1
|
Weng R, Zhou Y, Zhang Y, Feng X, Liu X. Catalytic asymmetric Michael and Nef-type sequential reaction of nitroolefin with azlactone to construct oxazole-fused succinimide. Chem Commun (Camb) 2024. [PMID: 39450603 DOI: 10.1039/d4cc04858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A series of oxazole-fused succinimides bearing vicinal quaternary carbon centers were synthesized. This process takes place between nitroolefins and azlactones in the presence of a bifunctional chiral guanidine-sulfonamide organocatalyst, followed by a Nef-type transformation under the treatment of DMAP/Ac2O. Several control experiments were conducted to propose the mechanism.
Collapse
Affiliation(s)
- Rui Weng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yaqin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Rozsar D, Farley AJM, McLauchlan I, Shennan BDA, Yamazaki K, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β-Unsaturated Esters. Angew Chem Int Ed Engl 2023; 62:e202303391. [PMID: 36929179 PMCID: PMC10946890 DOI: 10.1002/anie.202303391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Alistair J. M. Farley
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Iain McLauchlan
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | | | - Ken Yamazaki
- Division of Applied ChemistryOkayama University700-8530TsushimanakaOkayamaJapan
| | - Darren J. Dixon
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| |
Collapse
|
3
|
Kim H, Kim SG. [4 + 2] Annulation of δ-Hydroxy/δ-Sulfonamido-α,β-Unsaturated Ketones with Azlactones for Diastereoselective Synthesis of Highly Substituted 3-Amino-δ-Lactones and 3-Amino-δ-Lactams. J Org Chem 2023; 88:3830-3844. [PMID: 36877789 DOI: 10.1021/acs.joc.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The first base-mediated [4 + 2] annulation of δ-hydroxy-α,β-unsaturated ketones with azlactones has been developed, through which 3,4-disubstituted 3-amino-δ-lactones were obtained in good yields and with excellent diastereoselectivities. This approach was also applied to the [4 + 2] annulation of δ-sulfonamido-α,β-unsaturated ketones, which provided a practical protocol for constructing biologically important 3-amino-δ-lactam frameworks.
Collapse
Affiliation(s)
- Heebum Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
4
|
Qu H, Liang XS, Wang WJ, Zhao XH, Deng YH, An XT, Chu WD, Zhang XZ, Fan CA. Catalytic Enantioselective Desymmetrization of Prochiral Triacylamines via Pseudopeptidic Guanidine–Guanidinium Catalysis. Org Lett 2022; 24:6851-6856. [DOI: 10.1021/acs.orglett.2c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Qu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xin-Shen Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Juan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Dao Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xiang-Zhi Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
5
|
Tan Q, Chen Q, Zhu Z, Liu X. Asymmetric organocatalytic sulfenylation for the construction of a diheteroatom-bearing tetrasubstituted carbon centre. Chem Commun (Camb) 2022; 58:9686-9689. [PMID: 35959638 DOI: 10.1039/d2cc03443c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic enantioselective sulfenylation to construct diheteroatom-bearing carbon centres was achieved by employing chiral guanidine organocatalysts. This protocol provided a facile route towards the synthesis of α-fluoro-α-sulfenyl-β-ketoamides, azlactone adducts and α-sulfur-substituted amino acid derivatives in high yields with good to excellent enantioselectivities. A possible working mode was proposed to elucidate the chiral control of the process.
Collapse
Affiliation(s)
- Qingfa Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qianping Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zitong Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Mastachi-Loza S, Ramírez-Candelero TI, Benítez-Puebla LJ, Fuentes-Benítes A, González-Romero C, Vázquez MA. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chem Asian J 2022; 17:e202200706. [PMID: 35976743 DOI: 10.1002/asia.202200706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Indexed: 11/09/2022]
Abstract
Chalcones are aromatic ketones found in nature as the central core of many biological compounds. They have a wide range of biological activity and are biogenetic precursors of other important molecules such as flavonoids. Their pharmacological relevance makes them a privileged scaffold, advantageous for seeking alternative therapies in medicinal chemistry. Due to their structural diversity and ease of synthesis, they are often employed as building blocks for chemical transformations. Chalcones have a carbonyl conjugated system with two electrophilic centers that are commonly used for nucleophilic additions, as described in numerous articles. They can also participate in Diels-Alder reactions, which are [4+2] cycloadditions between a diene and a dienophile. This microreview presents a chronological survey of studies on chalcones as dienes and dienophiles in Diels-Alder cycloadditions. Although these reactions occur in nature, isolation of chalcones from plants yields very small quantities. Contrarily, synthesis leads to large quantities at a low cost. Hence, novel methodologies have been developed for [4+2] cycloadditions, with chalcones serving as a 2π or 4π electron system.
