1
|
Li J, Wang X, He Y, Xu Z, Li X, Pan H, Wang Y, Dong Y, Shen Q, Zhang Y, Hou S, Wu K, Wang Y. Tuning Surface Organic Structures by Small Gas Molecules through Catassembly and Coassembly. J Phys Chem Lett 2024; 15:5564-5579. [PMID: 38753966 DOI: 10.1021/acs.jpclett.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The field of molecular assembly has seen remarkable advancements across various domains, such as materials science, nanotechnology, and biomedicine. Small gas molecules serve as pivotal modulators, capable of altering the architecture of assemblies via tuning a spectrum of intermolecular forces including hydrogen bonding, dipole-dipole interactions, and metal coordination. Surface techniques, notably scanning tunneling microscopy and atomic force microscopy, have proven instrumental in dissecting the structural metamorphosis and characteristic features of these assemblies at an unparalleled single-molecule resolution. Recent research has spotlighted two innovative approaches for modulating surface molecular assemblies with the aid of small gas molecules: "catassembly" and "coassembly". This Perspective delves into these methodologies through the lens of varying molecular interaction types. The strategies discussed here for regulating molecular assembly structures using small gas molecules can aid in understanding various complex assembly processes and structures and provide guidance for the further fabrication of complex surface structures.
Collapse
Affiliation(s)
- Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Xueyan Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yang He
- School of Material and New Energy, South China Normal University, Shanwei 516600, China
| | - Zhen Xu
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Xin Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Haoyang Pan
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Yudi Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yangyu Dong
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yajie Zhang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Shimin Hou
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Domínguez-Celorrio A, Garcia-Fernandez C, Quiroga S, Koval P, Langlais V, Peña D, Sánchez-Portal D, Serrate D, Lobo-Checa J. On-surface synthesis of Mn-phthalocyanines with optically active ligands. NANOSCALE 2022; 14:8069-8077. [PMID: 35608129 DOI: 10.1039/d2nr00721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The synthesis of novel organic prototypes combining different functionalities is key to achieve operational elements for applications in organic electronics. Here we set the stage towards individually addressable magneto-optical transducers by the on-surface synthesis of optically active manganese-phthalocyanine derivatives (MnPc) obtained directly on a metallic substrate. We created these 2D nanostructures under ultra-high vacuum conditions with atomic precision starting from a simple phthalonitrile precursor with reversible photo-induced reactivity in solution. These precursors maintain their integrity after powder sublimation and coordinate with the Mn ions into tetrameric complexes and then transform into MnPcs on Ag(111) after a cyclotetramerization reaction. Using scanning tunnelling microscopy and spectroscopy together with DFT calculations, we identify the isomeric configuration of two bi-stable structures and show that it is possible to switch them reversibly by mechanical manipulation. Moreover, the robust magnetic moment brought by the central Mn ion provides a feasible pathway towards magneto-optical transducer fabrication. This work should trigger further research confirming such magneto-optical effects in MnPcs both on surfaces and in liquid environments.
Collapse
Affiliation(s)
- Amelia Domínguez-Celorrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centre d'Elaboration de Materiaux et d'Etudes Structurales - Centre National de la Recherche Scientifique, Toulouse, France
| | - Carlos Garcia-Fernandez
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastian, Spain
| | - Sabela Quiroga
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Peter Koval
- Simune Atomistics S.L., Avenida Tolosa 76, 20018, San Sebastian, Spain
| | - Veronique Langlais
- Centre d'Elaboration de Materiaux et d'Etudes Structurales - Centre National de la Recherche Scientifique, Toulouse, France
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Daniel Sánchez-Portal
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastian, Spain
| | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018, Zaragoza, Spain
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
3
|
Stredansky M, Moro S, Corva M, Sturmeit H, Mischke V, Janas D, Cojocariu I, Jugovac M, Cossaro A, Verdini A, Floreano L, Feng Z, Sala A, Comelli G, Windischbacher A, Puschnig P, Hohner C, Kettner M, Libuda J, Cinchetti M, Schneider CM, Feyer V, Vesselli E, Zamborlini G. Disproportionation of Nitric Oxide at a Surface-Bound Nickel Porphyrinoid. Angew Chem Int Ed Engl 2022; 61:e202201916. [PMID: 35267236 PMCID: PMC9314816 DOI: 10.1002/anie.202201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.
Collapse
Affiliation(s)
- Matus Stredansky
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Stefania Moro
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
| | - Manuel Corva
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | | | - David Janas
- Department of PhysicsTU Dortmund UniversityDortmundGermany
| | - Iulia Cojocariu
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Matteo Jugovac
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Albano Cossaro
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
- Department of Chemistry and Pharmaceutical ScienceUniversity of Triestevia L-Giorgieri 134127TriesteItaly
| | | | - Luca Floreano
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Zhijing Feng
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Giovanni Comelli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Peter Puschnig
- Institut für PhysikKarl-Franzens-Universität Graz8010GrazAustria
| | - Chantal Hohner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Miroslav Kettner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jörg Libuda
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | | | - Claus Michael Schneider
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Erik Vesselli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Giovanni Zamborlini
- Department of PhysicsTU Dortmund UniversityDortmundGermany
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
4
|
Stredansky M, Moro S, Corva M, Sturmeit H, Mischke V, Janas D, Cojocariu I, Jugovac M, Cossaro A, Verdini A, Floreano L, Feng Z, Sala A, Comelli G, Windischbacher A, Puschnig P, Hohner C, Kettner M, Libuda J, Cinchetti M, Schneider CM, Feyer V, Vesselli E, Zamborlini G. Disproportionation of Nitric Oxide at a Surface-Bound Nickel Porphyrinoid. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202201916. [PMID: 38505699 PMCID: PMC10947138 DOI: 10.1002/ange.202201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/07/2022]
Abstract
Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.
