1
|
Yang WP, Miao HJ, Liu L, Duan XH, Guo LN. Visible Light-Promoted Aromatization-Driven Deconstructive Fluorination of Spiro Carbocycles. Org Lett 2024; 26:7442-7446. [PMID: 39186378 DOI: 10.1021/acs.orglett.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A visible light-promoted aromatization-driven deconstructive fluorination of spiro carbocycles is presented. A series of spiro dihydroquinazolinones reacted efficiently with NFSI under visible light irradiation to afford the 2-(4-fluoroalkyl)quinazolin-4(3H)-ones in good yields with excellent functional group tolerance. A radical pathway involving C-C bond cleavage and F atom transfer is proposed for the reaction. In addition, the ring-opening chlorination of spiro dihydroquinazolinones with NCS was also applicable.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Demonti L, Joven-Sancho D, Saffon-Merceron N, Baya M, Nebra N. Synthesis and Lewis Acid Properties of Neutral Silver(III) Adducts Containing the Ag III(CF 3) 3 Moiety. Chemistry 2024; 30:e202400881. [PMID: 38567827 DOI: 10.1002/chem.202400881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 05/09/2024]
Abstract
The acetonitrile AgIII complex [AgIII(CF3)3(NCCH3)] (2) has been reported independently by Eujen and Naumann in the last century, albeit with intriguing NMR discrepancy. In their reports, 2 was claimed to be obtained starting from either [AgIII(CF3)3Cl]- (3⋅Cl) or [AgIII(CF3)4]- (1) via halide abstraction using AgNO3 or acidic treatment, resp. These two synthetic routes are herein reinvestigated. The feasibility of Naumann's method is demonstrated, thus providing 2 yet accompanied by its s-triazinyl derivative [AgIII(CF3)3(C6H9N3)] (2'). The formation of 2' is unprecedented and was thereby investigated. Both 2 and 2' were isolated in pure fashion and fully characterized. In turn, halide extraction from 3⋅Cl leads to the AgIII-ONO2 anion 5 instead of 2, as evidenced by NMR spectroscopy, EA and Sc-XRD.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
3
|
Kikushima K, Komiyama K, Umekawa N, Yamada K, Kita Y, Dohi T. Silver-Catalyzed Coupling of Unreactive Carboxylates: Synthesis of α-Fluorinated O-Aryl Esters. Org Lett 2024; 26:5347-5352. [PMID: 38885467 DOI: 10.1021/acs.orglett.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
α-Fluorinated aryl esters pose a challenge in synthesis via O-arylation of α-fluorinated carboxylates owing to their low reactivities. This limitation has been addressed by combining a silver catalyst with aryl(trimethoxyphenyl)iodonium tosylates to access α-fluorinated aryl esters. We envision that the catalytic system involves high-valent aryl silver species generated via the oxidation of silver(I) salt. The present method provided a synthetic protocol for various α-fluorinated aryl esters including fluorinated analogs of drug derivatives.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Keina Komiyama
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Narumi Umekawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Kohei Yamada
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
4
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Mosiagin I, Fernandes AJ, Budinská A, Hayriyan L, Ylijoki KEO, Katayev D. Catalytic ipso-Nitration of Organosilanes Enabled by Electrophilic N-Nitrosaccharin Reagent. Angew Chem Int Ed Engl 2023; 62:e202310851. [PMID: 37632357 DOI: 10.1002/anie.202310851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Nitroaromatic compounds represent one of the essential classes of molecules that are widely used as feedstock for the synthesis of intermediates, the preparation of nitro-derived pharmaceuticals, agrochemicals, and materials on both laboratory and industrial scales. We herein disclose the efficient, mild, and catalytic ipso-nitration of organotrimethylsilanes, enabled by an electrophilic N-nitrosaccharin reagent and allows chemoselective nitration under mild reaction conditions, while exhibiting remarkable substrate generality and functional group compatibility. Additionally, the reaction conditions proved to be orthogonal to other common functionalities, allowing programming of molecular complexity via successive transformations or late-stage nitration. Detailed mechanistic investigation by experimental and computational approaches strongly supported a classical electrophilic aromatic substitution (SE Ar) mechanism, which was found to proceed through a highly ordered transition state.