Collapse
Affiliation(s)
- Salvador Mastachi-Loza
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Tania I Ramírez-Candelero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Luis J Benítez-Puebla
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Aydee Fuentes-Benítes
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Carlos González-Romero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Miguel A Vázquez
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, CHEMISTRY, NORIA ALTA S/N, 36050, GUANAJUATO, MEXICO
| |
Collapse
|
7
|
Peňaška T, Modrocká V, Stankovianska K, Mečiarová M, Rakovský E, Šebesta R. Organocatalytic Diastereodivergent Enantioselective Formal oxa-Diels-Alder Reaction of Unsaturated Ketones with Enoates Under Liquid-Assisted Grinding Conditions. CHEMSUSCHEM 2022; 15:e202200028. [PMID: 35146952 DOI: 10.1002/cssc.202200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Chiral heterocycles occur in many compounds of interest, but their efficient synthesis is challenging. This study concerns the enantioselective and diastereoselective synthesis of densely substituted chiral pyran derivatives. Diastereodivergence of the oxa-Diels-Alder reaction is achieved by using either a bifunctional amino-thiourea or a monofunctional quinine organocatalyst under ball-milling conditions. Liquid-assisted grinding proves a highly efficient means of affording pyrans in high yield, with high enantiomeric purities and short reaction times.
Collapse
Affiliation(s)
- Tibor Peňaška
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Viktória Modrocká
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Klára Stankovianska
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
8
|
Cheng X, Shen C, Dong XQ, Wang CJ. Iridium-catalyzed asymmetric double allylic alkylation of azlactone: efficient access to chiral α-amino acid derivatives. Chem Commun (Camb) 2022; 58:3142-3145. [PMID: 35174829 DOI: 10.1039/d2cc00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unprecedented Ir-catalyzed enantioselective double allylic alkylation of less bulky cyclic imine glycinate (azlactone) was rationally designed and developed, providing various bisallylated chiral amino acid derivatives. Control experiments revealed that this transformation proceeds in a sequential manner featuring quasi-dynamic kinetic resolution of the initially-formed monoallylation intermediates.
Collapse
Affiliation(s)
- Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| |
Collapse
|
9
|
Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. J Am Chem Soc 2022; 144:1006-1015. [PMID: 34990142 PMCID: PMC8793149 DOI: 10.1021/jacs.1c11898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
first metal-free catalytic intermolecular enantioselective
Michael addition to unactivated α,β-unsaturated amides
is described. Consistently high enantiomeric excesses and yields were
obtained over a wide range of alkyl thiol pronucleophiles and electrophiles
under mild reaction conditions, enabled by a novel squaramide-based
bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0
mol %) were achieved on a decagram scale, demonstrating the scalability
of the reaction. Computational analysis revealed the origin of the
high enantiofacial selectivity via analysis of relevant transition
structures and provided substantial support for specific noncovalent
activation of the carbonyl group of the α,β-unsaturated
amide by the catalyst.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
10
|
Zhang F, Ren BT, Liu Y, Feng X. A nickel( ii)-catalyzed enantioselective all-carbon-based inverse-electron-demand Diels–Alder reaction of 2-pyrones with indenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric IEDDA reaction of 2-pyrones with indenes catalyzed by a chiral N,N′-dioxide/Ni(OTf)2 complex has been disclosed to construct highly functionalized hexahydrofluorenyl bridged-lactone scaffolds in high yields and ee.
Collapse
Affiliation(s)
- Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Bing-Tao Ren
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Hu L, Li J, Zhang Y, Feng X, Liu X. Enantioselective [1,2]-Stevens Rearrangement of Thiosulfonates to Construct Dithio-Substituted Quaternary Carbon Centers. Chem Sci 2022; 13:4103-4108. [PMID: 35440994 PMCID: PMC8985575 DOI: 10.1039/d2sc00419d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol. An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).![]()
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yongyan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
12
|
Ruan P, Tang Q, Yang Z, Liu X, Feng X. Enantioselective formal [2 + 2 + 2] cycloaddition of 1,3,5-triazinanes to construct tetrahydropyrimidin-4-one derivatives. Chem Commun (Camb) 2021; 58:1001-1004. [PMID: 34939630 DOI: 10.1039/d1cc06549a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A chiral Lewis acid-catalyzed enantioselective formal [2 + 2 + 2] cycloaddition of 1,3,5-triazinanes with azlactones or β,γ-unsaturated pyrazole amides was developed to synthesize chiral tertiary/quaternary tetrahydropyrimidin-4-one derivatives with good yields and enantioselectivities. Two competitive reaction pathways were proposed based on experiments.