Collapse
Affiliation(s)
- Matus Stredansky
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Stefania Moro
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
| | - Manuel Corva
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | | | - David Janas
- Department of PhysicsTU Dortmund UniversityDortmundGermany
| | - Iulia Cojocariu
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Matteo Jugovac
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Albano Cossaro
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
- Department of Chemistry and Pharmaceutical ScienceUniversity of Triestevia L-Giorgieri 134127TriesteItaly
| | | | - Luca Floreano
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Zhijing Feng
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Giovanni Comelli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Peter Puschnig
- Institut für PhysikKarl-Franzens-Universität Graz8010GrazAustria
| | - Chantal Hohner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Miroslav Kettner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jörg Libuda
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | | | - Claus Michael Schneider
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Erik Vesselli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Giovanni Zamborlini
- Department of PhysicsTU Dortmund UniversityDortmundGermany
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
5
|
The Magnetic Behaviour of CoTPP Supported on Coinage Metal Surfaces in the Presence of Small Molecules: A Molecular Cluster Study of the Surface trans-Effect. NANOMATERIALS 2022; 12:nano12020218. [PMID: 35055236 PMCID: PMC8778902 DOI: 10.3390/nano12020218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/25/2023]
Abstract
Density functional theory, combined with the molecular cluster model, has been used to investigate the surface trans-effect induced by the coordination of small molecules L (L = CO, NH3, NO, NO2 and O2) on the cobalt electronic structure of cobalt tetraphenylporphyrinato (CoTPP) surface-supported on coinage metal surfaces (Cu, Ag, and Au). Regardless of whether L has a closed- or an open-shell electronic structure, its coordination to Co takes out the direct interaction between Co and the substrate eventually present. The CO and NH3 bonding to CoTPP does not influence the Co local electronic structure, while the NO (NO2 and O2) coordination induces a Co reduction (oxidation), generating a 3d8 CoI (3d6 CoIII) magnetically silent closed-shell species. Theoretical outcomes herein reported demonstrate that simple and computationally inexpensive models can be used not only to rationalize but also to predict the effects of the Co–L bonding on the magnetic behaviour of CoTPP chemisorbed on coinage metals. The same model may be straightforwardly extended to other transition metals or coordinated molecules.
Collapse
|
6
|
Baker Cortés B, Schmidt N, Enache M, Stöhr M. Comparing Cyanophenyl and Pyridyl Ligands in the Formation of Porphyrin-Based Metal-Organic Coordination Networks. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:24557-24567. [PMID: 34795811 PMCID: PMC8591659 DOI: 10.1021/acs.jpcc.1c05360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
In recent studies, porphyrin derivatives have been frequently used as building blocks for the fabrication of metal-organic coordination networks (MOCNs) on metal surfaces under ultrahigh vacuum conditions (UHV). The porphyrin core can host a variety of 3d transition metals, which are usually incorporated in solution. However, the replacement of a pre-existing metal atom in the porphyrin core by a different metallic species has been rarely reported under UHV. Herein, we studied the influence of cyanophenyl and pyridyl functional endgroups in the self-assembly of structurally different porphyrin-based MOCNs by the deposition of Fe atoms on tetracyanophenyl (Co-TCNPP) and tetrapyridyl-functionalized (Zn-TPPyP) porphyrins on Au(111) by means of scanning tunneling microscopy (STM). A comparative analysis of the influence of the cyano and pyridyl endgroups on the formation of different in-plane coordination motifs is performed. Each porphyrin derivative formed two structurally different Fe-coordinated MOCNs stabilized by three- and fourfold in-plane coordination nodes, respectively. Interestingly, the codeposited Fe atoms did not only bind to the functional endgroups but also reacted with the porphyrin core of the Zn-substituted porphyrin (Zn-TPyP), i.e., an atom exchange reaction took place in the porphyrin core where the codeposited Fe atoms replaced the Zn atoms. This was evidenced by the appearance of molecules with an enhanced (centered) STM contrast compared with the appearance of Zn-TPyP, which suggested the formation of a new molecular species, i.e., Fe-TPPyP. Furthermore, the porphyrin core of the Co-substituted porphyrin (Co-TCNPP) displayed an off-centered STM contrast after the deposition of Fe atoms, which was attributed to the binding of the Fe atoms on the top site of the Co-substituted porphyrin core. In summary, the deposition of metal atoms onto organic layers can steer the formation of structurally different MOCNs and may replace pre-existing metal atoms contained in the porphyrin core.
Collapse
|
7
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface-Confined Ru-Porphyrins. Angew Chem Int Ed Engl 2021; 60:16561-16567. [PMID: 33938629 PMCID: PMC8362151 DOI: 10.1002/anie.202104075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 11/24/2022]
Abstract
We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru-porphyrins supported on an atomistically well-defined Ag(111) substrate. Our systematic real-space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond-resolving atomic force microscopy and X-ray standing-wave measurements characterise the geometry, X-ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature-programmed desorption the binding strength. Density-functional-theory calculations provide additional insight into the functional interface. We unambiguously demonstrate that the substituents regulate the interfacial conformational adaptability, either promoting or obstructing the uptake of axial CO adducts.
Collapse
Affiliation(s)
- Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter S. Deimel
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Feulner
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Felix Haag
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Francesco Allegretti
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Manuela Garnica
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco28049MadridSpain
| | - Martin Schwarz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Paul T. P. Ryan
- Diamond Light SourceDidcotOX11 0DEUK
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
- Current address: Institute of Applied PhysicsTechnische Universität WienWiedner Hauptstraße 8-10/1341040ViennaAustria
| | | | | | - Ari Paavo Seitsonen
- Département de ChimieEcole Normale Supérieure24 rue Lhomond75005ParisFrance
- Université de recherche Paris-Sciences-et-LettresSorbonne UniversitéCentre National de la Recherche Scientifique75005ParisFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | |
Collapse
|
8
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface‐Confined Ru‐Porphyrins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter S. Deimel
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Feulner
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Felix Haag
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Francesco Allegretti
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Manuela Garnica
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049 Madrid Spain
| | - Martin Schwarz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Willi Auwärter
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Paul T. P. Ryan
- Diamond Light Source Didcot OX11 0DE UK
- Department of Materials Imperial College London Exhibition Road SW7 2AZ London UK
- Current address: Institute of Applied Physics Technische Universität Wien Wiedner Hauptstraße 8-10/134 1040 Vienna Austria
| | | | | | - Ari Paavo Seitsonen
- Département de Chimie Ecole Normale Supérieure 24 rue Lhomond 75005 Paris France
- Université de recherche Paris-Sciences-et-Lettres Sorbonne Université Centre National de la Recherche Scientifique 75005 Paris France
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|
9
|
