aim to show how QM/MM has traditionally been used to study enzymatic catalysis. In this regard, we discuss its potential to become a routinely used drug design tool. To support this, we also discuss selected computational studies where QM/MM insights have been helpful in improving the potency of covalent inhibitors of FAAH.
Collapse
|
49
|
Abstract
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.
Collapse
Affiliation(s)
- Kin-Yiu Wong
- Department of Chemistry, Digital Technology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|