Collapse
Affiliation(s)
- Peiran Ruan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiong Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
13
|
Wan Y, Wu H, Ma N, Zhao J, Zhang Z, Gao W, Zhang G. De novo design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions. Chem Sci 2021; 12:15988-15997. [PMID: 35024122 PMCID: PMC8672711 DOI: 10.1039/d1sc05294b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Described here is the de novo design and synthesis of a series of 6H-dipyrido[1,2-e:2',1'-i]purin-6-ones (DPs) as a new class of visible-light photoredox catalysts (PCs). The synthesized DP1-5 showed their λ Abs(max) values in 433-477 nm, excited state redox potentials in 1.15-0.69 eV and -1.41 to -1.77 eV (vs. SCE), respectively. As a representative, DP4 enables the productive guanylation of various amines, including 1°, 2°, and 3°-alkyl primary amines, secondary amines, aryl and heteroaryl amines, amino-nitrile, amino acids and peptides as well as propynylamines and α-amino esters giving diversities in biologically important guanidines and cyclic guanidines. The photocatalytic efficacy of DP4 in the guanylation overmatched commonly used Ir and Ru polypyridyl complexes, and some organic PCs. Other salient merits of this method include broad substrate scope and functional group tolerance, gram-scale synthesis, and versatile late-stage derivatizations that led to a derivative 81 exhibiting 60-fold better anticancer activity against Ramos cells with the IC50 of 0.086 μM than that of clinical drug ibrutinib (5.1 μM).
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Jie Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Wenjing Gao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| |
Collapse
|
14
|
Leonardi C, Brandolese A, Preti L, Bortolini O, Polo E, Dambruoso P, Ragno D, Di Carmine G, Massi A. Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Costanza Leonardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Arianna Brandolese
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Lorenzo Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Eleonora Polo
- Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via P. Gobetti, 101 40129 Bologna Italy
| | - Paolo Dambruoso
- Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via P. Gobetti, 101 40129 Bologna Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| |
Collapse
|
15
|
Laina‐Martín V, Fernández‐Salas JA, Alemán J. Organocatalytic Strategies for the Development of the Enantioselective Inverse-electron-demand Hetero-Diels-Alder Reaction. Chemistry 2021; 27:12509-12520. [PMID: 34132427 PMCID: PMC8456916 DOI: 10.1002/chem.202101696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Cycloaddition reactions, in particular Diels-Alder reactions, have attracted a lot of attention from organic chemists since they represent one of the most powerful methodologies for the construction of carbon-carbon bonds. In particular, inverse-electron-demand hetero-Diels-Alder reactions have been an important breakthrough for the synthesis of heterocyclic compounds. Among all their variants, the organocatalytic enantioselective version has been widely explored since the asymmetric construction of diversely functionalized scaffolds under reaction conditions encompassed within the green chemistry field is of great interest. In this review, a profound revision on the latest advances on the organocatalytic asymmetric inverse-electron demand hetero-Diels-Alder reaction is shown.
Collapse
Affiliation(s)
- Víctor Laina‐Martín
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
| | - Jose A. Fernández‐Salas
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| | - José Alemán
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| |
Collapse
|
16
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
17
|
Guo F, Chen J, Huang Y. A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Jiean Chen
- Shenzhen Bay Laboratory, Shenzhen 518055, People’s Republic of China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
18
|
Zuo S, Zhang F, Liu J, Zuo A. Synthesis of bis(2-imino-1,3-dimethylbenzimidazoline)s via reactions of a solvothermally prepared benzimidazolium chloride and diamines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wang HQ, Ma W, Sun A, Sun XY, Jiang C, Zhang YC, Shi F. (4 + 2) cyclization of aza- o-quinone methides with azlactones: construction of biologically important dihydroquinolinone frameworks. Org Biomol Chem 2021; 19:1334-1343. [PMID: 33464269 DOI: 10.1039/d0ob02388d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A base-promoted (4 + 2) cyclization of aza-o-quinone methides (aza-o-QMs) in situ generated from N-(o-chloromethyl)aryl amides was established. In this approach, azlactones were utilized as competent two-atom reaction partners to undergo (4 + 2) cyclization with aza-o-QMs, which afforded a series of dihydroquinolinone derivatives in overall good yields (up to 98%). This protocol has not only advanced the development of aza-o-QM-involved reactions, but also offered a useful method for constructing biologically important dihydroquinolinone frameworks.