Wang Y, Wang Z, Yang J, Li X. Precise Spin Manipulation of Single Molecule Positioning on Graphene by Coordination Chemistry. J Phys Chem Lett 2020; 11:9819-9827. [PMID: 33156628 DOI: 10.1021/acs.jpclett.0c03026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise spin manipulation of single molecules is crucial for future molecular spintronics. However, it has been a formidable challenge due to the complexities of the strong molecule-substrate coupling as well as the response of the molecule to external stimulus. Here we demonstrate by density functional theory calculations that precise spin manipulation can be achieved by extra CO and NO molecules coordination to transition metal phthalocyanine (TMPc) (TM = Co, Fe, Mn) molecules deposited on metal-supported graphene; the spins of TMPc molecules are switched from S to S - 1/2 (|S - 1|) after NO (CO) coordination. With the aid of a combination of molecular orbitals (MO) theory and recently developed principal interacting spin-orbital (PISO) analysis, the impacts of NO and CO coordinations on both adsorption configuration and spin polarization of TMPc are well elucidated. We reveal the different coordination geometries that CO always coordinates axially to the TM center with a linear geometry, while NO prefers a bent geometry, which can be attributed to the competition between the σ- and π-type interactions according to the PISO analysis. Particularly, the NO-MnPc complex adopts a bent geometry deviating from the prediction by the existing Enemark-Feltham formalism. In addition, MO analysis suggests that during the CO coordination, the simultaneous existence of σ-donation and π-back-donation promotes electrons flowing from the dz2 to partially occupied dπ (dxz and dxz) orbitals with subsequent reordering of the TM d-orbitals, resulting in the spin transition of S → |S - 1|. In comparison, given that NO is regarded as NO- when it adopts a bent geometry coordinating to the TM center, the complete (CoPc) or partial (FePc and MnPc) quenching of the molecular spins caused by NO coordination is attributed to the electron transfer from TM to NO. These theoretical findings provide important insights into relevant experiments and offer an effective design strategy to realize underlying single-molecular spintronics devices integrated with two-dimensional materials.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zheng Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Johnson KN, Hipps KW, Mazur U. Quantifying reversible nitrogenous ligand binding to Co(ii) porphyrin receptors at the solution/solid interface and in solution. Phys Chem Chem Phys 2020; 22:24226-24235. [PMID: 33084667 DOI: 10.1039/d0cp04109b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present a quantitative study comparing the binding of 4-methoxypyridine, MeOPy, ligand to Co(ii)octaethylporphyrin, CoOEP, at the phenyloctane/HOPG interface and in toluene solution. Scanning tunneling microscopy (STM) was used to study the ligand binding to the porphyrin receptors adsorbed on graphite. Electronic spectroscopy was employed for examining this process in fluid solution. The on surface coordination reaction was completely reversible and followed a simple Langmuir adsorption isotherm. Ligand affinities (or ΔG) for the binding processes in the two different chemical environments were determined from the respective equilibrium constants. The free energy value of -13.0 ± 0.3 kJ mol-1 for the ligation reaction of MeOPy to CoOEP at the solution/HOPG interface is less negative than the ΔG for cobalt porphyrin complexed to the ligand in solution, -16.8 ± 0.2 kJ mol-1. This result indicates that the MeOPy-CoOEP complex is more stable in solution than on the surface. Additional thermodynamic values for the formation of the surface ligated species (ΔHc = -50 kJ mol-1 and ΔSc = -120 J mol-1) were extracted from temperature dependent STM measurements. Density functional computational methods were also employed to explore the energetics of both the solution and surface reactions. At high concentrations of MeOPy the monolayer was observed to be stripped from the surface. Computational results indicate that this is not because of a reduction in adsorption energy of the MeOPy-CoOEP complex. Nearest neighbor analysis of the MeOPy-CoOEP in the STM images revealed positive cooperative ligand binding behavior. Our studies bring new insights to the general principles of affinity and cooperativity in the ligand-receptor interactions at the solution/solid interface. Future applications of STM will pave the way for new strategies designing highly functional multisite receptor systems for sensing, catalysis, and pharmacological applications.
Collapse
Affiliation(s)
- Kristen N Johnson
- Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-4630, USA.
| | | | | |
Collapse
|
11
|
Mazur U, Hipps KW. Single molecule level studies of reversible ligand binding to metal porphyrins at the solution/solid interface. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligands bind reversibly to metal porphyrins in processes such as molecular recognition, electron transport and catalysis. These chemically relevant processes are ubiquitous in biology and are important in technological applications. In this article, we focus on the current advances in ligand binding to metal porphyrin receptors noncovalently bound at the solution/solid interface. In particular, we restrict ourselves to studies at the single molecule level. Dynamics of the binding/dissociation process can be monitored by scanning tunneling microscopy (STM) and can yield both qualitative and quantitative information about ligand binding affinity and the energetics that define a particular ligation reaction. Molecular and time dependent imaging can establish whether the process under study is at equilibrium. Ligand-concentration-dependent studies have been used to determine adsorption isotherms and thermodynamic data for processes occurring at the solution/solid interface. In several binding reactions, the solid support acted as an electron-donating fifth coordination site, thereby significantly changing the metal porphyrin receptor’s affinity for exogenous ligands. Supporting calculations provide insight into the metalloporphyrin/support and ligand–metalloporphyrin/support interactions and their energetics.
Collapse
Affiliation(s)
- Ursula Mazur
- Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-4630, USA
| | - K. W. Hipps
- Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|
12
|
Structure, Properties, and Reactivity of Porphyrins on Surfaces and Nanostructures with Periodic DFT Calculations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porphyrins are fascinating molecules with applications spanning various scientific fields. In this review we present the use of periodic density functional theory (PDFT) calculations to study the structure, electronic properties, and reactivity of porphyrins on ordered two dimensional surfaces and in the formation of nanostructures. The focus of the review is to describe the application of PDFT calculations for bridging the gaps in experimental studies on porphyrin nanostructures and self-assembly on 2D surfaces. A survey of different DFT functionals used to study the porphyrin-based system as well as their advantages and disadvantages in studying these systems is presented.
Collapse
|
13
|
Köbke A, Gutzeit F, Röhricht F, Schlimm A, Grunwald J, Tuczek F, Studniarek M, Longo D, Choueikani F, Otero E, Ohresser P, Rohlf S, Johannsen S, Diekmann F, Rossnagel K, Weismann A, Jasper-Toennies T, Näther C, Herges R, Berndt R, Gruber M. Reversible coordination-induced spin-state switching in complexes on metal surfaces. NATURE NANOTECHNOLOGY 2020; 15:18-21. [PMID: 31873288 DOI: 10.1038/s41565-019-0594-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Molecular spin switches are attractive candidates for controlling the spin polarization developing at the interface between molecules and magnetic metal surfaces1,2, which is relevant for molecular spintronics devices3-5. However, so far, intrinsic spin switches such as spin-crossover complexes have suffered from fragmentation or loss of functionality following adsorption on metal surfaces, with rare exceptions6-9. Robust metal-organic platforms, on the other hand, rely on external axial ligands to induce spin switching10-14. Here we integrate a spin switching functionality into robust complexes, relying on the mechanical movement of an axial ligand strapped to the porphyrin ring. Reversible interlocked switching of spin and coordination, induced by electron injection, is demonstrated on Ag(111) for this class of compounds. The stability of the two spin and coordination states of the molecules exceeds days at 4 K. The potential applications of this switching concept go beyond the spin functionality, and may turn out to be useful for controlling the catalytic activity of surfaces15.