Collapse
Affiliation(s)
- Ivan Mosiagin
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Anthony J Fernandes
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Alena Budinská
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Liana Hayriyan
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Kai E O Ylijoki
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3 C3, Canada
| | - Dmitry Katayev
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
6
|
Wang X, Zhang X, Xue L, Wang Q, You F, Dai L, Wu J, Kramer S, Lian Z. Mechanochemical Synthesis of Aryl Fluorides by Using Ball Milling and a Piezoelectric Material as the Redox Catalyst. Angew Chem Int Ed Engl 2023; 62:e202307054. [PMID: 37523257 DOI: 10.1002/anie.202307054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Aryl fluorides are important structural motifs in many pharmaceuticals. Although the Balz-Schiemann reaction provides an entry to aryl fluorides from aryldiazonium tetrafluoroborates, it suffers from drawbacks such as long reaction time, high temperature, toxic solvent, toxic gas release, and low functional group tolerance. Here, we describe a general method for the synthesis of aryl fluorides from aryldiazonium tetrafluoroborates using a piezoelectric material as redox catalyst under ball milling conditions in the presence of Selectfluor. This approach effectively addresses the aforementioned limitations. Furthermore, the piezoelectric material can be recycled multiple times. Mechanistic investigations indicate that this fluorination reaction may proceed via a radical pathway, and Selectfluor plays a dual role as both a source of fluorine and a terminal reductant.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Li Xue
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Lunzhi Dai
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jiagang Wu
- Department of Materials Science, Sichuan University, 610064, Chengdu, China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| |
Collapse
|
7
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
8
|
Zhao M, Chen M, Wang T, Yang S, Peng Q, Tang P. Fluorocarbonylation via palladium/phosphine synergistic catalysis. Nat Commun 2023; 14:4583. [PMID: 37524725 PMCID: PMC10390470 DOI: 10.1038/s41467-023-40180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the growing importance of fluorinated organic compounds in pharmaceuticals, agrochemicals, and materials science, the introduction of fluorine into organic molecules is still a challenge, and no catalytic fluorocarbonylation of aryl/alkyl boron compounds has been reported to date. Herein, we present the development of palladium and phosphine synergistic redox catalysis of fluorocarbonylation of potassium aryl/alkyl trifluoroborate. Trifluoromethyl arylsulfonate (TFMS), which was used as a trifluoromethoxylation reagent, an easily handled and bench-scale reagent, has been employed as an efficient source of COF2. The reaction operates under mild conditions with good to excellent yields and tolerates diverse complex scaffolds, which allows efficient late-stage fluorocarbonylation of marked small-molecule drugs. Mechanistically, the key intermediates of labile Brettphos-Pd(II)-OCF3 complex and difluoro-Brettphos were synthesized and spectroscopically characterized, including X-ray crystallography. A detailed reaction mechanism involving the synergistic redox catalytic cycles Pd(II)/(0) and P(III)/(V) was proposed, and multifunction of phosphine ligand was identified based on 19F NMR, isotope tracing, synthetic, and computational studies.
Collapse
Affiliation(s)
- Mingxin Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Miao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Tian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Shuhan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
9
|
Liang W, Chen ZJ, Ran LH, Chen L. A Palladium-Catalyzed Borylation/Silica Gel Promoted Hydrolysis Sequence for the Synthesis of Hydroquinine-6'-Boric Acid and Its Applications. J Org Chem 2023. [PMID: 37471456 DOI: 10.1021/acs.joc.3c00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Hydroquinine-6'-boric acid was first synthesized via a palladium-catalyzed borylation/silica gel promoted hydrolysis sequence of hydroquinine-derived triflate and bis(pinacolato)diboron. The newly designed chiral building block was subjected to the Suzuki-Miyaura cross-coupling reaction, Petasis reaction, and selenylation reaction, respectively, and all these reactions worked well to afford the corresponding 6'-functionalized hydroquinines with satisfactory results, demonstrating its extraordinary application potency.