Collapse
Affiliation(s)
- Hai-Qing Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wenjing Ma
- Core Facility Center of Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ao Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Xin-Yue Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Chao Jiang
- Core Facility Center of Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
20
|
Xie L, Li Y, Dong S, Feng X, Liu X. Catalytic asymmetric formal [3+2] cycloaddition of isatogens with azlactones to construct indolin-3-one derivatives. Chem Commun (Camb) 2021; 57:239-242. [DOI: 10.1039/d0cc06418a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A number of enantioenriched indolin-3-one derivatives were readily obtained by chiral guanidine-catalyzed [3+2] cycloaddition of isatogens with azlactones.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Yi Li
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
21
|
Beleh OM, Miller E, Toste FD, Miller SJ. Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. J Am Chem Soc 2020; 142:16461-16470. [PMID: 32857500 DOI: 10.1021/jacs.0c08057] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defined structure of molecules bearing multiple stereogenic axes is of increasing relevance to materials science, pharmaceuticals, and catalysis. However, catalytic enantioselective approaches to control multiple stereogenic axes remain synthetically challenging. We report the catalytic synthesis of two-axis terphenyl atropisomers, with complementary strategies to both chlorinated and brominated variants, formed with high diastereo- and enantioselectivity. The chemistry proceeds through a sequence of two distinct dynamic kinetic resolutions: first, an atroposelective ring opening of Bringmann-type lactones produces a product with one established axis of chirality, and second, a stereoselective arene halogenation delivers the product with the second axis of chirality established. In order to achieve these results, a class of Brønsted basic guanidinylated peptides, which catalyze an efficient atroposelective chlorination, is reported for the first time. In addition, a complementary bromination is reported, which also establishes the second stereogenic axis. These bromo-terphenyls are accessible following the discovery that chiral anion phase transfer catalysis by C2-symmetric phosphoric acids allows catalyst control in the second stereochemistry-determining event. Accordingly, we established the fully catalyst-controlled stereodivergent synthesis of all possible chlorinated stereoisomers while also demonstrating diastereodivergence in the brominated variants, with significant levels of enantioselectivity in all cases.
Collapse
Affiliation(s)
- Omar M Beleh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Skrzyńska A, Frankowski S, Albrecht Ł. Cyclic 1‐Azadienes in the Organocatalytic Inverse‐Electron‐Demand Aza‐Diels‐Alder Cycloadditions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anna Skrzyńska
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Sebastian Frankowski
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
23
|
He S, Gu H, He YP, Yang X. Asymmetric Aza-Diels–Alder Reactions of in Situ Generated β,β-Disubstituted α,β-Unsaturated N–H Ketimines Catalyzed by Chiral Phosphoric Acids. Org Lett 2020; 22:5633-5639. [DOI: 10.1021/acs.orglett.0c01994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shunlong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Peng He
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
24
|
Wang M, Zhou M, Zhang L, Zhang Z, Zhang W. A step-economic and one-pot access to chiral C α-tetrasubstituted α-amino acid derivatives via a bicyclic imidazole-catalyzed direct enantioselective C-acylation. Chem Sci 2020; 11:4801-4807. [PMID: 34122937 PMCID: PMC8159231 DOI: 10.1039/d0sc00808g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cα-Tetrasubstituted α-amino acids are ubiquitous and unique structural units in bioactive natural products and pharmaceutical compounds. The asymmetric synthesis of these molecules has attracted a lot of attention, but a more efficient method is still greatly desired. Here we describe the first sequential four-step acylation reaction for the efficient synthesis of chiral Cα-tetrasubstituted α-amino acid derivatives from simple N-acylated amino acids via an auto-tandem catalysis using a single nucleophilic catalyst. The synthetic efficiency is improved via a direct enantioselective C-acylation; the methodology affords the corresponding Cα-tetrasubstituted α-amino acid derivatives with excellent enantioselectivities (up to 99% ee). This step-economic, one-pot, and auto-tandem strategy provides facile access to important chiral building blocks, such as peptides, serines, and oxazolines, which are often used in medicinal and synthetic chemistry. The first four-step sequential reaction for the synthesis of Cα-tetrasubstituted chiral α-amino acid derivatives via auto-tandem catalysis has been developed.![]()