Collapse
Affiliation(s)
- Alexander Köbke
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Florian Gutzeit
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Fynn Röhricht
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alexander Schlimm
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jan Grunwald
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | - Danilo Longo
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Fadi Choueikani
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | | | - Sebastian Rohlf
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Ruprecht-Haensel-Labor, Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Florian Diekmann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Ruprecht-Haensel-Labor, Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Kai Rossnagel
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Ruprecht-Haensel-Labor, Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Torben Jasper-Toennies
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
14
|
Duncan DA, Casado Aguilar P, Paszkiewicz M, Diller K, Bondino F, Magnano E, Klappenberger F, Píš I, Rubio A, Barth JV, Pérez Paz A, Allegretti F. Local adsorption structure and bonding of porphine on Cu(111) before and after self-metalation. J Chem Phys 2019; 150:094702. [PMID: 30849887 DOI: 10.1063/1.5084027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center above a surface bridge site. Consistency is obtained between the experimental and DFT-predicted structural models, with a characteristic change in the corrugation of the four N atoms of the molecule's macrocycle following metalation. Interestingly, comparison with previously published data for cobalt porphine adsorbed on the same surface evidences a distinct increase in the average height of the N atoms above the surface through the series 2H-P, Cu-P, and cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted adsorption strength, with 2H-P having the smallest adsorption height despite the weakest calculated adsorption energy. In addition, our findings suggest that for these macrocyclic compounds, substrate-to-molecule charge transfer and adsorption strength may not be univocally correlated.
Collapse
Affiliation(s)
- D A Duncan
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - P Casado Aguilar
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - M Paszkiewicz
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - K Diller
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - F Bondino
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - E Magnano
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - F Klappenberger
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - I Píš
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - A Rubio
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain
| | - J V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - A Pérez Paz
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain
| | - F Allegretti
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
15
|
Hötger D, Abufager P, Morchutt C, Alexa P, Grumelli D, Dreiser J, Stepanow S, Gambardella P, Busnengo HF, Etzkorn M, Gutzler R, Kern K. On-surface transmetalation of metalloporphyrins. NANOSCALE 2018; 10:21116-21122. [PMID: 30406233 DOI: 10.1039/c8nr04786c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increasing the complexity of 2D metal-organic networks has led to the fabrication of structures with interesting magnetic and catalytic properties. However, increasing complexity by providing different coordination environments for different metal types imposes limitations on their synthesis if the controlled placement of one metal type into one coordination environment is desired. Whereas metal insertion into free-base porphyrins at the vacuum/solid interface has been thoroughly studied, providing detailed insight into the mechanisms at play, the chemical interaction of a metal atom with a metallated porphyrin is rarely investigated. Herein, the breadth of metalation reactions is augmented towards the metal exchange of a metalloporphyrin through the deliberate addition of atomic metal centers. The cation of Fe(ii)-tetraphenylporphyrins can be replaced by Co in a redox transmetalation-like reaction on a Au(111) surface. Likewise, Cu can be replaced by Co. The reverse reaction does not occur, i.e. Fe does not replace Co in the porphyrin. This non-reversible exchange is investigated in detail by X-ray absorption spectroscopy complemented by scanning tunneling microscopy. Density functional theory illuminates possible reaction pathways and leads to the conclusion that the transmetalation proceeds through the adsorption of initially metallic (neutral) Co onto the porphyrin and the expulsion of Fe towards the surface accompanied by Co insertion. Our findings have important implications for the fabrication of porphyrin layers on surfaces when subject to the additional deposition of metals. Mixed-metal porphyrin layers can be fabricated by design in a solvent-free process, but conversely care must be taken that the transmetalation does not proceed as an undesired side reaction.
Collapse
Affiliation(s)
- Diana Hötger
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Omiya T, Poli P, Arnolds H, Raval R, Persson M, Kim Y. Desorption of CO from individual ruthenium porphyrin molecules on a copper surface via an inelastic tunnelling process. Chem Commun (Camb) 2018; 53:6148-6151. [PMID: 28534586 DOI: 10.1039/c7cc01310h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination of CO to metalloporphyrins changes their electronic and magnetic properties. Here we locally desorb CO molecules from a single ruthenium tetraphenylporphyrin carbonyl (CO-RuTPP) on Cu(110) using STM. The desorption is triggered by the injection of holes into the occupied states of the adsorbate using an unusual two-carrier process.
Collapse
Affiliation(s)
- Takuma Omiya
- Surface and Interface Science Laboratory, RIKEN, Wako 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Tang H, Tarrat N, Langlais V, Wang Y. Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2484-2491. [PMID: 29234584 PMCID: PMC5704758 DOI: 10.3762/bjnano.8.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The adsorption of the iron tetraphenylporphyrin (FeTPP) molecule in its deckchair conformation was investigated on Au(111), Ag(111) and Cu(111) surfaces by performing spin-polarized density functional theory (DFT) calculations taking into account both van der Waals (vdW) interaction and on-site Coulomb repulsion. The deckchair conformation of the molecule favours intermolecular π-π-type interactions in a less densely packed monolayer than the saddle conformation. The activation barrier between the two stable magnetic states (high spin, S = 2 and intermediate spin, S = 1) of the molecule in vacuum disappears upon adsorption on the metal surfaces. The high-spin state of physisorbed FeTPP is stable on all adsorption sites. This result reveals that an external permanent element such as a STM tip or an additional molecule is needed to use FeTPP or similar molecules as model system for molecular spin switches.