Collapse
Affiliation(s)
- Wei Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Zheng-Jun Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Long-Hao Ran
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Lin Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Wu Y, Frank N, Song Q, Liu M, Anderson EA, Bi X. Silver catalysis in organic synthesis: A computational view. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Tian Y, Shehata MA, Gauger SJ, Veronesi C, Hamborg L, Thiesen L, Bruus-Jensen J, Royssen JS, Leurs U, Larsen ASG, Krall J, Solbak SM, Wellendorph P, Frølund B. Exploring the NCS-382 Scaffold for CaMKIIα Modulation: Synthesis, Biochemical Pharmacology, and Biophysical Characterization of Ph-HTBA as a Novel High-Affinity Brain-Penetrant Stabilizer of the CaMKIIα Hub Domain. J Med Chem 2022; 65:15066-15084. [DOI: 10.1021/acs.jmedchem.2c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongsong Tian
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mohamed A. Shehata
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stine Juul Gauger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Carolina Veronesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Hamborg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jesper Bruus-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Johanne Schlieper Royssen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ulrike Leurs
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anne Sofie G. Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sara M.Ø. Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Dumon AS, Rzepa HS, Alamillo-Ferrer C, Bures J, Procter R, Sheppard TD, Whiting A. A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine-carbon and fluorine-boron bonds. Phys Chem Chem Phys 2022; 24:20409-20425. [PMID: 35983846 DOI: 10.1039/d2cp02317b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the evaluation of density-functional-theory (DFT) based procedures for predicting 19F NMR chemical shifts at modest computational cost for a range of molecules with fluorine bonds, to be used as a tool for assisting the characterisation of reaction intermediates and products and as an aid to identifying mechanistic pathways. The results for a balanced learning set of molecules were then checked using two further testing sets, resulting in the recommendation of the ωB97XD/aug-cc-pvdz DFT method and basis set as having the best combination of accuracy and computational time, with a RMS error of 3.57 ppm. Cationic molecules calculated without counter-anion showed normal errors, whilst anionic molecules showed somewhat larger errors. The method was applied to the prediction of the conformationally averaged 19F chemical shifts of 2,2,3,3,4,4,5,5-octafluoropentan-1-ol, in which gauche stereoelectronic effects involving fluorine dominate and to determining the position of coordination equilibria of fluorinated boranes as an aid to verifying the relative energies of intermediate species involved in catalytic amidation reactions involving boron catalysts.
Collapse
Affiliation(s)
- Alexandre S Dumon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK.
| | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK.
| | | | - Jordi Bures
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Richard Procter
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Tom D Sheppard
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Andrew Whiting
- Centre for Sustainable Chemical Processes, Department of Chemistry, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
13
|
Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis DA, Cornella J. Mechanism of the Aryl-F Bond-Forming Step from Bi(V) Fluorides. J Am Chem Soc 2022; 144:14489-14504. [PMID: 35921250 PMCID: PMC9394462 DOI: 10.1021/jacs.2c01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/10/2023]
Abstract
In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)-F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar-F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C-F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz-Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives.
Collapse
Affiliation(s)
- Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vytautas Peciukenas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
14
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C–F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abbey N. Ragan
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Yannick Kraemer
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Wang-Yeuk Kong
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Supreeth Prasad
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Dean J. Tantillo
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Cody Ross Pitts
- University of California Davis Department of Chemistry One Shields Avenue 95616 Davis UNITED STATES
| |
Collapse
|
15
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C-F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022; 61:e202208046. [PMID: 35859267 DOI: 10.1002/anie.202208046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/10/2022]
Abstract
The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.
Collapse
Affiliation(s)
- Abbey N Ragan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yannick Kraemer
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Supreeth Prasad
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Cody Ross Pitts
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
16
|
Hoff LV, Chesnokov GA, Linden A, Gademann K. Mechanistic Studies and Data Science-Guided Exploration of Bromotetrazine Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lukas V. Hoff
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gleb A. Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Xu L, Liu X, Alvey GR, Shatskiy A, Liu JQ, Kärkäs MD, Wang XS. Silver-Catalyzed Controlled Intermolecular Cross-Coupling of Silyl Enol Ethers: Scalable Access to 1,4-Diketones. Org Lett 2022; 24:4513-4518. [PMID: 35713416 PMCID: PMC9536665 DOI: 10.1021/acs.orglett.2c01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
A protocol
for silver-catalyzed controlled intermolecular cross-coupling
of silyl enolates is disclosed. The protocol displays good functional
group tolerance and allows efficient preparation of a series of synthetically
useful 1,4-diketones. Preliminary mechanistic investigations suggest
that the reaction proceeds through a one-electron process involving
free radical species in which PhBr acts as the oxidant.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyi Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Gregory R Alvey
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.,Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
18
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes-Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022; 61:e202202175. [PMID: 35415937 DOI: 10.1002/anie.202202175] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Stereoselective cyclopropanation reaction of alkenes is usually achieved by metal complexes via singlet-metal-carbene intermediates. However, previous transition-metal-catalyzed cyclopropanation of alkenes with acylsilanes afforded low diastereoselectivity. Herein, we report the first visible-light-induced transition-metal-free cyclopropanation reaction of terminal alkenes with trifluoroacetylsilanes and difluoroacetylsilanes. Both aromatic and aliphatic alkenes as well as electron-deficient alkenes are suitable substrates for the highly cis-selective [2+1] cyclization reaction. A combination of experimental and computational studies identified triplet carbenes as being key intermediates in this transformation. The gram scale reaction and late-stage functionalization demonstrated the synthetic potential of this strategy.