Collapse
Affiliation(s)
- Mo Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Muxing Zhou
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lu Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
25
|
Yang W, Wang H, Pan Z, Li Z, Deng W. Asymmetric synthesis of pyrrolo[1,2-a]indoles via organocatalytic [3 + 2] annulation of substituted 2-vinylindoles with azlactones. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Wang Y, Cao Z, Li Q, Lin G, Zhou J, Tian P. Activating Pronucleophiles with High p
K
a
Values: Chiral Organo‐Superbases. Angew Chem Int Ed Engl 2020; 59:8004-8014. [DOI: 10.1002/anie.201913484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yu‐Hui Wang
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Zhong‐Yan Cao
- College of Chemical EngineeringZhejiang University of Technology 18 Chaowang Road Hangzhou 310014 China
| | - Qing‐Hua Li
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jian Zhou
- School of Chemistry and Molecular EngineeringEast China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ping Tian
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
27
|
Wang Y, Cao Z, Li Q, Lin G, Zhou J, Tian P. Activating Pronucleophiles with High p
K
a
Values: Chiral Organo‐Superbases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hui Wang
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Zhong‐Yan Cao
- College of Chemical EngineeringZhejiang University of Technology 18 Chaowang Road Hangzhou 310014 China
| | - Qing‐Hua Li
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jian Zhou
- School of Chemistry and Molecular EngineeringEast China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ping Tian
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
28
|
Zhang Z, Xiao F, Wu HM, Dong XQ, Wang CJ. Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to Unnatural α-Amino Acid Derivatives Containing Vicinal Quaternary and Tertiary Stereogenic Centers. Org Lett 2020; 22:569-574. [PMID: 31895576 DOI: 10.1021/acs.orglett.9b04341] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-phosphinooxazoline (Pd-PHOX)-catalyzed asymmetric hydroalkylation of 1,3-dienes with azlactones was successfully developed for the first time, affording various enantioenriched α-quaternary α-amino acid derivatives bearing contiguous quaternary and tertiary stereogenic centers in good yields with exclusive regioselectivity and excellent stereoselective control (up to 92% yield, >20:1 dr, and >99% ee). The scale-up catalytic asymmetric hydroalkylation was performed well without loss of reactivity and stereoselectivities, which exhibited great potential application. The synthetic utility of the current methodology was demonstrated through product transformations to access other biologically important compounds such as chiral β-amino alcohol and α-quaternary cyclic α-amino acid derivatives.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hui-Min Wu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 230021 , China
| |
Collapse
|
29
|
Cativiela C, Ordóñez M, Viveros-Ceballos JL. Stereoselective synthesis of acyclic α,α-disubstituted α-amino acids derivatives from amino acids templates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130875] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Ruan S, Zhong X, Chen Q, Feng X, Liu X. An asymmetric hydrocyanation/Michael reaction of α-diazoacetates via Cu(i)/chiral guanidine catalysis. Chem Commun (Camb) 2020; 56:2155-2158. [DOI: 10.1039/c9cc09521g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric one-pot hydrocyanation/Michael reaction of α-aryl diazoacetates with trimethylsilyl cyanide, tert-butanol, and N-phenylmaleimides has been realized using a chiral guanidinium salt/CuBr catalyst.
Collapse
Affiliation(s)
- Sai Ruan
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xia Zhong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Quangang Chen
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
31
|
Ni Q, Wang X, Xu F, Chen X, Song X. Organocatalytic asymmetric [4+2] cyclization of 2-benzothiazolimines with azlactones: access to chiral benzothiazolopyrimidine derivatives. Chem Commun (Camb) 2020; 56:3155-3158. [DOI: 10.1039/d0cc00736f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A squaramide catalyzed regiospecific and stereoselective [4+2] cyclization of 2-benzothiazolimines with azlactones has been established.