Collapse
Affiliation(s)
- Hao Tang
- CEMES/CNRS, 29 rue Jeanne Marvig, P.O. Box 94347, 31055 Toulouse CEDEX 4, France
| | - Nathalie Tarrat
- CEMES/CNRS, 29 rue Jeanne Marvig, P.O. Box 94347, 31055 Toulouse CEDEX 4, France
| | - Véronique Langlais
- CEMES/CNRS, 29 rue Jeanne Marvig, P.O. Box 94347, 31055 Toulouse CEDEX 4, France
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Wang Y, Li X, Zheng X, Yang J. Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption. J Chem Phys 2017; 147:134701. [PMID: 28987089 DOI: 10.1063/1.4996970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Cirera B, Trukhina O, Björk J, Bottari G, Rodríguez-Fernández J, Martin-Jimenez A, Islyaikin MK, Otero R, Gallego JM, Miranda R, Torres T, Ecija D. Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin. J Am Chem Soc 2017; 139:14129-14136. [DOI: 10.1021/jacs.7b06406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Olga Trukhina
- Department
of Organic Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jonas Björk
- Department
of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden
| | - Giovanni Bottari
- IMDEA Nanoscience, 28049 Madrid, Spain
- Department
of Organic Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | - Mikhail K. Islyaikin
- IRLoN,
Research
Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Roberto Otero
- IMDEA Nanoscience, 28049 Madrid, Spain
- Department
of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. Gallego
- Instituto
de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, 28049 Madrid, Spain
- Department
of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Tomás Torres
- IMDEA Nanoscience, 28049 Madrid, Spain
- Department
of Organic Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
20
|
Chen H, Pope T, Wu ZY, Wang D, Tao L, Bao DL, Xiao W, Zhang JL, Zhang YY, Du S, Gao S, Pantelides ST, Hofer WA, Gao HJ. Evidence for Ultralow-Energy Vibrations in Large Organic Molecules. NANO LETTERS 2017; 17:4929-4933. [PMID: 28727436 DOI: 10.1021/acs.nanolett.7b01963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The quantum efficiency or the rate of conversion of incident photon to free electron in photosynthesis is known to be extremely high. It has long been thought that the origin of this efficiency are molecular vibrations leading to a very fast separation of electrons and holes within the involved molecules. However, molecular vibrations are commonly in the range above 100 meV, which is too high for excitations in an ambient environment. Here, we analyze experimental spectra of single organic molecules on metal surfaces at ∼4 K, which often exhibit a pronounced dip. We show that measurements on iron(II) [tetra-(pentafluorophenyl)]porphyrin resolve this single dip at 4 K into a series of step-shaped inelastic excitations at 0.4 K. Via extensive spectral maps under applied magnetic fields and corresponding theoretical analysis we find that the dip is due to ultralow-energy vibrations of the molecular frame, typically in the range below 20 meV. The result indicates that ultralow energy vibrations in organic molecules are much more common than currently thought and may be all-pervasive for molecules above a certain size.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Thomas Pope
- School of Chemistry, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Zhuo-Yan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Dongfei Wang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - De-Liang Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Wende Xiao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yu-Yang Zhang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
- Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Sokrates T Pantelides
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
- Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Werner A Hofer
- School of Chemistry, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| |
Collapse
|
21
|
Geng YF, Li P, Li JZ, Zhang XM, Zeng QD, Wang C. STM probing the supramolecular coordination chemistry on solid surface: Structure, dynamic, and reactivity. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Janet JP, Zhao Q, Ioannidis EI, Kulik HJ. Density functional theory for modelling large molecular adsorbate–surface interactions: a mini-review and worked example. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1258465] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qing Zhao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Chang YH, Kim H, Kahng SJ, Kim YH. Axial coordination and electronic structure of diatomic NO, CO, and O 2 molecules adsorbed onto Co-tetraphenylporphyrin on Au(111), Ag(111), and Cu(111): a density-functional theory study. Dalton Trans 2016; 45:16673-16681. [PMID: 27711671 DOI: 10.1039/c6dt01965j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on density functional theory calculations, we investigated the axial bindings of diatomic molecules (NO, CO, and O2) to metalloporphyrins and their spin switching behaviors. These binding reactions provide the ways to control molecular states and spins in metalloporphyrin systems that can be used in bio-sensing and spintronic applications. To microscopically understand the non-trivial axial binding structures and spin-switching behaviors of diatomic molecules (NO, CO, and O2) adsorbed onto Co-tetraphenylporphyrin (CoTPP), we performed spin-polarized density functional theory (DFT) calculations for various CoTPP systems on Au(111), Ag(111), and Cu(111) substrates. We also systematically evaluated the effects of van der Waals and Hubbard U corrections by directly comparing the electronic structure with the results of scanning tunnelling microscopy. From the calculation results, we have found that a NO molecule, almost 60° tilted away from the axial direction, is coordinated with CoTPP with a binding energy of 1.2-1.7 eV depending on substrates, and the spin state of CoTPP is completely switched off due to the charge transfer from NO to CoTPP. On the other hand, CO and O2 molecules rather weakly interact with a binding energy of 0.4-0.8 eV, and a spin polarization of ∼1μB is still present at CoTPP. A CO molecule is expected to be almost straightly coordinated along the axial direction of CoTPP, but O2 is tilted similarly to the NO case. Regarding the substrate effects, we have found that there is noticeable charge transfer from Ag(111) and Cu(111) to CoTPP, but no significant charge transfer from Au(111) to CoTPP. These findings of the axial coordination and spin states for NO, CO, and O2 adsorbed CoTPP systems will be useful for understanding bio-sensing mechanisms and designing molecular spintronic systems.
Collapse
Affiliation(s)
- Yun Hee Chang
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Republic of Korea.
| | | | | | | |
Collapse
|
24
|
Deimel PS, Bababrik RM, Wang B, Blowey PJ, Rochford LA, Thakur PK, Lee TL, Bocquet ML, Barth JV, Woodruff DP, Duncan DA, Allegretti F. Direct quantitative identification of the "surface trans-effect". Chem Sci 2016; 7:5647-5656. [PMID: 30034702 PMCID: PMC6022009 DOI: 10.1039/c6sc01677d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/08/2016] [Indexed: 02/03/2023] Open
Abstract
The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed "surface trans-effect" (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule-metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal-organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structural parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. This apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.
Collapse
Affiliation(s)
- Peter S Deimel
- Physics Department E20 , Technical University of Munich , 85748 Garching , Germany .
| | - Reda M Bababrik
- Center for Interfacial Reaction Engineering , School of Chemical, Biological and Materials Engineering , The University of Oklahoma , Norman , 73019-1004 Oklahoma , USA
| | - Bin Wang
- Center for Interfacial Reaction Engineering , School of Chemical, Biological and Materials Engineering , The University of Oklahoma , Norman , 73019-1004 Oklahoma , USA
| | - Phil J Blowey
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , OX11 0QX , UK .
- Department of Physics , University of Warwick , Coventry , CV4 7AL , UK
| | - Luke A Rochford
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK
| | - Pardeep K Thakur
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , OX11 0QX , UK .
| | - Tien-Lin Lee
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , OX11 0QX , UK .
| | - Marie-Laure Bocquet
- ENS - Department of Chemistry , PSL Research University , CNRS UMR 8640 PASTEUR , 75005 Paris , France
| | - Johannes V Barth
- Physics Department E20 , Technical University of Munich , 85748 Garching , Germany .
| | - D Phil Woodruff
- Department of Physics , University of Warwick , Coventry , CV4 7AL , UK
| | - David A Duncan
- Physics Department E20 , Technical University of Munich , 85748 Garching , Germany .
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , OX11 0QX , UK .
| | - Francesco Allegretti
- Physics Department E20 , Technical University of Munich , 85748 Garching , Germany .