Collapse
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xingxing Gong
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
19
|
Kadu VD. Recent Advances for Synthesis of Oxazole Heterocycles
via
C‐H/C‐N Bond Functionalization of Benzylamines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vikas D. Kadu
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| |
Collapse
|
20
|
Zou S, Luo X, Chen C, Xi C. Photoredox-catalyzed fluorodifluoroacetylation of alkenes with FSO 2CF 2CO 2Me and Et 3N·3HF. Org Biomol Chem 2022; 20:3726-3730. [PMID: 35466989 DOI: 10.1039/d2ob00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox-catalyzed three-component fluorodifluoroacetylation of aromatic alkenes is reported, which features a wide substrate scope and functional group tolerance. An advantage of the reaction is the use of a nucleophilic fluoride source and a general difluoroacetylation reagent for the fluorodifluoroacetylation of alkenes.
Collapse
Affiliation(s)
- Song Zou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xuewei Luo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chao Chen
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes‐Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Gang Zhou
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xingxing Gong
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiao Shen
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| |
Collapse
|
22
|
Xu J, Peng C, Yao B, Xu HJ, Xie Q. Direct Deoxyfluorination of Alcohols with KF as the Fluorine Source. J Org Chem 2022; 87:6471-6478. [PMID: 35442691 DOI: 10.1021/acs.joc.2c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes a method for the deoxyfluorination of alcohols with KF as the fluorine source via in situ generation of highly active CF3SO2F. Diverse functionalities, including halogen, nitro, ketone, ester, alkene, and alkyne, are well tolerated. Mild conditions, a short reaction time, and a wide substrate scope make this method an excellent choice for the construction of C-F bonds.
Collapse
Affiliation(s)
- Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bolin Yao
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| |
Collapse
|
23
|
Zlotos DP, Mandour YM, Jensen AA. Strychnine and its mono- and dimeric analogues: a pharmaco-chemical perspective. Nat Prod Rep 2022; 39:1910-1937. [PMID: 35380133 DOI: 10.1039/d1np00079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt.
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Chao MN, Chezal JM, Debiton E, Canitrot D, Witkowski T, Levesque S, Degoul F, Tarrit S, Wenzel B, Miot-Noirault E, Serre A, Maisonial-Besset A. A Convenient Route to New (Radio)Fluorinated and (Radio)Iodinated Cyclic Tyrosine Analogs. Pharmaceuticals (Basel) 2022; 15:ph15020162. [PMID: 35215275 PMCID: PMC8877694 DOI: 10.3390/ph15020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51–78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5–2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F− with 19–28% RCY d.c., high RCP (>98.9%), Am (20–107 GBq/µmol) and e.e. (>99%).