Collapse
Affiliation(s)
- Qijian Ni
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xuyang Wang
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Fangfang Xu
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Xiaoxiao Song
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| |
Collapse
|
32
|
Yang J, Ruan P, Yang W, Feng X, Liu X. Enantioselective carbene insertion into the N-H bond of benzophenone imine. Chem Sci 2019; 10:10305-10309. [PMID: 32110317 PMCID: PMC6979361 DOI: 10.1039/c9sc03354h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023] Open
Abstract
Efficient enantioselective insertion of α-diazoesters into the N-H bond of N-sp2-hybridized benzophenone imine was realized by using Rh2(esp)2 and chiral guanidine cooperative catalysis. Both aliphatic and aromatic substituted α-amino esters were obtained in high yields (up to 99%) and good enantioselectivities (up to 95.5 : 4.5 er) under mild reaction conditions.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Peiran Ruan
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Wei Yang
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| |
Collapse
|
33
|
Chou H, Leow D, Tan C. Recent Advances in Chiral Guanidine‐Catalyzed Enantioselective Reactions. Chem Asian J 2019; 14:3803-3822. [DOI: 10.1002/asia.201901183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hsiao‐Chieh Chou
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Dasheng Leow
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
34
|
Saktura M, Joachim B, Grzelak P, Albrecht Ł. Aromatizative Inverse-Electron-Demand Hetero-Diels-Alder Reaction in the Synthesis of Benzothiophene Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maciej Saktura
- Institute of Organic Chemistry; Department of Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Łódź Poland
| | - Bartłomiej Joachim
- Institute of Organic Chemistry; Department of Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Łódź Poland
| | - Paulina Grzelak
- Institute of Organic Chemistry; Department of Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry; Department of Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
35
|
Lang J, Li Y, Kang T, Feng X, Liu X. Organocatalytic Asymmetric Michael/Dieckmann Cyclization Reaction of Alkynones To Construct Spirocyclopentene Oxindoles. Org Lett 2019; 21:6897-6902. [DOI: 10.1021/acs.orglett.9b02519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiawen Lang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tengfei Kang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
36
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019; 58:11013-11017. [DOI: 10.1002/anie.201905993] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
37
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
38
|
Li X, Yan J, Qin J, Lin S, Chen W, Zhan R, Huang H. Enantioselective Synthesis of Benzofuran-Fused N-Heterocycles via Chiral Squaramide Catalyzed [4 + 2] Cyclization of Azadienes with Azlactones. J Org Chem 2019; 84:8035-8045. [PMID: 31188599 DOI: 10.1021/acs.joc.9b00911] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An asymmetric cyclization reaction of azadienes and azlactones was investigated by employing a Cinchona squaramide catalyst, which could afford a series of benzofuran-fused six-membered heterocycles containing a α,α-disubstituted amino acid unit in a highly diastereoselective (>20:1 dr) and enantioselective (up to 99% ee) manner with good to excellent yields (up to 92%). A plausible pathway was proposed to explain the reaction process.
Collapse
Affiliation(s)
- Xiaoping Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| | - Juzhang Yan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| | - Jialiang Qin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| | - Shilin Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education , Guangzhou , 510006 , China
| |
Collapse
|
39
|
Simlandy AK, Ghosh B, Mukherjee S. Enantioselective [4 + 2]-Annulation of Azlactones with Copper-Allenylidenes under Cooperative Catalysis: Synthesis of α-Quaternary α-Acylaminoamides. Org Lett 2019; 21:3361-3366. [DOI: 10.1021/acs.orglett.9b01103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore - 560012, India
| | - Biki Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore - 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore - 560012, India
| |
Collapse
|
40
|
Hatano M, Sakamoto T, Mochizuki T, Ishihara K. Tris(pentafluorophenyl)borane‐Assisted Chiral Phosphoric Acid Catalysts for Enantioselective Inverse‐Electron‐Demand Hetero‐Diels‐Alder Reaction of α,β‐Substituted Acroleins. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manabu Hatano
- Graduate School of EngineeringNagoya University Furo-cho, Chikusa Nagoya 464-8603 Japan
| | - Tatsuhiro Sakamoto
- Graduate School of EngineeringNagoya University Furo-cho, Chikusa Nagoya 464-8603 Japan
| | - Takuya Mochizuki
- Graduate School of EngineeringNagoya University Furo-cho, Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of EngineeringNagoya University Furo-cho, Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
41
|
Ren XR, Lin JB, Hu XQ, Xu PF. Bifunctional Brønsted base catalyzed inverse-electron-demand aza-Diels–Alder reactions of saccharin-derived 1-azadienes with azlactones. Org Chem Front 2019. [DOI: 10.1039/c9qo00357f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective inverse-electron-demand aza-Diels–Alder reaction of saccharin-derived 1-azadienes and azlactones was developed using a phenylalanine-derived bifunctional Brønsted base-squaramide catalyst.