| |
Collapse
|
25
|
Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nat Chem 2016; 9:33-38. [DOI: 10.1038/nchem.2600] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/21/2016] [Indexed: 11/08/2022]
|
26
|
Kaposi T, Joshi S, Hoh T, Wiengarten A, Seufert K, Paszkiewicz M, Klappenberger F, Ecija D, Đorđević L, Marangoni T, Bonifazi D, Barth JV, Auwärter W. Supramolecular Spangling, Crocheting, and Knitting of Functionalized Pyrene Molecules on a Silver Surface. ACS NANO 2016; 10:7665-74. [PMID: 27505260 DOI: 10.1021/acsnano.6b02989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pyrenes, as photoactive polycyclic aromatic hydrocarbons (PAHs), represent promising modules for the bottom-up assembly of functional nanostructures. Here, we introduce the synthesis of a family of pyrene derivatives peripherally functionalized with pyridin-4-ylethynyl termini and comprehensively characterize their self-assembly abilities on a smooth Ag(111) support by scanning tunneling microscopy. By deliberate selection of number and geometric positioning of the pyridyl-terminated substituents, two-dimensional arrays, one-dimensional coordination chains, and chiral, porous kagomé-type networks can be tailored. A comparison to phenyl-functionalized reference pyrenes, not supporting the self-assembly of ordered structures at low coverage, highlights the role of the pyridyl moieties for supramolecular crocheting and knitting. Furthermore, we demonstrate the selective spangling of pores in the two-dimensional pyrene assemblies by a distinct number of iodine atoms as guests by atomically resolved imaging and complementary X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Tobias Kaposi
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Sushobhan Joshi
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Tobias Hoh
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Alissa Wiengarten
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Knud Seufert
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Matheusz Paszkiewicz
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | | | - David Ecija
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste , Piazzale Europa 1, 34127 Trieste, Italy
| | - Tomas Marangoni
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste , Piazzale Europa 1, 34127 Trieste, Italy
| | - Davide Bonifazi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste , Piazzale Europa 1, 34127 Trieste, Italy
- School of Chemistry, Cardiff University , Park Place, CF10 3AT Cardiff, United Kingdom
| | - Johannes V Barth
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Willi Auwärter
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| |
Collapse
|
27
|
Knaak T, Gopakumar TG, Schwager B, Tuczek F, Robles R, Lorente N, Berndt R. Surface cis Effect: Influence of an Axial Ligand on Molecular Self-Assembly. J Am Chem Soc 2016; 138:7544-50. [DOI: 10.1021/jacs.6b03710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Knaak
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | - Bettina Schwager
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Felix Tuczek
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Roberto Robles
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Richard Berndt
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
28
|
Kim H, Chang YH, Jang WJ, Lee ES, Kim YH, Kahng SJ. Probing Single-Molecule Dissociations from a Bimolecular Complex NO-Co-Porphyrin. ACS NANO 2015; 9:7722-7728. [PMID: 26172541 DOI: 10.1021/acsnano.5b03466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Axial coordinations of diatomic NO molecules to metalloporphyrins play key roles in dynamic processes of biological functions such as blood pressure control and immune response. Probing such reactions at the single molecule level is essential to understand their physical mechanisms but has been rarely performed. Here we report on our single molecule dissociation experiments of diatomic NO from NO-Co-porphyrin complexes describing its dissociation mechanisms. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses gave rise to dissociations of NO with threshold voltages, +0.68 and -0.74 V at 0.1 nA tunneling current on Au(111). From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances by stochastically tunneling electrons, which is supported with our density functional theory calculations. Our study shows that single molecule dissociation experiments can be used to probe reaction mechanisms in a variety of axial coordinations between small molecules and metalloporphyrins.
Collapse
Affiliation(s)
- Howon Kim
- †Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Yun Hee Chang
- ‡Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Won-Jun Jang
- †Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Eui-Sup Lee
- ‡Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Yong-Hyun Kim
- ‡Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Se-Jong Kahng
- †Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|
29
|
Duncan DA, Deimel PS, Wiengarten A, Han R, Acres RG, Auwärter W, Feulner P, Papageorgiou AC, Allegretti F, Barth JV. Immobilised molecular catalysts and the role of the supporting metal substrate. Chem Commun (Camb) 2015; 51:9483-6. [PMID: 25962437 DOI: 10.1039/c5cc01639h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work demonstrates that immobilising molecular catalysts on metal substrates can attenuate their reactivity. In particular, the reactivity towards molecular oxygen of both ruthenium tetraphenyl porphyrin (Ru-TPP) and its Ti analogue (Ti-TPP) on Ag(111) was studied as benchmark for the interaction strength of such metal-organic complexes with possible reactants. Here, Ru-TPP proves to be completely unreactive and Ti-TPP strongly reactive towards molecular oxygen; along with comparison to work in the literature, this suggests that studies into immobilised catalysts might find fruition in considering species traditionally seen as too strongly interacting.
Collapse
Affiliation(s)
- David A Duncan
- Physik-Department E20, Technische Universität München, D-85748 Garching, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vijayaraghavan S, Auwärter W, Ecija D, Seufert K, Rusponi S, Houwaart T, Sautet P, Bocquet ML, Thakur P, Stepanow S, Schlickum U, Etzkorn M, Brune H, Barth JV. Restoring the Co magnetic moments at interfacial Co-porphyrin arrays by site-selective uptake of iron. ACS NANO 2015; 9:3605-3616. [PMID: 25856066 DOI: 10.1021/nn507346x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetochemistry recently emerged as a promising approach to control addressable spin arrays on surfaces. Here we report on the binding, spatial ordering, and magnetic properties of Fe on a highly regular Co-tetraphenylporphyrin (Co-TPP) template and highlight how the Fe controls the magnetism of the Co centers. As evidenced by scanning tunneling microscopy (STM) single Fe atoms attach to the saddle-shape conformers site-selectively in a unique coordination environment offered through a heptamer defined by the Co-N-C-C-C-N cyclic subunit. While the magnetic moment of Co is quenched for bare Co-TPP/Ag(111), the Fe presence revives it. Our X-ray magnetic circular dichroism (XMCD) experiments, complemented by density functional theory (DFT) calculations, evidence a ferromagnetic coupling between the Fe and the Co center concomitant with a complex charge redistribution involving the porphyrin ligand. Thus, we demonstrate an unusual metalloporphyrin coordination geometry that opens pathways to spatially order and engineer magnetic moments in surface-based nanostructures.
Collapse
Affiliation(s)
| | - Willi Auwärter
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - David Ecija
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Knud Seufert
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Stefano Rusponi
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Torsten Houwaart
- §Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, F-69364 Cedex 07 Lyon, France
| | - Philippe Sautet
- §Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, F-69364 Cedex 07 Lyon, France
| | - Marie-Laure Bocquet
- §Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, F-69364 Cedex 07 Lyon, France
| | - Pardeep Thakur
- ⊥European Synchrotron Radiation Facility (ESRF), B.P. 220, Grenoble Cedex F-38043, France
| | - Sebastian Stepanow
- ∥Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Uta Schlickum
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- #Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Markus Etzkorn
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- #Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Harald Brune
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Johannes V Barth
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
31
|
Abstract
Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.
Collapse
|
32
|
Manbeck GF, Fujita E. A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300013] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review summarizes research on the electrochemical and photochemical reduction of CO 2 using a variety of iron and cobalt porphyrins, phthalocyanines and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO 2 reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO 2 reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progress in carrying out coupled proton-electron transfer reactions for CO 2 reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.