Collapse
Affiliation(s)
- Maria Noelia Chao
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Jean-Michel Chezal
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Eric Debiton
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Damien Canitrot
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Tiffany Witkowski
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sophie Levesque
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63000 Clermont-Ferrand, France
| | - Françoise Degoul
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sébastien Tarrit
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany;
| | - Elisabeth Miot-Noirault
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Audrey Serre
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Aurélie Maisonial-Besset
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Correspondence:
| |
Collapse
|
26
|
Zeng JL, Xu ZH, Niu LF, Yao C, Liang LL, Zou YL, Yang L. Generating Monofluoro‐Substituted Amines and Amino Acids by the Interaction of Inexpensive KF and Sulfamidates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Liang Zeng
- Xuchang University College of chemical and materials engineering 88 Bayi Road, Weidu District, 461000 Xuchang City CHINA
| | - Zhi-Hong Xu
- Xuchang University college of chemical and materials engineering CHINA
| | - Liang-Feng Niu
- Xuchang University college of chemical and materials engineering CHINA
| | - Chuan Yao
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lu-Lu Liang
- Xuchang University college of chemical and materials engineering CHINA
| | - Yu-Lu Zou
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lijun Yang
- Chinese Academy of Medical Sciences & Peking Union Medical College key laboratory of radiopharmacokinetics for innovative drugs CHINA
| |
Collapse
|
27
|
Yue G, Wei J, Qiu D, Mo F. Recent Advances in the Synthesis of Arylstannanes. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
de Souza-Ferrari J, Silva-Júnior EA, Vale JA, de Albuquerque Simões LA, de Moraes-Júnior MO, Dantas BB, de Araújo DAM. A late-stage diversification via Heck-Matsuda arylation: Straightforward synthesis and cytotoxic/antiproliferative profiling of novel aryl-labdane-type derivatives. Bioorg Med Chem Lett 2021; 52:128393. [PMID: 34606997 DOI: 10.1016/j.bmcl.2021.128393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
In the current study a late-stage diversification of unactivated olefins labd-8(17)-en-15-oic acid (1a) and methyl labd-8(17)-en-15-oate (1b) via Heck-Matsuda arylation is described. The reaction provided straightforward and practical access to a series of novel aryl-labdane-type derivatives (HM adducts 3a-h) in moderate to good yields in a highly regio- and stereoselective manner at room temperature under air atmosphere. The cytotoxic activity of these compounds was investigated in vitro against three different human cell lines (THP-1, K562, MCF-7). Of these, HM adduct 3h showed a selective effect in all cancer cell lines tested and was selected for extended biological investigations in a leukemia cell line (K562), which demonstrated that the cytotoxic/antiproliferative activity observed in this compound might be mediated by induction of cell cycle arrest at the sub-G1 phase and by autophagy-induced cell death. Taken together, these findings indicate that further investigation into the anticancer activity against chronic myeloid leukemia from aryl-labdane-type derivatives may be fruitful.
Collapse
Affiliation(s)
- Jailton de Souza-Ferrari
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil.
| | - Edvaldo Alves Silva-Júnior
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Juliana Alves Vale
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | | | - Manoel Oliveira de Moraes-Júnior
- Department of Biotechnology, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Bruna Braga Dantas
- Department of Biotechnology, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
29
|
Demonti L, Saffon-Merceron N, Mézailles N, Nebra N. Cross-Coupling through Ag(I)/Ag(III) Redox Manifold. Chemistry 2021; 27:15396-15405. [PMID: 34473859 DOI: 10.1002/chem.202102836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In ample variety of transformations, the presence of silver as an additive or co-catalyst is believed to be innocuous for the efficiency of the operating metal catalyst. Even though Ag additives are required often as coupling partners, oxidants or halide scavengers, its role as a catalytically competent species is widely neglected in cross-coupling reactions. Most likely, this is due to the erroneously assumed incapacity of Ag to undergo 2e- redox steps. Definite proof is herein provided for the required elementary steps to accomplish the oxidative trifluoromethylation of arenes through AgI /AgIII redox catalysis (i. e. CEL coupling), namely: i) easy AgI /AgIII 2e- oxidation mediated by air; ii) bpy/phen ligation to AgIII ; iii) boron-to-AgIII aryl transfer; and iv) ulterior reductive elimination of benzotrifluorides from an [aryl-AgIII -CF3 ] fragment. More precisely, an ultimate entry and full characterization of organosilver(III) compounds [K]+ [AgIII (CF3 )4 ]- (K-1), [(bpy)AgIII (CF3 )3 ] (2) and [(phen)AgIII (CF3 )3 ] (3), is described. The utility of 3 in cross-coupling has been showcased unambiguously, and a large variety of arylboron compounds was trifluoromethylated via [AgIII (aryl)(CF3 )3 ]- intermediates. This work breaks with old stereotypes and misconceptions regarding the inability of Ag to undergo cross-coupling by itself.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
30
|
Elkoush T, Reich ND, Campbell MG. Dinuclear Silver Complexes in Catalysis. Angew Chem Int Ed Engl 2021; 60:22614-22622. [PMID: 34143934 DOI: 10.1002/anie.202106937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Over the past two decades, there has been a substantial increase in the number of synthetically useful transformations catalyzed by silver. Across the range of silver-catalyzed reactions that have been reported, dinuclear species often emerge as a common feature, either as the (pre-)catalysts themselves or as intermediates during catalysis. This Minireview explores the role of dinuclear silver complexes in homogeneous catalysis, which we hope will aid in the development of improved design principles for silver catalysts.