Collapse
Affiliation(s)
- Xiao-Rui Ren
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an 716000
- China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
42
|
Sun M, Wan X, Zhou SJ, Mei GJ, Shi F. Iridium and a Brønsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chem Commun (Camb) 2019; 55:1283-1286. [DOI: 10.1039/c8cc08962k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Under cooperative catalysis of iridium and a Brønsted acid, different C4-substituted azlactones react with vinyl benzoxazinones via a formal [4+2] cycloaddition or substitution reaction in a chemo- and stereoselective mode.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiao Wan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Si-Jia Zhou
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
43
|
Wang Y, Chen Y, Li X, Mao Y, Chen W, Zhan R, Huang H. Enantioselective synthesis of pyrano[2,3-c]pyrrole via an organocatalytic [4 + 2] cyclization reaction of dioxopyrrolidines and azlactones. Org Biomol Chem 2019; 17:3945-3950. [DOI: 10.1039/c9ob00419j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present work provides a simple and efficient access to chiral pyrano[2,3-c]pyrrole via an asymmetric [4 + 2] cyclization reaction catalyzed by a cinchona-squaramide catalyst.
Collapse
Affiliation(s)
- Yichen Wang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Xiaoping Li
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yukang Mao
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| |
Collapse
|
44
|
Xie L, Dong S, Zhang Q, Feng X, Liu X. Asymmetric construction of dihydrobenzofuran-2,5-dione derivatives via desymmetrization of p-quinols with azlactones. Chem Commun (Camb) 2019; 55:87-90. [DOI: 10.1039/c8cc08985j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-Amino-benzofuran-2,5-diones containing a chiral amino acid residue were achieved through BG-1·HBPh4 catalyzed enantioselective Michael addition/lactonization cascade reaction of p-quinols with azlactones.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Qian Zhang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
45
|
Yang J, Sun W, He Z, Yu C, Bao G, Li Y, Liu Y, Hong L, Wang R. Access to α,γ-Diamino Diacid Derivatives via Organocatalytic Asymmetric 1,4-Addition of Azlactones and Dehydroalanines. Org Lett 2018; 20:7080-7084. [PMID: 30398880 DOI: 10.1021/acs.orglett.8b03020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A convenient and functional-group-tolerant organocatalytic asymmetric 1,4-addition of azlactones and dehydroalanine is disclosed. The reaction is used for the first synthesis of chiral α,γ-diamino diacid derivatives with nonadjacent stereogenic centers in moderate to high yields, with excellent diastereo- and enantioselectivities, under the catalysis of a chiral thiourea catalyst. In addition, the reaction could be conducted in gram-scale, and the products of the reaction could be readily converted to various α,γ-diamino diacid derivatives, α,γ-diamino dialcohols, and modified peptides with nonproteinogenic amino acid residues.
Collapse
Affiliation(s)
- Junxian Yang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Wangsheng Sun
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Zeyuan He
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Changjun Yu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Guangjun Bao
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Yiping Li
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Yuyang Liu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Liang Hong
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Rui Wang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
46
|
Cao W, Liu X, Feng X. Chiral organobases: Properties and applications in asymmetric catalysis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Affiliation(s)
- Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| |
Collapse
|
48
|
Ma C, Zhou JY, Zhang YZ, Mei GJ, Shi F. Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Jia-Yu Zhou
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Yi-Zhu Zhang
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| |
Collapse
|
49
|
Ma C, Zhou JY, Zhang YZ, Mei GJ, Shi F. Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angew Chem Int Ed Engl 2018; 57:5398-5402. [DOI: 10.1002/anie.201801349] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Jia-Yu Zhou
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Yi-Zhu Zhang
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 China
| |
Collapse
|
50
|
Zhang M, Yu C, Xie J, Xun X, Sun W, Hong L, Wang R. Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin-Penillonic Acid Rearrangement. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ming Zhang
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 China
| | - Junqiu Xie
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Xudong Xun
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 China
| | - Liang Hong
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|