Collapse
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Department, Brookhaven National Laboratory, Upton NY 11973, USA
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton NY 11973, USA
| |
Collapse
|
33
|
Urgel JI, Ecija D, Auwärter W, Stassen D, Bonifazi D, Barth JV. Orthogonal insertion of lanthanide and transition-metal atoms in metal-organic networks on surfaces. Angew Chem Int Ed Engl 2015; 54:6163-7. [PMID: 25832804 DOI: 10.1002/anie.201410802] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/02/2015] [Indexed: 11/07/2022]
Abstract
The orthogonal coordinative properties of tetrapyrrole macrocycles and nitrile ligands have been used in a multistep procedure towards interfacial d-f hetero-bimetallic nanoarchitectures based on a free-base porphyrin derivative functionalized with meso-cyanobiphenylene substituents. Molecular-level scanning tunneling microscopy studies reveal that the porphyrin module alone self-assembles on Ag(111) in a close-packed layer with a square unit cell. Upon co-deposition of Gd atoms, a square-planar motif is formed that reflects the fourfold coordination of CN ligands to the rare-earth centers. The resulting nanoporous network morphology is retained following exposure to a beam of Co atoms, which induces selective porphyrin metalation and ultimately yields a gridlike 2D metallosupramolecular architecture.
Collapse
Affiliation(s)
- José I Urgel
- Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
| | - David Ecija
- Physik Department E20, Technische Universität München, 85748 Garching, München (Germany). .,IMDEA Nanoscience, 28049 Madrid (Spain).
| | - Willi Auwärter
- Physik Department E20, Technische Universität München, 85748 Garching, München (Germany).
| | - Daphné Stassen
- Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium). .,Department of Pharmaceutical and Chemical Sciences and INSTM UdR Trieste, University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy).
| | - Johannes V Barth
- Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
| |
Collapse
|
34
|
Urgel JI, Ecija D, Auwärter W, Stassen D, Bonifazi D, Barth JV. Orthogonal Insertion of Lanthanide and Transition-Metal Atoms in Metal-Organic Networks on Surfaces. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Kim H, Chang YH, Lee SH, Lim S, Noh SK, Kim YH, Kahng SJ. Visualizing tilted binding and precession of diatomic NO adsorbed to Co-porphyrin on Au(111) using scanning tunneling microscopy. Chem Sci 2014. [DOI: 10.1039/c3sc52004h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By considering tilted binding and precession motion of NO, we explained the bright ring shapes observed in scanning tunneling microscopy of NO–Co-porphyrin on Au(111), with our density functional theory calculations.
Collapse
Affiliation(s)
- Howon Kim
- Department of Physics
- Korea University
- Seoul 136-713, Republic of Korea
| | - Yun Hee Chang
- Graduate School of Nanoscience and Technology
- KAIST
- Daejeon 305-701, Republic of Korea
| | - Soon-Hyeong Lee
- Department of Physics
- Korea University
- Seoul 136-713, Republic of Korea
| | - Soobin Lim
- Department of Physics
- Korea University
- Seoul 136-713, Republic of Korea
| | - Seung-Kyun Noh
- Department of Physics
- Korea University
- Seoul 136-713, Republic of Korea
| | - Yong-Hyun Kim
- Graduate School of Nanoscience and Technology
- KAIST
- Daejeon 305-701, Republic of Korea
- Center for Nanomaterials and Chemical Reactions
- Institute for Basic Science (IBS)
| | - Se-Jong Kahng
- Department of Physics
- Korea University
- Seoul 136-713, Republic of Korea
| |
Collapse
|
36
|
Kim H, Chang YH, Lee SH, Kim YH, Kahng SJ. Switching and sensing spin states of co-porphyrin in bimolecular reactions on Au111 using scanning tunneling microscopy. ACS NANO 2013; 7:9312-9317. [PMID: 24003896 DOI: 10.1021/nn4039595] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Controlling and sensing spin states of magnetic molecules at the single-molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of Co-porphyrin on Au(111) can be reversibly switched over by binding and unbinding of the NO molecule and can be sensed using scanning tunneling microscopy and spectroscopy (STM and STS). Before NO exposure, Co-porphryin showed a clear zero-bias peak, a signature of Kondo effect in STS, whereas after NO exposures, it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature, implying that the Kondo effect was switched off by binding of NO. The Kondo effect could be switched back on by unbinding of NO through single-molecule manipulation or thermal desorption. Our density functional theory calculation results explain the observations with pairing of unpaired spins in dz(2) and ppπ* orbitals of Co-porphyrin and NO, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of enormous variety of bimolecular binding and unbinding reactions on metallic surfaces.
Collapse
Affiliation(s)
- Howon Kim
- Department of Physics, Korea University , 136-713, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Burema SR, Seufert K, Auwärter W, Barth JV, Bocquet ML. Probing nitrosyl ligation of surface-confined metalloporphyrins by inelastic electron tunneling spectroscopy. ACS NANO 2013; 7:5273-81. [PMID: 23718257 PMCID: PMC3833350 DOI: 10.1021/nn4010582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Complexes obtained by the ligation of nitric oxide (NO) to metalloporphyrins represent important model systems with biological relevance. Herein we report a molecular-level investigation of surface-confined cobalt tetraphenyl porphyrin (Co-TPP) species and their interaction with NO under ultrahigh vacuum conditions. It is demonstrated that individual NO adducts can be desorbed using the atomically sharp tip of a scanning tunneling microscope, whereby a writing process is implemented for fully saturated regular metalloporphyrin arrays. The low-energy vibrational characteristics of individual Co-TPP-nitrosyl complexes probed by inelastic electron tunneling spectroscopy (IETS) reveal a prominent signature at an energy of ~/=31 meV. Using density functional theory-based IETS simulations-the first to be performed on such an extensive interfacial nanosystem-we succeed to reproduce the low-frequency spectrum for the NO-ligated complex and explain the absence of IETS activity for bare Co-TPP. Moreover, we can conclusively assign the IETS peak of NO-Co-TPP to a unique vibration mode involving the NO complexation site, namely, the in-plane Co-N-O rocking mode. In addition, we verify that the propensity rules previously designed on small aromatic systems and molecular fragments hold true for a metal-organic entity. This work notably permits one to envisage IETS spectroscopy as a sensitive tool to chemically characterize hybrid interfaces formed by complex metal-organic units and gaseous adducts.