Collapse
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - Natasha D Reich
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - Michael G Campbell
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
31
|
|
32
|
Xu W, Zhang Q, Shao Q, Xia C, Wu M. Photocatalytic C−F Bond Activation of Fluoroarenes,
gem
‐Difluoroalkenes and Trifluoromethylarenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wengang Xu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
| | - Qiao Zhang
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Qi Shao
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Congjian Xia
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Mingbo Wu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| |
Collapse
|
33
|
de Matos IL, Birolli WG, Santos DDA, Nitschke M, Porto ALM. Stereoselective reduction of flavanones by marine-derived fungi. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry Barnard College 3009 Broadway New York NY 10027 USA
| | - Natasha D. Reich
- Department of Chemistry Barnard College 3009 Broadway New York NY 10027 USA
| | | |
Collapse
|
35
|
Zlotos DP, Abdelmalek CM, Botros LS, Banoub MM, Mandour YM, Breitinger U, El Nady A, Breitinger HG, Sotriffer C, Villmann C, Jensen AA, Holzgrabe U. C-2-Linked Dimeric Strychnine Analogues as Bivalent Ligands Targeting Glycine Receptors. JOURNAL OF NATURAL PRODUCTS 2021; 84:382-394. [PMID: 33596384 DOI: 10.1021/acs.jnatprod.0c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors. In all bivalent ligands, the two strychnine units were linked through C-2 by amide spacers of various lengths ranging from 6 to 69 atoms. Characterization of the compounds in two functional assays and in a radioligand binding assay indicated that compound 11a, with a spacer consisting of 57 atoms, may be capable of bridging the homomeric α1 GlyRs by simultaneous occupation of two adjacent strychnine-binding sites. The findings are supported by docking experiments to the crystal structure of the homomeric glycine receptor. Based on its unique binding mode, its relatively high binding affinity and antagonist potency, and its slow binding kinetics, the bivalent strychnine analogue 11a could be a valuable tool to study the functional properties of glycine receptors.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Carine M Abdelmalek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Liza S Botros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Maha M Banoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Yasmine M Mandour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, 11865 Cairo, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Ahmed El Nady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078 Würzburg, Germany
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
36
|
Bhanderi K, Ghalsasi PS, Inoue K. Nonconventional driving force for selective oxidative C-C coupling reaction due to concurrent and curious formation of Ag 0. Sci Rep 2021; 11:1568. [PMID: 33452369 PMCID: PMC7811016 DOI: 10.1038/s41598-021-81020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Is it possible to 'explore' metal's intrinsic property-a cohesive interaction-which naturally transform M0 into an aggregate or a particle or film for driving oxidative C-C bond formation? With this intention, reduction of [Ag(NH3)2]+ to Ag0 with concurrent oxidation of different phenols/naphthols to biphenyls was undertaken. The work is originated during careful observation of an undergraduate experiment-Tollens' test-where silver mirror film deposition takes place on the walls of borosilicate glass test tube. When the same reaction was carried out in polypropylene (plastic-Eppendorf) tube, we observed aggregation of Ag0 leading to floating Ag-particles but not silver film deposition. This prompted us to carry out challenging cross-coupling reaction by ONLY changing the surface of the reaction flask from glass to plastic to silicones. To our surprise, we observed good selective oxidative homo-coupling on Teflon surface while cross-coupling in Eppendorf vial. Thus, we propose that the formation of biphenyl is driven by the macroscopic growth of Ag0 into [Ag-particle] orchestrated by Ag…Ag cohesive interaction. To validate results, experiments were also performed on gram scale. More importantly, oxidation of β-naphthol carried out in quartz (chiral) tube which yielded slight enantioselective excess of BINOL. Details are discussed.
Collapse
Affiliation(s)
- Khushboo Bhanderi
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prasanna S Ghalsasi
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| | - Katsuya Inoue
- Department of Chemistry, Graduate School of Science and Chirality Research Center (CResCent), Hiroshima University, 1-3-1, Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
37
|
Duffy IR, Vasdev N, Dahl K. Copper(I)-Mediated 11C-Carboxylation of (Hetero)arylstannanes. ACS OMEGA 2020; 5:8242-8250. [PMID: 32309734 PMCID: PMC7161067 DOI: 10.1021/acsomega.0c00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A novel copper-mediated carboxylation strategy of aryl- and heteroaryl-stannanes is described. The method serves as a mild (i.e., 1 atm) carboxylation method using stable carbon dioxide and is transferable as a radiosynthetic approach for carbon-11-labeled aromatic and heteroaromatic carboxylic acids using sub-stoichiometric quantities of [11C]CO2. The methodology was applied to the radiosynthesis of the retinoid X receptor agonist, [11C]bexarotene, with a decay-corrected radiochemical yield of 32 ± 5% and molar activity of 38 ± 23 GBq/μmol (n = 3).
Collapse
Affiliation(s)
- Ian R. Duffy
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Neil Vasdev
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
- Department
of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Kenneth Dahl
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| |
Collapse
|
38
|
Joven‐Sancho D, Baya M, Martín A, Orduna J, Menjón B. The First Organosilver(III) Fluoride, [PPh
4
][(CF
3
)
3
AgF]. Chemistry 2020; 26:4471-4475. [DOI: 10.1002/chem.201905771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel Joven‐Sancho
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Jesús Orduna
- Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
39
|
Elkoush T, Mak CL, Paley DW, Campbell MG. Silver(II) and Silver(III) Intermediates in Alkene Aziridination with a Dinuclear Silver(I) Nitrene Transfer Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Choi L. Mak
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Daniel W. Paley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael G. Campbell
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
40
|
Deoxyfluorination with CuF
2
: Enabled by Using a Lewis Base Activating Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Sood DE, Champion S, Dawson DM, Chabbra S, Bode BE, Sutherland A, Watson AJB. Deoxyfluorination with CuF
2
: Enabled by Using a Lewis Base Activating Group. Angew Chem Int Ed Engl 2020; 59:8460-8463. [PMID: 32109331 DOI: 10.1002/anie.202001015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Indexed: 11/06/2022]
Affiliation(s)
- D. Eilidh Sood
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Sue Champion
- West of Scotland PET Centre Greater Glasgow and Clyde NHS Trust Glasgow G12 OYN UK
| | - Daniel M. Dawson
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Sonia Chabbra
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Andrew Sutherland
- WestCHEM School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Allan J. B. Watson
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
42
|
Caron S. Where Does the Fluorine Come From? A Review on the Challenges Associated with the Synthesis of Organofluorine Compounds. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00030] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stéphane Caron
- Chemical Research & Development, Pfizer Worldwide Research & Development, MS 8220-2432, Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
43
|
Dorel R, Boehm P, Schwinger DP, Hartwig JF. Copper-Mediated Fluorination of Aryl Trisiloxanes with Nucleophilic Fluoride. Chemistry 2020; 26:1759-1762. [PMID: 31872488 PMCID: PMC7266656 DOI: 10.1002/chem.201905040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Indexed: 11/06/2022]
Abstract
A method for the nucleophilic fluorination of heptamethyl aryl trisiloxanes to form fluoroarenes is reported. The reaction proceeds in the presence of Cu(OTf)2 and KHF2 as the fluoride source under mild conditions for a broad range of heptamethyltrisiloxyarenes with high functional group tolerance. The combination of this method with the silylation of aryl C-H bonds enables the regioselective fluorination of non-activated arenes controlled by steric effects following a two-step protocol.
Collapse
Affiliation(s)
- Ruth Dorel
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Philip Boehm
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Daniel P Schwinger
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
44
|
Nishii Y, Ikeda M, Hayashi Y, Kawauchi S, Miura M. Triptycenyl Sulfide: A Practical and Active Catalyst for Electrophilic Aromatic Halogenation Using N-Halosuccinimides. J Am Chem Soc 2020; 142:1621-1629. [PMID: 31868360 DOI: 10.1021/jacs.9b12672] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Lewis base catalyst Trip-SMe (Trip = triptycenyl) for electrophilic aromatic halogenation using N-halosuccinimides (NXS) is introduced. In the presence of an appropriate activator (as a noncoordinating-anion source), a series of unactivated aromatic compounds were halogenated at ambient temperature using NXS. This catalytic system was applicable to transformations that are currently unachievable except for the use of Br2 or Cl2: e.g., multihalogenation of naphthalene, regioselective bromination of BINOL, etc. Controlled experiments revealed that the triptycenyl substituent exerts a crucial role for the catalytic activity, and kinetic experiments implied the occurrence of a sulfonium salt [Trip-S(Me)Br][SbF6] as an active species. Compared to simple dialkyl sulfides, Trip-SMe exhibited a significant charge-separated ion pair character within the halonium complex whose structural information was obtained by the single-crystal X-ray analysis. A preliminary computational study disclosed that the π system of the triptycenyl functionality is a key motif to consolidate the enhancement of electrophilicity.