Collapse
Affiliation(s)
- Shiri R. Burema
- Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 CEDEX07 Lyon, France
| | - Knud Seufert
- Physik Department E20, Technische Universität München, James-Franck Str. D-85748 Garching, Germany
| | - Willi Auwärter
- Physik Department E20, Technische Universität München, James-Franck Str. D-85748 Garching, Germany
| | - Johannes V. Barth
- Physik Department E20, Technische Universität München, James-Franck Str. D-85748 Garching, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 CEDEX07 Lyon, France
- Address correspondence to
| |
Collapse
|
38
|
Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat Chem 2013; 5:621-7. [DOI: 10.1038/nchem.1667] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 04/29/2013] [Indexed: 11/09/2022]
|
39
|
Papageorgiou AC, Fischer S, Oh SC, Sağlam O, Reichert J, Wiengarten A, Seufert K, Vijayaraghavan S, Ecija D, Auwärter W, Allegretti F, Acres RG, Prince KC, Diller K, Klappenberger F, Barth JV. Self-terminating protocol for an interfacial complexation reaction in vacuo by metal-organic chemical vapor deposition. ACS NANO 2013; 7:4520-4526. [PMID: 23641683 DOI: 10.1021/nn401171z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The fabrication and control of coordination compounds or architectures at well-defined interfaces is a thriving research domain with promise for various research areas, including single-site catalysis, molecular magnetism, light-harvesting, and molecular rotors and machines. To date, such systems have been realized either by grafting or depositing prefabricated metal-organic complexes or by protocols combining molecular linkers and single metal atoms at the interface. Here we report a different pathway employing metal-organic chemical vapor deposition, as exemplified by the reaction of meso-tetraphenylporphyrin derivatives on atomistically clean Ag(111) with a metal carbonyl precursor (Ru3(CO)12) under vacuum conditions. Scanning tunneling microscopy and X-ray spectroscopy reveal the formation of a meso-tetraphenylporphyrin cyclodehydrogenation product that readily undergoes metalation after exposure to the Ru-carbonyl precursor vapor and thermal treatment. The self-terminating porphyrin metalation protocol proceeds without additional surface-bound byproducts, yielding a single and thermally robust layer of Ru metalloporphyrins. The introduced fabrication scheme presents a new approach toward the realization of complex metal-organic interfaces incorporating metal centers in unique coordination environments.
Collapse
|
40
|
Diller K, Klappenberger F, Allegretti F, Papageorgiou AC, Fischer S, Wiengarten A, Joshi S, Seufert K, Écija D, Auwärter W, Barth JV. Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: Adsorption and self-metalation of porphine on Cu(111). J Chem Phys 2013; 138:154710. [DOI: 10.1063/1.4800771] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Wäckerlin C, Siewert D, Jung TA, Ballav N. On-surface coordination chemistry: direct imaging of the conformational freedom of an axial ligand at room temperature. Phys Chem Chem Phys 2013; 15:16510-4. [DOI: 10.1039/c3cp50966d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Stróżecka A, Soriano M, Pascual JI, Palacios JJ. Reversible change of the spin state in a manganese phthalocyanine by coordination of CO molecule. PHYSICAL REVIEW LETTERS 2012; 109:147202. [PMID: 23083274 DOI: 10.1103/physrevlett.109.147202] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Indexed: 06/01/2023]
Abstract
We show that the magnetic state of individual manganese phthalocyanine (MnPc) molecules on a Bi(110) surface is modified when the Mn2+ center coordinates to CO molecules adsorbed on top. Using scanning tunneling spectroscopy we identified this change in magnetic properties from the broadening of a Kondo-related zero-bias anomaly when the CO-MnPc complex is formed. The original magnetic state can be recovered by selective desorption of individual CO molecules. First principles calculations show that the CO molecule reduces the spin of the adsorbed MnPc from S=1 to S=1/2 and strongly modifies the respective screening channels, driving a transition from an underscreened Kondo state to a state of mixed valence.
Collapse
Affiliation(s)
- A Stróżecka
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
43
|
Gopakumar TG, Tang H, Morillo J, Berndt R. Transfer of Cl Ligands between Adsorbed Iron Tetraphenylporphyrin Molecules. J Am Chem Soc 2012; 134:11844-7. [DOI: 10.1021/ja302589z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thiruvancheril G. Gopakumar
- Institut für Experimentelle
und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Hao Tang
- CEMES/CNRS, 29, rue Jeanne
Marvig, B.P. 94347, 31055 Toulouse Cedex, France
- Universite de Toulouse, UPS, 31055 Toulouse, France
| | - Joseph Morillo
- CEMES/CNRS, 29, rue Jeanne
Marvig, B.P. 94347, 31055 Toulouse Cedex, France
- Universite de Toulouse, UPS, 31055 Toulouse, France
| | - Richard Berndt
- Institut für Experimentelle
und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
44
|
Diller K, Klappenberger F, Marschall M, Hermann K, Nefedov A, Wöll C, Barth JV. Self-metalation of 2H-tetraphenylporphyrin on Cu(111): an x-ray spectroscopy study. J Chem Phys 2012; 136:014705. [PMID: 22239798 DOI: 10.1063/1.3674165] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bonding and the temperature-driven metalation of 2H-tetraphenylporphyrin (2H-TPP) on the Cu(111) surface under ultrahigh vacuum conditions were investigated by a combination of x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy with density functional theory calculations. Thin films were prepared by organic molecular beam epitaxy and subsequent annealing. Our systematic study provides an understanding of the changes of the spectroscopic signature during adsorption and metalation. Specifically, we achieved a detailed peak assignment of the 2H-TPP multilayer data of the C1s and the N1s region. After annealing to 420 K both XPS and NEXAFS show the signatures of a metalloporphyrin, which indicates self-metalation at the porphyrin-substrate interface, resulting in Cu-TPP. Furthermore, for 2H-TPP monolayer samples we show how the strong influence of the copper surface is reflected in the spectroscopic signatures. Adsorption results in a strongly deformed macrocycle and a quenching of the first NEXAFS resonance in the nitrogen edge suggesting electron transfer into the LUMO. For Cu-TPP the spectroscopic data indicate a reduced interaction of first-layer molecules with the substrate as demonstrated by the relaxed macrocycle geometry.
Collapse
Affiliation(s)
- K Diller
- Physik Department E20, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wäckerlin C, Tarafder K, Siewert D, Girovsky J, Hählen T, Iacovita C, Kleibert A, Nolting F, Jung TA, Oppeneer PM, Ballav N. On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands. Chem Sci 2012. [DOI: 10.1039/c2sc20828h] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Hieringer W, Flechtner K, Kretschmann A, Seufert K, Auwärter W, Barth JV, Görling A, Steinrück HP, Gottfried JM. The Surface Trans Effect: Influence of Axial Ligands on the Surface Chemical Bonds of Adsorbed Metalloporphyrins. J Am Chem Soc 2011; 133:6206-22. [DOI: 10.1021/ja1093502] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wolfgang Hieringer
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Ken Flechtner
- Lehrstuhl für Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Andreas Kretschmann
- Lehrstuhl für Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Knud Seufert
- Physik-Department E20, Technische Universität München, James-Franck-Strasse, 85748 Garching, Germany
| | - Willi Auwärter
- Physik-Department E20, Technische Universität München, James-Franck-Strasse, 85748 Garching, Germany
| | - Johannes V. Barth
- Physik-Department E20, Technische Universität München, James-Franck-Strasse, 85748 Garching, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - J. Michael Gottfried
- Lehrstuhl für Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|