Collapse
Affiliation(s)
- Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Mitsuhiro Ikeda
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Yoshihiro Hayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1-E4-6 Ookayama , Meguro-ku , Tokyo 152-8552 , Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1-E4-6 Ookayama , Meguro-ku , Tokyo 152-8552 , Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
45
|
Kayumov M, Zhao J, Mirzaakhmedov S, Wang D, Zhang A. Synthesis of Arylstannanes via Palladium‐Catalyzed Decarbonylative Coupling of Aroyl Fluorides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Muzaffar Kayumov
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jian‐Nan Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- School of Life Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Sharafitdin Mirzaakhmedov
- Institute of Bioorganic chemistryAcademy of Sciences of the Republic of Uzbekistan Tashkent 100125 Uzbekistan
| | - Dong‐Yu Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Life Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
46
|
Kita Y, Shigetani S, Kamata K, Hara M. Benzylic C H fluorination over supported silver catalyst. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Li X, Shi X, Li X, Shi D. Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups. Beilstein J Org Chem 2019; 15:2213-2270. [PMID: 31598178 PMCID: PMC6774084 DOI: 10.3762/bjoc.15.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023] Open
Abstract
Fluorine chemistry plays an increasingly important role in pharmaceutical, agricultural, and materials industries. The incorporation of fluorine-containing groups into organic molecules can improve their chemical and physical properties, which attracts continuous interest in organic synthesis. Among various reported methods, transition-metal-catalyzed fluorination/fluoroalkylation has emerged as a powerful method for the construction of these compounds. This review attempts to describe the major advances in the transition-metal-catalyzed incorporation of fluorine, trifluoromethyl, difluoromethyl, trifluoromethylthio, and trifluoromethoxy groups reported between 2011 and 2019.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
48
|
Tanaka H, Osaka I, Yoshida H. One-pot Sequential Fluorostannylation–Arylstannylation of Arynes. CHEM LETT 2019. [DOI: 10.1246/cl.190385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hideya Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroto Yoshida
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
49
|
Meucci EA, Ariafard A, Canty AJ, Kampf JW, Sanford MS. Aryl-Fluoride Bond-Forming Reductive Elimination from Nickel(IV) Centers. J Am Chem Soc 2019; 141:13261-13267. [PMID: 31408327 DOI: 10.1021/jacs.9b06896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment of pyridine- and pyrazole-ligated NiII σ-aryl complexes with Selectfluor results in C(sp2)-F bond formation under mild conditions. With appropriate design of supporting ligands, diamagnetic NiIV σ-aryl fluoride intermediates can be detected spectroscopically and/or isolated during these transformations. These studies demonstrate for the first time that NiIV σ-aryl fluoride complexes participate in challenging C(sp2)-F bond-forming reductive elimination to yield aryl fluoride products.
Collapse
Affiliation(s)
- Elizabeth A Meucci
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Allan J Canty
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Jeff W Kampf
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
50
|
Tang L, Yang Z, Jiao J, Cui Y, Zou G, Zhou Q, Zhou Y, Rao W, Ma X. Chemoselective Mono- and Difluorination of 1,3-Dicarbonyl Compounds. J Org Chem 2019; 84:10449-10458. [PMID: 31335142 DOI: 10.1021/acs.joc.9b01808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By altering the amount of Selectfluor, the highly selective mono- and difluorination of 1,3-dicarbonyl compounds has been achieved, affording a variety of 2-fluoro- and 2,2-difluoro-1,3-dicarbonyl compounds in good to excellent yields. The reaction can be readily performed in aqueous media without any catalyst and base, which features practical and convenient fluorination. Importantly, a gram-scale reaction, transformation of 2-fluoro-1,3-diphenylpropane-1,3-dione to 4-fluoro-1,3,5-triphenyl-1H-pyrazole, and chlorination and bromination of 1,3-dicarbonyl compounds are realized to further exhibit its synthetic utility.
Collapse
Affiliation(s)
- Lin Tang
- Henan Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan , Xinyang 464000 , P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|